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Figure 1. Creating the Inpainting Mask. 3D inpainting requires

filling in a 3D volume, which is not always equivalent to missing

regions in 2D point cloud renders. By computing an occlusion

volume, we avoid situations where the floor is visible through the

table (middle) but instead could be occluded. The right depth map

accounts for the ambiguity of the volume in the table.

6. Additional Discussion 5 019

6.1. Impact of Distillation . . . . . . . . . . . . . 5 020

7. Limitations 5 021

8. Additional Qualitative Results 6 022

Ethical Considerations 023

While we use pretrained models for all components of our 024

pipeline, it is important to acknowledge biases and ethical 025

issues that stem from the training of these large-scale image 026

generative models [14]. As these models are often trained 027

on vast collections of internet data, they can reflect negative 028

biases and stereotypes against certain populations, as well 029

as infringe on the copyright of artists and other creatives. It 030

is essential to consider these factors when using these mod- 031

els and our technique broadly. 032

1. Why is the occlusion volume important? 033

Our key contribution is the inpainting distillation loss that 034

provides lower variance and high-quality supervision for 035

text-to-3D, compared to regular text-to-image model based 036

distillation, as shown in the ablations. Given that we use 2D 037

inpainting models for 3D inpainting via this distillation, we 038

must ask: how to compute the 3D region that needs to be 039

inpainted? 040

We proposed a simple technique to do so by comput- 041

ing the occluded volume (described in Sec. 4.2), which is 042

the 3D region occluded by objects in the reference image 043

Iref. Note that regardless of what objects may be present in 044

this occluded region, rendering from Pref would yield Iref, 045

as elements in the image would occlude the objects. The 046

2D inpainting masks we obtain then must hence, reflect this 047

unknown 3D region, as that is the part of the scene left to 048

complete. 049

Instead of computing the occlusion volume, another al- 050

ternative is using the holes from point cloud renderings as 051
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the inpainting mask. Indeed, these holes also represent un-052

