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Figure 1. Creating the Inpainting Mask. 3D inpainting requires
filling in a 3D volume, which is not always equivalent to missing
regions in 2D point cloud renders. By computing an occlusion
volume, we avoid situations where the floor is visible through the
table (middle) but instead could be occluded. The right depth map
accounts for the ambiguity of the volume in the table.
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Ethical Considerations

While we use pretrained models for all components of our
pipeline, it is important to acknowledge biases and ethical
issues that stem from the training of these large-scale image
generative models [14]. As these models are often trained
on vast collections of internet data, they can reflect negative
biases and stereotypes against certain populations, as well
as infringe on the copyright of artists and other creatives. It
is essential to consider these factors when using these mod-
els and our technique broadly.

1. Why is the occlusion volume important?

Our key contribution is the inpainting distillation loss that
provides lower variance and high-quality supervision for
text-to-3D, compared to regular text-to-image model based
distillation, as shown in the ablations. Given that we use 2D
inpainting models for 3D inpainting via this distillation, we
must ask: how to compute the 3D region that needs to be
inpainted?

We proposed a simple technique to do so by comput-
ing the occluded volume (described in Sec. 4.2), which is
the 3D region occluded by objects in the reference image
I¢. Note that regardless of what objects may be present in
this occluded region, rendering from Py would yield I .,
as elements in the image would occlude the objects. The
2D inpainting masks we obtain then must hence, reflect this
unknown 3D region, as that is the part of the scene left to
complete.

Instead of computing the occlusion volume, another al-
ternative is using the holes from point cloud renderings as
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the inpainting mask. Indeed, these holes also represent un-
known 3D regions. However, the 3D region indicated by
such 2D masks is a subset of the occluded 3D region and
hence, incomplete. This is shown in Fig. 1, which shows the
masked point cloud depth, where the masked region rep-
resents the inpainting mask. When using the holes in the
point cloud as an inpainting mask, one can observe that the
back side of the kitchen table is visible. In reality, a solid
kitchen table would never expose this face. In contrast, us-
ing the occlusion volume, we can correctly determine the
entire 3D region missing in I;.f, which can be visually veri-
fied by comparing images. Specifically, the latter takes into
account self-occlusion, providing a more accurate estimate
and allowing details to fill into the occluded region.

In practice, such self-occlusions do not appear for all
prompts yet is important to maintain the correctness of the
3D inpainting formulation. If there are many renderings
such as in Fig. 1, the quality of inpainted samples would be
incorrect and lead to a noisier distillation process.

2. Discussion on Baselines

We are among the first to tackle text-to-3D scenes and
showcase a high-level of parallax. As a result, there are lim-
ited open-source 3D scene generation techniques to com-
pare with. We choose to compare with techniques that ei-
ther use distillation - a key part of our pipeline and iterative
approaches - which shares similarity with the initialization
technique we use.

2.1. Comparison with Dreamfusion and Prolific-
Dreamer

By comparing with prior SOTA distillation techniques [12,

], we demonstrate that these approaches are suboptimal
for scene generation, which has not been demonstrated be-
fore. Arguably, distillation techniques should be able to
build any 3D scene since the 2D priors used are general, as-
suming object-centric regularizers and prompts are absent.
However, we empirically find that simple distillation from
text-to-image models is insufficient for wide baselines. This
comparison highlights the importance of our inpainting dis-
tillation, which conditions on a partial 3D scene, enabling
high level of parallax not seen in prior work.

We also note that ProlificDreamer [17] first showcased
scene-level results using distillation, indicating that distilla-
tion is not purely for object-generation. Still, it presented
a limited set of scenes and did not show high parallax as it
focused on rotating a camera through a scene. Our base-
line comparison attempts to test the performance of this ap-
proach on wide camera trajectories and finds that it often
produces hazy results.

2.2. Relation between SDS and our distillation

Our distillation is similar to the score distillation loss (SDS)
used in Dreamfusion [12]. However, unlike prior work, we
do not use just text conditioning, but also renders from the
point cloud. As a result, the classifier-free guidance weight
we is much lower - at 7.5, avoiding over-saturated results
typically found with SDS. Further, unlike SDS which de-
noises noisy renders in one step, we take multiple steps with
DDIM sampling. Further, we also use a loss on the denoised
latent and decoded image, to produce high quality supervi-
sion.

