
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

We used a LLM as a general-purpose writing assistant for minor edits (clarity, grammar, or phrasing)
and for generating alternative phrasings of paragraphs we had already drafted.

A.1 DETAILS OF VIRO

A.1.1 INPUT ARGUMENTS

We provide the details of VIRO by extracting the program generator prompts. The following func-
tions are available in our framework for reasoning:

• FIND(object name=‘object name’): Returns all objects matching the object name which
are clearly detectable, excluding non-object entities (e.g., living room, field, wall).

• LOCATE(object=objects, position=‘location’): Returns objects positioned at a specified
absolute location, independent of other objects in the 2D space (e.g., ‘right’, ‘at the bottom’,
‘on left’, ‘9 o clock’, ‘outmost right’, ‘top’, ‘uppermost’, ‘middle’, ‘center’).

• ORDER(object=objects, criteria=[‘left’|‘right’|‘top’|‘bottom’], rank=number): Re-
turns the object positioned at the specified rank when sorted only by the given criteria
(‘left’, ‘right’, ‘top’, ‘bottom’), counting from the end.

• ABSOLUTE DEPTH(object=objects, criteria=[‘front’|‘behind’]): Returns objects
from objects positioned absolutely closest (front) or farthest (behind) in the 3D space
(depth information).

• SIZE(object=objects, criteria=[‘big’|‘small’]): Returns objects filtered by relative size
only by the given criteria (‘big’, ‘small’).

• PROPERTY(object=objects, value=‘attribute’): Filters objects based on their intrinsic
attributes (e.g., color and patterns: ‘red’, ‘striped’, clothing: ‘wearing a blue shirt’, states
or actions: ‘standing’, ‘sitting’, ‘turned on’, ‘open’).

• FIND DIRECTION(object=objects1, reference object=objects2, crite-
ria=[‘left’|‘right’|‘top’|‘bottom’]): Returns objects from objects1 positioned
next to objects in objects2 only by the given criteria (‘left’, ‘right’, ‘top’, ‘bottom’).

• FIND NEAR(object=objects1, reference object=objects2): Returns objects from
objects1 that are spatially close to any object in objects2.

• FIND INSIDE(object=objects1, reference object=objects2): Returns objects from
objects1 that are strictly inside the reference object objects2.

• RELATIVE DEPTH(object=objects1, reference object=objects2, crite-
ria=[‘front’|‘behind’]): Returns objects from objects1 positioned in depth relative to
objects in objects2 only by the given criteria (‘front’, ‘behind’).

• RESULT(object=answer object): Pre-processes the final selected object to the final an-
swer form.

A.1.2 VERIFICATION MODULE

Relative Spatial Operators. All relative spatial operators take at least two arguments: object
and reference object. As discussed in Section 3.2.1, we use logical verification in
RELATIVE DEPTH, similar to FIND DIRECTION, but with the relative depth values ‘front’ or
‘behind’. Additionally, in FIND INSIDE, if there is no intersection area between the object and
reference object, the proposal is rejected.

Attribute Operator. We use the PROPERTY operator to filter visual attributes using the CLIP
and GroundingDINO-T model. CLIP has varying thresholds depending on the given image, which
makes filtering based solely on similarity scores challenging. To improve the filtering process, we
first apply a softmax transformation to the CLIP similarity scores of the candidate regions from the
OVD. We then integrate GroundingDINO-T scores into the filtering process, combining them with
the softmax CLIP scores via a weighted sum. Finally, we set an adaptive threshold based on the
number of candidates from FIND operator.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure A1: Analysis of k adaptive threshold which illustrates the trade-off between TPR and TNR.

A.2 ADAPTIVE THRESHOLD

To compute the filtering score S(l|Ij), for each candidate region Ij with label l, we leverage a
pre-trained VLM trained with contrastive loss, such as CLIP. CLIP is designed to align visual and
textual representations in a shared embedding space, enabling effective discrimination between se-
mantically relevant (positive) and irrelevant (negative) pairs. However, one of the main challenges
when using CLIP for verification is its inherent toward labels that appear frequently in its training
data. Labels like ‘person’ or ‘car’ typically receive higher confidence scores compared to more spe-
cialized or rare objects, making a fixed threshold inappropriate for fair evaluation across different
object categories. To address this label-specific bias, we implement an adaptive thresholding mecha-
nism that calibrates the decision boundary for each target label individually. We utilize ImageNet as
an auxiliary calibration dataset, computing verification scores for a representative sample of images
containing various object categories.