known 3D regions. However, the 3D region indicated by053

such 2D masks is a subset of the occluded 3D region and054

hence, incomplete. This is shown in Fig. 1, which shows the055

masked point cloud depth, where the masked region rep-056

resents the inpainting mask. When using the holes in the057

point cloud as an inpainting mask, one can observe that the058

back side of the kitchen table is visible. In reality, a solid059

kitchen table would never expose this face. In contrast, us-060

ing the occlusion volume, we can correctly determine the061

entire 3D region missing in Iref, which can be visually veri-062

fied by comparing images. Specifically, the latter takes into063

account self-occlusion, providing a more accurate estimate064

and allowing details to fill into the occluded region.065

In practice, such self-occlusions do not appear for all066

prompts yet is important to maintain the correctness of the067

3D inpainting formulation. If there are many renderings068

such as in Fig. 1, the quality of inpainted samples would be069

incorrect and lead to a noisier distillation process.070

2. Discussion on Baselines071

We are among the first to tackle text-to-3D scenes and072

showcase a high-level of parallax. As a result, there are lim-073

ited open-source 3D scene generation techniques to com-074

pare with. We choose to compare with techniques that ei-075

ther use distillation - a key part of our pipeline and iterative076

approaches - which shares similarity with the initialization077

technique we use.078

2.1. Comparison with Dreamfusion and Prolific­079

Dreamer080

By comparing with prior SOTA distillation techniques [12,081

17], we demonstrate that these approaches are suboptimal082

for scene generation, which has not been demonstrated be-083

fore. Arguably, distillation techniques should be able to084

build any 3D scene since the 2D priors used are general, as-085

suming object-centric regularizers and prompts are absent.086

However, we empirically find that simple distillation from087

text-to-image models is insufficient for wide baselines. This088

comparison highlights the importance of our inpainting dis-089

tillation, which conditions on a partial 3D scene, enabling090

high level of parallax not seen in prior work.091

We also note that ProlificDreamer [17] first showcased092

scene-level results using distillation, indicating that distilla-093

tion is not purely for object-generation. Still, it presented094

a limited set of scenes and did not show high parallax as it095

focused on rotating a camera through a scene. Our base-096

line comparison attempts to test the performance of this ap-097

proach on wide camera trajectories and finds that it often098

produces hazy results.099

2.2. Relation between SDS and our distillation 100

Our distillation is similar to the score distillation loss (SDS) 101

used in Dreamfusion [12]. However, unlike prior work, we 102

do not use just text conditioning, but also renders from the 103

point cloud. As a result, the classifier-free guidance weight 104

we is much lower - at 7.5, avoiding over-saturated results 105

typically found with SDS. Further, unlike SDS which de- 106

noises noisy renders in one step, we take multiple steps with 107

DDIM sampling. Further, we also use a loss on the denoised 108

latent and decoded image, to produce high quality supervi- 109

sion. 110

2.3. Comparison with LucidDreamer and 111

Text2Room 112

Our initialization step is a key part of the pipeline and rem- 113

iniscent of prior and concurrent iterative techniques which 114

incrementally grow a scene. Yet, such techniques have yet 115

to showcase high quality over high-parallax camera trajec- 116

tories, which we demonstrate. We find that incremental 117

generation of 3D scenes can lead to noise accumulation, due 118

to errors in monocular depth and alignment of geometry. 119

Hence, unlike concurrent work LucidDreamer [5], we do 120

not limit our scene generation to our initialization step. We 121

rely on our inpainting distillation loss to produce highly co- 122

hesive 3D scenes, by distilling across multiple views, rather 123

than building a scene incrementally. We also note that while 124

LucidDreamer does use 3DGS optimization, it is a more 125

conventional reconstruction-based optimization, with no in- 126

painting or geometry priors incorporated. As a result, its 127

optimization stage is very different from our inpainting dis- 128

tillation, which provides rich priors for appearance and ge- 129

ometry at every iteration. 130

Further, we also avoid many limitations of prior work 131

such as Text2Room, which often produces scenes with 132

low-prompt alignment, especially those in outdoor scenes. 133

We attribute this to the technique deleting regions of the 134

mesh before inpainting, as the original technique prescribes. 135

When such deletions accumulate over time, they are prone 136

to erasing parts of the original scene defined in Iref entirely. 137

In contrast to this, our technique maintains a simple ini- 138

tialization strategy and relies on a high-quality inpainting 139

distillation process to fill-in mission regions, without sacri- 140

ficing the quality of the initialized regions. 141

2.4. Implementation 142

Text2Room [8] and LucidDreamer [5] We use the of- 143

ficial implementation of Text2Room and LucidDreamer 144

on Github. To ensure a fair comparison, we estimate 145

depth using Marigold [9] and DepthAnything [18] as in 146

our technique, replacing the original IronDepth [2] and 147

ZoeDepth [4] respectively. The rest of the pipeline is kept 148

the same. 149
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Figure 2. We ablate the importance of DDIM Inversion and apply-

ing a sharpening filter. As in [10], we find that DDIM inversion

allows more details to be synthesized by our method. Additionally,

we find that detail slighly increases when applying a sharpening

filter to the sampled images.