2.3. Comparison with LucidDreamer and
Text2Room

Our initialization step is a key part of the pipeline and rem-
iniscent of prior and concurrent iterative techniques which
incrementally grow a scene. Yet, such techniques have yet
to showcase high quality over high-parallax camera trajec-
tories, which we demonstrate. We find that incremental
generation of 3D scenes can lead to noise accumulation, due
to errors in monocular depth and alignment of geometry.
Hence, unlike concurrent work LucidDreamer [5], we do
not limit our scene generation to our initialization step. We
rely on our inpainting distillation loss to produce highly co-
hesive 3D scenes, by distilling across multiple views, rather
than building a scene incrementally. We also note that while
LucidDreamer does use 3DGS optimization, it is a more
conventional reconstruction-based optimization, with no in-
painting or geometry priors incorporated. As a result, its
optimization stage is very different from our inpainting dis-
tillation, which provides rich priors for appearance and ge-
ometry at every iteration.

Further, we also avoid many limitations of prior work
such as Text2Room, which often produces scenes with
low-prompt alignment, especially those in outdoor scenes.
We attribute this to the technique deleting regions of the
mesh before inpainting, as the original technique prescribes.
When such deletions accumulate over time, they are prone
to erasing parts of the original scene defined in [, entirely.
In contrast to this, our technique maintains a simple ini-
tialization strategy and relies on a high-quality inpainting
distillation process to fill-in mission regions, without sacri-
ficing the quality of the initialized regions.

2.4. Implementation

Text2Room [8] and LucidDreamer [5] We use the of-
ficial implementation of Text2Room and LucidDreamer
on Github. To ensure a fair comparison, we estimate
depth using Marigold [9] and DepthAnything [18] as in
our technique, replacing the original IronDepth [2] and
ZoeDepth [4] respectively. The rest of the pipeline is kept
the same.
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"A marble bust in a museum with pale teal walls, framed
paintings, marble patterned floor, 4k image"

ours

w/o sharpening filter wj/o DDIM Inversion

Figure 2. We ablate the importance of DDIM Inversion and apply-
ing a sharpening filter. As in [10], we find that DDIM inversion
allows more details to be synthesized by our method. Additionally,
we find that detail slighly increases when applying a sharpening
filter to the sampled images.

ProlificDreamer [17] and Dreamfusion [12] We use
the implementation of these baselines provided in threestu-
dio [6] and use their recommended parameters, training for
25k and 10k steps, respectively. To ensure a fair compari-
son, we use the same poses for these baselines as our tech-
nique.

3. Additional ablations and discussion

3.1. Use of DDIM Inversion.

During the inpainting and refinement stage (Sec 4.2, 4.3 in
the original paper), we find it helpful to obtain the noisy
latent z; using DDIM inversion [16], where z = £(z), z
is the rendered image, and ¢ is a timestep corresponding to
the amount of noise added. This is similar to prior work
on 2D/3D editing and synthesis using pre-trained diffusion
models [7, 10]. We demonstrate the importance of doing so
in Fig. 2, where DDIM inversion can significantly improve
the detail in the optimized model. During the inpainting
stage, we use 25 steps to sample an image from pure noise,
and during refinement, we use 100 steps.

3.2. Use of sharpening filter.

In Fig. 2, we also see that applying a sharpening filter to the
sampled images results in slightly more detail. We attribute
this to the blurry nature of some samples of the diffusion
model.

4. Additional Implementation Details

We intend to open-source our code upon publication. In
addition, we describe some key implementation details to
assist reproducibility.

4.1. Point Cloud Generation

Image Generation. We generate our reference image .t
using a variety of state-of-the-art text-image generation
models, choosing between Stable Diffusion XL [ 1], Adobe
Firefly, and DALLE-3 [3].

