Under review as a conference paper at ICLR 2026

A APPENDIX

We used a LLM as a general-purpose writing assistant for minor edits (clarity, grammar, or phrasing)
and for generating alternative phrasings of paragraphs we had already drafted.

A.1 DETAILS OF VIRO

A.1.1 INPUT ARGUMENTS

We provide the details of VIRO by extracting the program generator prompts. The following func-
tions are available in our framework for reasoning:

* FIND(object_name=*‘object_name’): Returns all objects matching the object name which
are clearly detectable, excluding non-object entities (e.g., living room, field, wall).

LOCATE(object=objects, position=°‘location’): Returns objects positioned at a specified
absolute location, independent of other objects in the 2D space (e.g., ‘right’, ‘at the bottom’,
‘on left’, ‘9 o clock’, ‘outmost right’, ‘top’, ‘uppermost’, ‘middle’, ‘center’).

* ORDER(object=objects, criteria=[‘left’|‘right’|‘top’|‘bottom’], rank=number): Re-
turns the object positioned at the specified rank when sorted only by the given criteria
(‘left’, ‘right’, ‘top’, ‘bottom’), counting from the end.

ABSOLUTE_DEPTH(object=objects, criteria=[‘front’|‘behind’]): Returns objects
from objects positioned absolutely closest (front) or farthest (behind) in the 3D space
(depth information).

SIZE(object=objects, criteria=[‘big’|‘small’]): Returns objects filtered by relative size
only by the given criteria (‘big’, ‘small’).

PROPERTY (object=objects, value=‘attribute’): Filters objects based on their intrinsic
attributes (e.g., color and patterns: ‘red’, ‘striped’, clothing: ‘wearing a blue shirt’, states
or actions: ‘standing’, ‘sitting’, ‘turned on’, ‘open’).
FIND_DIRECTION(object=objects1, reference_object=objects2, crite-
ria=[‘left’|‘right’|‘top’|‘bottom’]): Returns objects from objectsl positioned
next to objects in ob jects2 only by the given criteria (‘left’, ‘right’, ‘top’, ‘bottom”).
FIND_NEAR(object=objectsl, reference_object=objects2): Returns objects from
objectsl that are spatially close to any object in objects?2.
FIND_INSIDE(object=objectsl, reference object=objects2): Returns objects from
objectsl that are strictly inside the reference object objects2.

RELATIVE _DEPTH(object=objects1, reference_object=objects2, crite-
ria=[‘front’|‘behind’]): Returns objects from objectsl positioned in depth relative to
objects in objects2 only by the given criteria (‘front’, ‘behind’).

RESULT (object=answer_object): Pre-processes the final selected object to the final an-
swer form.

A.1.2 VERIFICATION MODULE

Relative Spatial Operators. All relative spatial operators take at least two arguments: object
and reference_object. As discussed in Section 3.2.I] we use logical verification in
RELATIVE_DEPTH, similar to FIND_.DIRECTION, but with the relative depth values ‘front’ or
‘behind’. Additionally, in FIND_INSIDE, if there is no intersection area between the ob ject and
reference_object, the proposal is rejected.

Attribute Operator. We use the PROPERTY operator to filter visual attributes using the CLIP
and GroundingDINO-T model. CLIP has varying thresholds depending on the given image, which
makes filtering based solely on similarity scores challenging. To improve the filtering process, we
first apply a softmax transformation to the CLIP similarity scores of the candidate regions from the
OVD. We then integrate GroundingDINO-T scores into the filtering process, combining them with
the softmax CLIP scores via a weighted sum. Finally, we set an adaptive threshold based on the
number of candidates from F IND operator.

13

Under review as a conference paper at ICLR 2026

80
S0
g
L>)‘60 - - - R 4
©
—_
>
8 50 TNR (N-acc)
< —&— TPR (Acc@0.5)

N
o

-- Balanced Acc.

5 10 15 20
Top-k Percentage (%)

Figure Al: Analysis of k adaptive threshold which illustrates the trade-off between TPR and TNR.

A.2 ADAPTIVE THRESHOLD

To compute the filtering score S({|;), for each candidate region I; with label [, we leverage a
pre-trained VLM trained with contrastive loss, such as CLIP. CLIP is designed to align visual and
textual representations in a shared embedding space, enabling effective discrimination between se-
mantically relevant (positive) and irrelevant (negative) pairs. However, one of the main challenges
when using CLIP for verification is its inherent toward labels that appear frequently in its training
data. Labels like ‘person’ or ‘car’ typically receive higher confidence scores compared to more spe-
cialized or rare objects, making a fixed threshold inappropriate for fair evaluation across different
object categories. To address this label-specific bias, we implement an adaptive thresholding mecha-
nism that calibrates the decision boundary for each target label individually. We utilize ImageNet as
an auxiliary calibration dataset, computing verification scores for a representative sample of images
containing various object categories.