ProlificDreamer [17] and Dreamfusion [12] We use150

the implementation of these baselines provided in threestu-151

dio [6] and use their recommended parameters, training for152

25k and 10k steps, respectively. To ensure a fair compari-153

son, we use the same poses for these baselines as our tech-154

nique.155

3. Additional ablations and discussion156

3.1. Use of DDIM Inversion.157

During the inpainting and refinement stage (Sec 4.2, 4.3 in158

the original paper), we find it helpful to obtain the noisy159

latent zt using DDIM inversion [16], where z = E(x), x160

is the rendered image, and t is a timestep corresponding to161

the amount of noise added. This is similar to prior work162

on 2D/3D editing and synthesis using pre-trained diffusion163

models [7, 10]. We demonstrate the importance of doing so164

in Fig. 2, where DDIM inversion can significantly improve165

the detail in the optimized model. During the inpainting166

stage, we use 25 steps to sample an image from pure noise,167

and during refinement, we use 100 steps.168

3.2. Use of sharpening filter.169

In Fig. 2, we also see that applying a sharpening filter to the170

sampled images results in slightly more detail. We attribute171

this to the blurry nature of some samples of the diffusion172

model.173

4. Additional Implementation Details 174

We intend to open-source our code upon publication. In 175

addition, we describe some key implementation details to 176

assist reproducibility. 177

4.1. Point Cloud Generation 178

Image Generation. We generate our reference image Iref 179

using a variety of state-of-the-art text-image generation 180

models, choosing between Stable Diffusion XL [11], Adobe 181

Firefly, and DALLE-3 [3]. 182

Depth Estimation. As mentioned earlier, we use 183

Marigold [9] as our depth estimation model, with abso- 184

lute depth obtained using DepthAnything [18]. We align 185

the relative depth with this absolute depth by computing 186

the linear translation that minimizes the least squares er- 187

ror between them. Since DepthAnything provides separate 188

model weights for indoor and outdoor scenes, we use GPT- 189

4 to decide which checkpoint to use by passing Iref as 190

input. When iteratively growing the point cloud, we fol- 191

low Text2Room [8] and align the predicted depth with the 192

ground truth depth rendered via Pytorch3D [13] for all re- 193

gions with valid geometry. We additionally blur the edges 194

of these regions to lower the appearance of seams at this 195

intersection. 196

Growing the pointcloud beyond Pref . After lifting the 197

reference image Iref to a pointcloud P , we additionally cre- 198

ate new points from neighbouring poses Paux, as mentioned 199

earlier. In practice, we notice that using the same prompt 200

Pref across all neighbouring poses Paux can lead to poor 201

results, as objects mentioned in the prompt get repeated. 202

Hence, we use GPT-4 to compute a new suitable prompt 203

that can represent the neighbouring views of Pref . Specifi- 204

cally, we pass the reference image Iref , the original prompt 205

Tref and ask GPT-4 to provide a new prompt Taux that can 206

be suitable for neighbouring regions. For instance, when 207

viewing a ”car in a dense forest”, Taux may correspond to 208

a ”dense forest”. 209

4.2. Occlusion Volume Computation 210

We compute the occlusion volume O with Bresenham’s 211

line-drawing algorithm. First, we initialize an occupancy 212

grid G using the point cloud P from stage 1. We also store 213

whether any voxel is occluded with respect to Pref within 214

the same occupancy grid, initially settings all voxels as oc- 215

cluded. Then, we draw a line from the position of the refer- 216

ence camera Tref to all voxels in the occupancy grid G, iter- 217

ating over the voxels covered by this line and marking all as 218

non-occluded until we encounter an occupied voxel. Once 219

the algorithm terminates, all voxels that are untouched by 220

the line-drawing algorithm form our occlusion volume O. 221
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4.3. Optimization222