We collect 5 images per class in ImageNet (a total of 5,000 images) and use Grounding DINO
to crop out only the relevant class objects (denoted as DA). This process helps minimize bias
from background elements, where many images contain a person even when the target class is not
”person.” For each target label l, we analyze the distribution of verification scores S(l|I) across this
preprocessed dataset to determine CLIP’s typical confidence range for that specific category.

The calibration process employs a top-k selection strategy to determine the appropriate threshold ωl
Specifically, we rank all verification scores computed on the auxiliary dataset for target label l where
d → DA, and the score is defined as:

S(l | di) =
1

K

K∑

k=1

exp(sim(di, l)/ε)

exp(sim(di, l)/ε) + exp(sim(di, ck)/ε)
. (4)

The set of verification scores for the entire dataset is represented as:
S(l|DA) = {S(l|d1), S(l|d2), . . . , S(l|dn)} , (5)

where n is the number of auxiliary dataset. The threshold ωl select the top-k% highest scoring
samples, where k is a hyperparameter (typically set as 10). This strategy effectively captures the
performance level that CLIP consistently achieves for high-confidence predictions of the target cat-
egory, providing a data-driven threshold that reflects CLIP’s inherent capability for that specific
label.

We also investigate the sensitivity k of our pipeline. As shown in Figure A1, VIRO’s performance
remains highly robust to changes in the Top-k percentage. Although a slight increase in TPR is
observed with more candidates (as the ground-truth box is more likely to be included), the overall
Balanced Accuracy stays stable across different values of k.

A.3 PROGRAM VALIDATOR

The Program Validator serves as a safeguard against errors in LLM-generated programs. Its primary
purpose is to detect syntactic, structural, and logical mistakes before program execution, and to pro-
vide structured feedback tailored to the specific type of error. Since LLM outputs are not guaranteed
to be flawless, the validator detects invalid programs at pre-execution time and provides feedback
that guides the LLM to regenerate a correct program.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A valid program must follow a simple and strict format: each line is written as VAR =
OP(ARG=..., ...) and executed sequentially in order, while the program always terminates
with a line that must take the form FINAL RESULT = RESULT(object=VAR). Given this con-
strained design, the validator enforces the following properties:

• Syntax enforcement: all lines except the last must take the form VAR =
OP(ARG=..., ...), and the last line must take the form FINAL RESULT =
RESULT(object=VAR).

• Variable tracking: at line t, only variables defined in lines 1, . . . , t↑1 may be referenced,
and redefinition of an existing variable is disallowed to prevent overwriting outputs from
earlier steps.

• Argument typing: arguments are checked for valid type (variable, string, or number).
Certain arguments have additional constraints, e.g., rank must be a positive integer and
criteria must be chosen from a predefined set (e.g., left, right, top, bottom).

• Operator constraints: each operator must belong to the predefined functions (e.g., FIND,
FILTER), and each function must include all of its required arguments.

• Output format: the program must end with a single line in the form FINAL RESULT =
RESULT(object=VAR), and no other RESULT may appear earlier in the program.

Through these checks, the Program Validator acts as a reliable filter and feedback mechanism, re-
ducing execution errors caused by incorrect code generated by the LLM. Both our method and
ViperGPT (Surı́s et al. (2023)) use programs generated by the LLM prior to execution, but the scope
of validation differs fundamentally. ViperGPT only ensures that the generated code is syntactically
valid Python code, which allows issues such as undefined variables, incorrect argument types, or
missing required arguments to pass through unnoticed until runtime. In contrast, our validator ap-
plies strict structural and semantic checks before execution, ensuring correct format, valid variables,
and a proper output statement. These checks reduce execution errors and provide targeted feedback
for correction.

A.4 DETAILS OF EXPERIMENTS

A.4.1 DATASETS

gRefCOCO no-target split. gRefCOCO is a referring expression dataset that explicitly includes
no target queries, allowing evaluation of systems that must either localize the referred region or
abstain when no valid target exists (He et al., 2023; Liu et al., 2023). To avoid trivial negatives,
no-target expressions are constrained to be contextually related to the image, and annotators may
reuse deceptive expressions from the same split when needed.

RefCOCO/+/g. RefCOCO (Yu et al., 2016) primarily targets location-based expressions, while
RefCOCO+ (Yu et al., 2016) focuses on attribute-based descriptions by prohibiting the use of abso-
lute location words. RefCOCOg (Mao et al., 2016), in contrast, contains longer and more complex
expressions, often combining both spatial relations and attributes. For RefCOCO and RefCOCO+,
results are reported separately on two test splits: TestA, which includes images with people as ref-
erents, and TestB, which includes images with objects other than people. All of these benchmarks
are built upon the MSCOCO (Lin et al., 2014) image dataset.