We collect 5 images per class in ImageNet (a total of 5,000 images) and use Grounding DINO
to crop out only the relevant class objects (denoted as D4). This process helps minimize bias
from background elements, where many images contain a person even when the target class is not
”person.” For each target label [, we analyze the distribution of verification scores S(I|I) across this
preprocessed dataset to determine CLIP’s typical confidence range for that specific category.

The calibration process employs a top-k selection strategy to determine the appropriate threshold §;
Specifically, we rank all verification scores computed on the auxiliary dataset for target label [where
d € D 4, and the score is defined as:

1 & exp(sim(d;,1)/T)

Slldi) = ,; exp(sim(d;, 1) /) + exp(sim(di, i) /7) |

4)

The set of verification scores for the entire dataset is represented as:

where n is the number of auxiliary dataset. The threshold J; select the top-k% highest scoring
samples, where k is a hyperparameter (typically set as 10). This strategy effectively captures the
performance level that CLIP consistently achieves for high-confidence predictions of the target cat-
egory, providing a data-driven threshold that reflects CLIP’s inherent capability for that specific
label.

We also investigate the sensitivity k of our pipeline. As shown in Figure|A1, VIRO’s performance
remains highly robust to changes in the Top-k percentage. Although a slight increase in TPR is
observed with more candidates (as the ground-truth box is more likely to be included), the overall
Balanced Accuracy stays stable across different values of k.

A.3 PROGRAM VALIDATOR

The Program Validator serves as a safeguard against errors in LLM-generated programs. Its primary
purpose is to detect syntactic, structural, and logical mistakes before program execution, and to pro-
vide structured feedback tailored to the specific type of error. Since LLM outputs are not guaranteed
to be flawless, the validator detects invalid programs at pre-execution time and provides feedback
that guides the LLM to regenerate a correct program.

14

Under review as a conference paper at ICLR 2026

A valid program must follow a simple and strict format: each line is written as VAR =
OP (ARG=..., ...) and executed sequentially in order, while the program always terminates
with a line that must take the form FINAL_RESULT = RESULT (object=VAR). Given this con-
strained design, the validator enforces the following properties:

* Syntax enforcement: all lines except the last must take the form VAR
OP (ARG=..., ...), and the last line must take the form FINAL_RESULT
RESULT (object=VAR).

* Variable tracking: at line ¢, only variables defined in lines 1, ..., ¢ — 1 may be referenced,
and redefinition of an existing variable is disallowed to prevent overwriting outputs from
earlier steps.

* Argument typing: arguments are checked for valid type (variable, string, or number).
Certain arguments have additional constraints, e.g., rank must be a positive integer and
criteria must be chosen from a predefined set (e.g., left, right, top, bottom).

* Operator constraints: each operator must belong to the predefined functions (e.g., FIND,
FILTER), and each function must include all of its required arguments.

¢ QOutput format: the program must end with a single line in the form FINAL RESULT =
RESULT (object=VAR), and no other RESULT may appear earlier in the program.

Through these checks, the Program Validator acts as a reliable filter and feedback mechanism, re-
ducing execution errors caused by incorrect code generated by the LLM. Both our method and
ViperGPT (Suris et al.|(2023)) use programs generated by the LLM prior to execution, but the scope
of validation differs fundamentally. ViperGPT only ensures that the generated code is syntactically
valid Python code, which allows issues such as undefined variables, incorrect argument types, or
missing required arguments to pass through unnoticed until runtime. In contrast, our validator ap-
plies strict structural and semantic checks before execution, ensuring correct format, valid variables,
and a proper output statement. These checks reduce execution errors and provide targeted feedback
for correction.

A.4 DETAILS OF EXPERIMENTS

A.4.1 DATASETS

gRefCOCO no-target split. gRefCOCO is a referring expression dataset that explicitly includes
no target queries, allowing evaluation of systems that must either localize the referred region or
abstain when no valid target exists (He et al., 2023} [Liu et al.| [2023). To avoid trivial negatives,
no-target expressions are constrained to be contextually related to the image, and annotators may
reuse deceptive expressions from the same split when needed.