Hyperparameter Weights. We set λlatent = 0.1, λanchor =223

10000 during the inpainting stage, and λlatent =224

0.01, λanchor = 0 during the refinement stage. The other225

parameters are set as λimage = 0.01, λlpips = 100, λdepth =226

1000, and λopacity = 10.227

Use of Dreambooth during fine-tuning. While fine-228

tuning the output from stage 2, we use Dreambooth [15] to229

personalize the text-to-image diffusion model with the ref-230

erence image Iref and associated prompt Tref . We find that231

this helps the final 3D model adhere closer to Iref stylis-232

tically. We use the implementation of Dreambooth from233

HuggingFace and train at a resolution of 512x512 with a234

batch size of 2, with a learning rate of 1e-6 for 200 steps.235

Opacity Loss. We compute the opacity loss as the binary236

cross entropy of each splat’s opacity σi with itself. This237

encourages the opacity to reach either 0 or 1.238

Gaussian Splatting. We initialize our gaussian splat-239

ting model during the inpainting stage, using the point cloud240

from stage 1, where each point is an isotropic gaussian, with241

the scale set based on the distance to its nearest neighbors.242

During the inpainting stage, we use a constant learning rate243

of 0.01 for rotation, 0.001 for the color, and 0.01 for opac-244

ity. The learning rate of the geometry follows an exponen-245

tially decaying scheduler, which decays to 0.00005 from246

0.01 over 100000 steps, after 5000 warmup steps. Similarly,247

the scale is decayed to 0.0001 from 0.005 over 10000 steps,248

after 7000 warmup steps. During the refinement stage, we249

use a constant learning rate of 0.01 for rotation, 0.001 for250

the color, 0.01 opacity, and 0.0001 for scale. We use an ex-251

ponentially decaying scheduler for the geometry, which de-252

cays to 0.0000005 from 0.0001 over 3000 steps, after 750253

warmup steps. During the inpainting distillation, we also254

dilate Moccl to improve cohesion at mask boundaries. Fur-255

ther, we find it essential to mask the latent-space L2 loss, to256

prevent unwanted gradients outside the masked region.257

5. User Study258

For comparison with ProlificDreamer [17], DreamFu-259

sion [12], and LucidDreamer [5], we showed participants260

side-by-side videos comparing our method to the base-261

line. For fairness, we use the same camera trajectory in all262

videos. The order of the videos was also randomized to pre-263

vent any biases due to the order of presentation. The user’s264

preference was logged along with a brief explanation.265

When comparing with Text2Room [8], instead of a266

video, we showed users side-by-side sets of three multiview267

images for each prompt, due to the degeneracy of the out-268

put mesh far from the starting camera pose. The user’s pre-269

ferred triplet was logged along with their brief explanation.270

The images we showed looked slightly left and right of the271

reference pose Pref.272

5.1. Common themes of the user study. 273

All study participants were asked to justify their preferences 274

for one 3D scene over the other after making their choice. 275

Participants were not informed about the names or the na- 276

ture of any technique. We also adopted method-neutral lan- 277

guage to avoid biasing the user to prefer any particular tech- 278

nique. We find that their provided reasoning closely aligns 279

with several noted limitations of the baselines, which we 280

discuss further: 281

ProlificDreamer [17] can produce cloudy results. Sev- 282

eral participants described the NeRF renders as containing 283

“moving clouds”, a “hazy atmosphere”, and a “blotch of 284

colours”. This can likely be attributed to the presence of 285

floaters in the model, which is evident in the noisy depth 286

maps shown in Sec. 8. In contrast, participants described 287

our method as “clean and crisp when it comes to the colors 288

and sharpness of the pixels” and looking realistic, without 289

the presence of over-saturated colors. 290

Dreamfusion [12] lacks realism and detail. Feedback 291

from users when comparing with DreamFusion often mir- 292

rored feedback from the ProlificDreamer comparison, ref- 293

erencing a lack of realism and detail in the produced ren- 294

ders. One participant said “[Our technique] is more crisp 295

and does a better job with the content quality.”, while the 296

Dreamfusion result can “feel disjointed”. Another partici- 297

pant described a render as having a “distorted looking back- 298

ground”. In contrast to these issues, our technique syn- 299

thesizes realistic models with high detail and high-quality 300

backgrounds, with minimal blurriness. 301

Text2Room [8] can produce messy outputs. A com- 302

mon theme across feedback regarding Text2Room was that 303

it often looked like a mess, sometimes with a “strange dis- 304

tortion”. One user writes that our result is “less busy and 305

fits the description”. Another common reason users cited 306

when choosing our technique was the adherence to the input 307

prompt, with Text2Room often missing key objects that are 308

expected for an associated prompt. Our technique, however, 309

is capable of producing highly coherent outputs that are 310

faithful to the reference prompt and produce high-quality 311

renderings from multiple views. 312

LucidDreamer [5]’s scenes lack cohesion and can be 313

distorted. Multiple participants pointed out that Lucid- 314

Dreamer’s scenes degrade in quality when moving away 315

from the initial pose. One participant wrote “The image 316

on the left loses cohesion when rotated.” referring to Lu- 317

cidDreamer and in contrast another wrote “There is less vi- 318

sual distortion when the camera is moved around the room.” 319

about RealmDreamer. Some participants also noted that ob- 320

jects produced by our technique were more solid, with one 321

participant noting “The shapes are solid on the right and 322

hold their form.”. These comments underscore the limita- 323

tions of purely iterative approaches. 324
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Figure 3. Comparison of sampling from 2D inpainting models and our optimized model. Left: Renders from the point cloud generated

in stage 1. Middle (cols 2-4): Inpainted Samples of the previous render using an occlusion-based inpainting mask and Stable Diffusion [14].

Right: A render from our final 3DGS model for the corresponding scene. We find that our distillation techniques produce results with high

cohesion while avoiding many artifacts from ancestral sampling of 2D inpainting models.