A.4.2 EVALUATION METRICS

We assess both no-target robustness and standard REC accuracy, which jointly require addressing
localization and classification. Following a binary classification view, we define outcomes based
on the confusion matrix: True Positive (TP): a target is present and the model correctly localizes
it (Intersection-over-Union (IoU) > 0.5); True Negative (TN): target is absent and the model cor-
rectly predicts its absence; False Positive (FP): target is absent but the model incorrectly outputs a
bounding box; and False Negative (FN): a target is present but the model either predicts ‘no target’
or localizes it incorrectly (IoU < 0.5).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.4.3 BASELINE DETAILS

Proposal-based REC first parse the referring expression to isolate key linguistic components be-
fore matching them against pre-generated object proposals. ReCLIP (Subramanian et al., 2022)
employs a syntactic parser to extract noun chunks, while GroundVLP (Shen et al., 2024) utilizes
a traditional NLP toolbox to identify the main object. More recent approaches leverage the ad-
vanced capabilities of Large Language Models (LLMs) for this task; SS-CLIP/SS-FLAVA (Han
et al., 2024) (Chen & Chen, 2025) uses an LLM to parse the main object from the query. After this
initial parsing stage, each method employs its unique mechanism to map the extracted components
to the most relevant regions in given detected proposals from MAttNet (Yu et al., 2018). These
are architecturally constrained to a rich pool of candidate regions by Faster RCNN, making a direct
comparison on target-absent task unfair.

Compositional reasoning REC parse complex queries into explicit programs. By generating and
then executing these programs, they transparently handle multi-step compositional logic to derive
the final result. We compare our approach with state-of-the-art methods in this domain, including
ViperGPT (Surı́s et al., 2023), HYDRA (Subramanian et al., 2022), and NAVER (Cai et al., 2025),
to benchmark its compositional reasoning capabilities.

A.4.4 IMPLEMENTATION DETAILS.

We primarily follow the official implementations of each baseline, using their default hyperparam-
eter settings. Unless otherwise noted, detection thresholds for open-vocabulary detectors are fixed
based on validation performance on RefCOCO: 0.2 for GroundingDINO-T and 0.5 for GLIP-L.
For all program generation, we use Qwen2.5-72B-Instruct-AWQ (Team, 2024), known for strong
code-generation, ensuring a fair comparison with Python-code baselines such as ViperGPT.

A.5 STANDARD REC ACCURACY UNDER FORCED PREDICTION

Table A1: Accuracy comparison on the referring expression detection task RefCOCO/+/g datasets.

RefCOCO RefCOCO+ RefCOCOg
Method Val TestA TestB Val TestA TestB Val Test

MDETR 86.75 89.58 81.41 79.52 84.09 70.62 81.64 80.89
UNINEXT 89.72 91.52 86.93 79.76 85.23 72.78 83.95 84.31

ReCLIP 45.8 47.0 45.2 45.3 48.5 42.7 57.0 56.2
SS-CLIP 60.6 66.5 54.9 55.5 62.6 45.7 59.9 59.9
SS-FLAVA 52.5 52.7 52.9 50.8 53.4 47.6 61.3 60.9
GroundVLP 52.6 61.3 43.5 56.4 64.8 47.4 64.3 63.5

GroundingDINO-T 50.4 57.2 43.2 51.4 57.6 45.8 60.4 59.5
ViperGPT 62.2 66.7 54.6 55.4 61.7 50.4 66.0 65.7
NAVER 61.1 64.2 58.2 56.4 60.1 51.8 68.4 68.4
GDINO-FLORA† 73.7 78.5 67.8 63.2 71.6 53.5 72.5 72.1
VIRO (Ours) 71.4 75.0 64.4 59.5 65.8 50.1 69.6 70.3

GLIP-L 47.5 52.6 41.8 44.1 48.6 39.8 51.9 52.6
ViperGPT 66.9 72.0 59.9 59.6 65.7 63.0 69.3 69.6
HYDRA 68.0 73.1 62.5 55.8 60.6 50.6 67.2 67.6
NAVER 69.6 73.4 64.4 59.0 62.7 56.4 70.7 70.0
VIRO (Ours) 71.4 75.7 63.8 59.3 66.2 51.3 70.6 71.5
† Official code has not been released as of September 25, 2025.