RefCOCO/+/g. RefCOCO (Yu et al., [2016)) primarily targets location-based expressions, while
RefCOCO+ (Yu et al.|[2016) focuses on attribute-based descriptions by prohibiting the use of abso-
lute location words. RefCOCOg (Mao et al., [2016)), in contrast, contains longer and more complex
expressions, often combining both spatial relations and attributes. For RefCOCO and RefCOCO+,
results are reported separately on two test splits: TestA, which includes images with people as ref-
erents, and TestB, which includes images with objects other than people. All of these benchmarks
are built upon the MSCOCO (Lin et al.| 2014) image dataset.

A.4.2 EVALUATION METRICS

We assess both no-target robustness and standard REC accuracy, which jointly require addressing
localization and classification. Following a binary classification view, we define outcomes based
on the confusion matrix: True Positive (TP): a target is present and the model correctly localizes
it (Intersection-over-Union (IoU) > 0.5); True Negative (TN): target is absent and the model cor-
rectly predicts its absence; False Positive (FP): target is absent but the model incorrectly outputs a
bounding box; and False Negative (FN): a target is present but the model either predicts ‘no target’
or localizes it incorrectly (IoU < 0.5).

15

Under review as a conference paper at ICLR 2026

A.4.3 BASELINE DETAILS

Proposal-based REC first parse the referring expression to isolate key linguistic components be-
fore matching them against pre-generated object proposals. ReCLIP (Subramanian et al., [2022)
employs a syntactic parser to extract noun chunks, while GroundVLP (Shen et al., 2024) utilizes
a traditional NLP toolbox to identify the main object. More recent approaches leverage the ad-
vanced capabilities of Large Language Models (LLMs) for this task; SS-CLIP/SS-FLAVA (Han
et al.| 2024) (Chen & Chen, 2025)) uses an LLM to parse the main object from the query. After this
initial parsing stage, each method employs its unique mechanism to map the extracted components
to the most relevant regions in given detected proposals from MAttNet (Yu et al., |2018). These
are architecturally constrained to a rich pool of candidate regions by Faster RCNN, making a direct
comparison on target-absent task unfair.

Compositional reasoning REC parse complex queries into explicit programs. By generating and
then executing these programs, they transparently handle multi-step compositional logic to derive
the final result. We compare our approach with state-of-the-art methods in this domain, including
ViperGPT (Suris et al.,2023), HYDRA (Subramanian et al.,[2022), and NAVER (Cai et al.,|2025)),
to benchmark its compositional reasoning capabilities.

A.4.4 IMPLEMENTATION DETAILS.

We primarily follow the official implementations of each baseline, using their default hyperparam-
eter settings. Unless otherwise noted, detection thresholds for open-vocabulary detectors are fixed
based on validation performance on RefCOCO: 0.2 for GroundingDINO-T and 0.5 for GLIP-L.
For all program generation, we use Qwen2.5-72B-Instruct-AWQ (Team, |2024)), known for strong
code-generation, ensuring a fair comparison with Python-code baselines such as ViperGPT.

A.5 STANDARD REC ACCURACY UNDER FORCED PREDICTION

Table Al: Accuracy comparison on the referring expression detection task RefCOCO/+/g datasets.

RefCOCO RefCOCO+ RefCOCOg
Method Val TestA TestB Val TestA TestB Val Test
MDETR 86.75 89.58 81.41 79.52 84.09 70.62 81.64 80.89
UNINEXT 89.72 9152 8693 79.76 8523 7278 83.95 84.31
ReCLIP 45.8 47.0 452 45.3 48.5 42.7 57.0 56.2
SS-CLIP 60.6 66.5 54.9 55.5 62.6 45.7 59.9 599
SS-FLAVA 52.5 52.7 529 50.8 53.4 47.6 61.3 60.9
GroundVLP 52.6 61.3 43.5 56.4 64.8 474 64.3 63.5
GroundingDINO-T ~ 50.4 57.2 43.2 514 57.6 458 60.4 59.5
ViperGPT 62.2 66.7 54.6 55.4 61.7 50.4 66.0 65.7
NAVER 61.1 64.2 58.2 56.4 60.1 51.8 68.4 68.4
GDINO-FLORA' 73.7 78.5 67.8 63.2 71.6 53.5 72.5 72.1
VIRO (Ours) 71.4 75.0 64.4 59.5 65.8 50.1 69.6 70.3
GLIP-L 47.5 52.6 41.8 44.1 48.6 39.8 51.9 526
ViperGPT 66.9 72.0 59.9 59.6 65.7 63.0 69.3 69.6
HYDRA 68.0 73.1 62.5 55.8 60.6 50.6 672 67.6
NAVER 69.6 73.4 64.4 59.0 62.7 56.4 70.7 70.0
VIRO (Ours) 71.4 75.7 63.8 59.3 66.2 51.3 70.6 71.5

T Official code has not been released as of September 25, 2025.