6. Additional Discussion325

6.1. Impact of Distillation326

In Fig. 3, we show the importance of our distillation pro-327

cess for filling in occluded regions and the challenge in do-328

ing so. Column 1 shows renders following stage 1, which329

contains large holes, giving objects a thin look (such as the330

bear in row 2 or the table in row 1). By computing an occlu-331

sion volume and obtaining inpainting masks, we can inpaint332

these renders to obtain several inpainted samples (columns333

2-4). However, these samples can contain several artifacts.334

For instance, in row 1 of Fig. 3, the surface of the table335

is quite cluttered in individual samples. This is likely due336

to the challenge of inpainting images with complex masks337

that are out of distribution. These images also show the338

challenge in building cohesive scenes with single view in-339

painting. For instance the blackboard in row 2 has multi-340

ple shades of green in the 2D samples. Despite these chal-341

lenges, our final render for the scene, in column 5 of Fig. 3342

is clean and free of stray artifacts such as bright colours or343

ambiguous objects. We attribute this difference to our dis-344

tillation process. 345

As mentioned earlier, since we optimize over multiple 346

views, we are less susceptible to artifacts present in indi- 347

vidual samples and can produce 3D inpaintings that satisfy 348

multiple views. Prior work, such as Text2Room [8] instead 349

relies primarily on dilating masks and deleting regions of 350

generated scenes to simplify the inpainting process. Our in- 351

painting distillation process does not require any aggressive 352

modification to the scene but can produce high-quality re- 353

sults. We highly encourage the viewer to view the video 354

renderings to appreciate the extent of occluded regions that 355

our distillation technique generates. 356

7. Limitations 357

Janus Problem. By adopting a distillation based approach, 358

we occasionally encounter the Janus problem, where the 359

face of an object appears multiple times across renders. An 360

example is shown in Fig. 4 As we focus on scene genera- 361

tion and additionally condition on the 3D scene, this is less 362

pronounced than in object generation [12] and can likely be 363
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Figure 4. Janus Problem due to multi-view optimization. Since

we optimize over multiple-views, sometimes the final model can

show the same object multiple times to satisfy all views, such as

the pair of glasses above the octopus. Prompt: “A blue octopus

wearing glasses on a couch in the living room, watercolor style”

alleviated with view-dependent prompting [1].364

Artifacts in rendering. Some scenes also display ar-365

tifacts at the surface of objects over a wide baseline. We366

believe improvements to our 3DGS implementation, such367

as by incorporating anti-aliasing, and surface regularizers368

might help with this. We note that our results are still sig-369

nificantly better than prior work and uses only 2D priors.370

8. Additional Qualitative Results371

In the following pages, we show qualitative results from our372

technique as well as all baselines.373
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Prompt: ”An astronaut in a cave, trending on artstation, 8k

image”
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Prompt: ”Editorial Style Photo, Coastal Bathroom, Claw-

foot Tub, Seashell, Wicker, Mosaic Tile, Blue and White”
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Prompt: ”A minimalist bedroom, 4K image, high resolu-

tion”
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Prompt: ”A boy sitting in a boat in the middle of the ocean,

under the milkyway, anime style”
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Prompt: ”a living room, high quality, 8K image, photoreal-

istic”
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Prompt: ”A marble bust in a museum with pale teal walls,

framed paintings, marble patterned floor, 4k image”
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Prompt: ”A bear sitting in a classroom with a hat on, realis-

tic, 4k image, high detail”
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Prompt: ”An old car overgrown by vines and weeds, high

quality image, photorealistic, 4k image”
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Prompt: ”Small lavender room, soft lighting, unreal engine

render, voxels.”
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Prompt: ”White grand piano on wooden floors in an empty

hall, 4k image”
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Prompt: ”A highly detailed image of the resolute desk in the

oval office, 4k image”
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Prompt: ”A bohemian living room, colorful textiles, vibrant,

eclectic, 4k image, photorealistic”
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Prompt: ”Retro arcade room with posters on the walls, retro

art style, illustration”
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Prompt: ”A thick elven forest, fantasy art, landscape, pic-

turesque, 4k image”
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Prompt: ”A sunny royal traditional Japanese bedroom, 4k

image, ornate, high detail”
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Prompt: ”An old charming stone kitchen, 4k image, photo-

realistic, high detail”
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Prompt: ”Fantasy lighthouse in the Arctic, surrounded by a

world of ice and snow, shining with a mystical light under

the aurora borealis, 4k, sharp”
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Prompt: ”A steampunk bedroom with glass ceilings, photo-

realistic, 4k image, bright lighting”
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Prompt: ”A majestic peacock, surfing a tall wave, photore-

alistic, detailed image, 4k image”
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Prompt: ”A victorian living room with a grand fireplace and

a long sofa, painting over the fireplace, mysterious vibe, gi-

ant windows, 4k image, photorealistic”
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