A.6 ANALYSIS OF SELF-CORRECTION OF NAVER

Table A2 compares the performance of the NAVER framework with and without its self-correction
mechanism against VIRO. The Perceptioner, Logic Reasoner, and Logic Answerer modules in
NAVER trigger self-correction when no valid target is found, forcing an object prediction. We
evaluate the performance on the no-target dataset by disabling forced self-correction in the three

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

modules and instead applying Early-Exit. We measure TNR and FPR on the gRefCOCO testA
no-target dataset, and TPR on the RefCOCO testA dataset.

Early-Exit Strategies. Perceptioner Early-Exit (P Early-Exit): Stops inference if the open-
vocabulary detector finds no objects, preventing self-correction. Logic Reasoner Early-Exit (LR
Early-Exit): Stops inference if geometric relations among candidate objects are logically invalid.
Logic Answerer Early-Exit (LA Early-Exit): Stops inference if a high-capacity MLLM rejects the
final predicted object as inconsistent with the query.

Table A2: Performance comparison of the NAVER framework (w/ and w/o self-correction) and
VIRO (Ours).

Method No Target Robustness Standard REC
Balanced Acc ↓ TNR ↓ FPR ↔ TPR ↓

NAVER w/ self-correction 33.8 3.4 96.6 64.2
NAVER w/o self-correction 63.2 71.6 28.4 54.8
VIRO (Ours) 61.1 50.2 49.8 71.9

Table A3: Frequency of Early-Exit Types of NAVER and Overall Result.

Frequency of Early-Exit Types of NAVER Overall Result
P Early-Exit LR Early-Exit LA Early-Exit TN FP Total

1998 (67.8%) 344 (11.7%) 604 (20.5%) 2946 (71.6%) 1168 (28.4%) 4114

While VIRO shows slightly lower Balanced Accuracy, it avoids NAVER’s heavy LA Early-Exit
module, which causes significantly longer execution time (see Table ??).

A.7 EXECUTION EXAMPLES OF VIRO

1 2 3 4

OBJ0 = FIND(object_name="blade")
OBJ1 = FIND(object_name="jet")
ANSWER0 = FIND_DIRECTION(object=OBJ0, reference_object=OBJ1, criteria="top")
FINAL_RESULT = RESULT(object=ANSWER0)

Query: the blade thing on the top jet

준혁님말안하고막 바꿔서
미안해용.. We don’t have time
-> Best choice라고생각해요☺

Figure A2: Program generated for the query “the blade thing on the top jet” (top), along with its
sequential execution from step 1 to step 4 (bottom).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

OBJ0 = FIND(object_name="cup")
OBJ1 = FIND(object_name="muffin")
OBJ2 = FIND_DIRECTION(object=OBJ0, reference_object=OBJ1, criteria="top")
ANSWER0 = FIND_DIRECTION(object=OBJ2, reference_object=OBJ1, criteria=”right")
FINAL_RESULT = RESULT(object=ANSWER0)

1 2 3 4

Query: cup to the top right of muffin

Figure A3: Program generated for the query “cup to the top right of muffin” (top), along with its
sequential execution from step 1 to step 4 (bottom).

OBJ0 = FIND(object_name="man")
OBJ1 = FILTER(object=OBJ0, value="wearing white shirt")
OBJ2 = FIND(object_name="table")
OBJ3 = FIND_DIRECTION(object=OBJ1, reference_object=OBJ2, criteria="top")
ANSWER0 = ABSOLUTE_DEPTH(object=OBJ3, criteria="front")
FINAL_RESULT = RESULT(object=ANSWER0)

Query: man at head of table white shirt closest

1 2 3

4 5 6

Figure A4: Program generated for the query “man at head of table white shirt closest” (top), along
with its sequential execution from step 1 to step 6 (bottom).

18

	Introduction
	Related Work
	Method
	Problem Formalization
	A Neuro-Symbolic Reasoning Pipeline
	Verification-Integrated Reasoning Operators (VIROs)
	Pre-execution Stage: Symbolic Program Generation
	Execution Stage: Program Interpretation
	Decoupled Neuro-Symbolic Approach

	Experiment
	Experimental Setup
	Main Results
	Robustness on No-Target Cases
	Analysis of Compositional Reasoning on Standard REC Benchmarks
	Scalability in 1-Query–N-Images

	Ablation Studies
	Qualitative Analysis

	Discussion and Conclusion
	Appendix
	Details of VIRO
	Input Arguments
	Verification Module

	Adaptive Threshold
	Program Validator
	Details of Experiments
	Datasets
	Evaluation Metrics
	Baseline Details
	Implementation Details.

	Standard REC Accuracy Under Forced Prediction
	Analysis of Self-Correction of NAVER
	 Execution Examples of VIRO