A.6 ANALYSIS OF SELF-CORRECTION OF NAVER

Table [A2 compares the performance of the NAVER framework with and without its self-correction
mechanism against VIRO. The Perceptioner, Logic Reasoner, and Logic Answerer modules in
NAVER trigger self-correction when no valid target is found, forcing an object prediction. We
evaluate the performance on the no-target dataset by disabling forced self-correction in the three

16

Under review as a conference paper at ICLR 2026

modules and instead applying Early-Exit. We measure TNR and FPR on the gRefCOCO testA
no-target dataset, and TPR on the RefCOCO testA dataset.

Early-Exit Strategies. Perceptioner Early-Exit (P Early-Exit): Stops inference if the open-
vocabulary detector finds no objects, preventing self-correction. Logic Reasoner Early-Exit (LR
Early-Exit): Stops inference if geometric relations among candidate objects are logically invalid.
Logic Answerer Early-Exit (LA Early-Exit): Stops inference if a high-capacity MLLM rejects the
final predicted object as inconsistent with the query.

Table A2: Performance comparison of the NAVER framework (w/ and w/o self-correction) and
VIRO (Ours).

M No Target Robustness Standard REC
ethod

Balanced AccT TNR T FPR | TPR 1
NAVER w/ self-correction 33.8 34 96.6 64.2
NAVER w/o self-correction 63.2 71.6 28.4 54.8
VIRO (Ours) 61.1 50.2 49.8 71.9

Table A3: Frequency of Early-Exit Types of NAVER and Overall Result.

Frequency of Early-Exit Types of NAVER Overall Result
P Early-Exit LR Early-Exit LA Early-Exit TN FP Total
1998 (67.8%) 344 (11.7%) 604 (20.5%) 2946 (71.6%) 1168 (28.4%) 4114

While VIRO shows slightly lower Balanced Accuracy, it avoids NAVER’s heavy LA Early-Exit
module, which causes significantly longer execution time (see Table ??).

A.7 EXECUTION EXAMPLES OF VIRO

Query: the blade thing on the top jet

OBJO = FIND(object_name="blade")

OBJ1 = FIND(object_name="jet")

ANSWER@ = FIND_DIRECTION(object=0BJ0, reference_object=0BJ1, criteria="top")
FINAL_RESULT = RESULT(object=ANSWER®)

Figure A2: Program generated for the query “the blade thing on the top jet” (top), along with its
sequential execution from step 1 to step 4 (bottom).

17

Under review as a conference paper at ICLR 2026

Query: cup to the top right of muffin

0OBJo
0OBJ1

FIND(object_name="cup")
FIND(object_name="muffin")

OBJ2 = FIND_DIRECTION(object=0BJ0@, reference_object=0BJ1, criteria="top")
ANSWER® = FIND DIRECTION(object=0BJ2, reference_object=0BJ1, criteria="right")
FINAL_RESULT = RESULT(object=ANSWER®)

Figure A3: Program generated for the query “cup to the top right of muffin” (top), along with its
sequential execution from step 1 to step 4 (bottom).

Query: man at head of table white shirt closest

OBJO® = FIND(object_name="man"
OBJ1 = FILTER(object=0BJO, value="wearing white shirt")
OBJ2 = FIND(object_name="table")

OBJ3 = FIND DIRECTION(object=0BJ1, reference_object=0BJ2, criteria="top")
ANSWER@ = ABSOLUTE_DEPTH(object=0BJ3, criteria="front")
FINAL_RESULT = RESULT(object=ANSWER®)

Figure A4: Program generated for the query “man at head of table white shirt closest” (top), along
with its sequential execution from step 1 to step 6 (bottom).

18

	Introduction
	Related Work
	Method
	Problem Formalization
	A Neuro-Symbolic Reasoning Pipeline
	Verification-Integrated Reasoning Operators (VIROs)
	Pre-execution Stage: Symbolic Program Generation
	Execution Stage: Program Interpretation
	Decoupled Neuro-Symbolic Approach

	Experiment
	Experimental Setup
	Main Results
	Robustness on No-Target Cases
	Analysis of Compositional Reasoning on Standard REC Benchmarks
	Scalability in 1-Query–N-Images

	Ablation Studies
	Qualitative Analysis

	Discussion and Conclusion
	Appendix
	Details of VIRO
	Input Arguments
	Verification Module

	Adaptive Threshold
	Program Validator
	Details of Experiments
	Datasets
	Evaluation Metrics
	Baseline Details
	Implementation Details.

	Standard REC Accuracy Under Forced Prediction
	Analysis of Self-Correction of NAVER
	 Execution Examples of VIRO