Depth Estimation. As mentioned earlier, we use
Marigold [9] as our depth estimation model, with abso-
lute depth obtained using DepthAnything [18]. We align
the relative depth with this absolute depth by computing
the linear translation that minimizes the least squares er-
ror between them. Since DepthAnything provides separate
model weights for indoor and outdoor scenes, we use GPT-
4 to decide which checkpoint to use by passing I,..; as
input. When iteratively growing the point cloud, we fol-
low Text2Room [8] and align the predicted depth with the
ground truth depth rendered via Pytorch3D [13] for all re-
gions with valid geometry. We additionally blur the edges
of these regions to lower the appearance of seams at this
intersection.

Growing the pointcloud beyond P,.;. After lifting the
reference image I,y to a pointcloud PP, we additionally cre-
ate new points from neighbouring poses P, , as mentioned
earlier. In practice, we notice that using the same prompt
P,y across all neighbouring poses P, can lead to poor
results, as objects mentioned in the prompt get repeated.
Hence, we use GPT-4 to compute a new suitable prompt
that can represent the neighbouring views of P,..r. Specifi-
cally, we pass the reference image I,.. ¢, the original prompt
T)¢s and ask GPT-4 to provide a new prompt 7y, that can
be suitable for neighbouring regions. For instance, when
viewing a “car in a dense forest”, T},,,,, may correspond to
a "dense forest”.

4.2. Occlusion Volume Computation

We compute the occlusion volume O with Bresenham’s
line-drawing algorithm. First, we initialize an occupancy
grid G using the point cloud P from stage 1. We also store
whether any voxel is occluded with respect to P,y within
the same occupancy grid, initially settings all voxels as oc-
cluded. Then, we draw a line from the position of the refer-
ence camera 1.y to all voxels in the occupancy grid G, iter-
ating over the voxels covered by this line and marking all as
non-occluded until we encounter an occupied voxel. Once
the algorithm terminates, all voxels that are untouched by
the line-drawing algorithm form our occlusion volume O.
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4.3. Optimization

Hyperparameter Weights. We set Ajyene = 0.1, Aanchor =
10000 during the inpainting stage, and Apenr =
0.01, Aynchor = O during the refinement stage. The other
parameters are set as Aimage = 0.01, Appips = 100, Ageptn =
1000, and Agpacity = 10.

Use of Dreambooth during fine-tuning. While fine-
tuning the output from stage 2, we use Dreambooth [15] to
personalize the text-to-image diffusion model with the ref-
erence image Iy and associated prompt 7’ r. We find that
this helps the final 3D model adhere closer to I,y stylis-
tically. We use the implementation of Dreambooth from
HuggingFace and train at a resolution of 512x512 with a
batch size of 2, with a learning rate of 1e-6 for 200 steps.

Opacity Loss. We compute the opacity loss as the binary
cross entropy of each splat’s opacity o; with itself. This
encourages the opacity to reach either O or 1.

Gaussian Splatting. We initialize our gaussian splat-
ting model during the inpainting stage, using the point cloud
from stage 1, where each point is an isotropic gaussian, with
the scale set based on the distance to its nearest neighbors.
During the inpainting stage, we use a constant learning rate
of 0.01 for rotation, 0.001 for the color, and 0.01 for opac-
ity. The learning rate of the geometry follows an exponen-
tially decaying scheduler, which decays to 0.00005 from
0.01 over 100000 steps, after 5000 warmup steps. Similarly,
the scale is decayed to 0.0001 from 0.005 over 10000 steps,
after 7000 warmup steps. During the refinement stage, we
use a constant learning rate of 0.01 for rotation, 0.001 for
the color, 0.01 opacity, and 0.0001 for scale. We use an ex-
ponentially decaying scheduler for the geometry, which de-
cays to 0.0000005 from 0.0001 over 3000 steps, after 750
warmup steps. During the inpainting distillation, we also
dilate M1 to improve cohesion at mask boundaries. Fur-
ther, we find it essential to mask the latent-space L2 loss, to
prevent unwanted gradients outside the masked region.

5. User Study

For comparison with ProlificDreamer [17], DreamFu-
sion [12], and LucidDreamer [5], we showed participants
side-by-side videos comparing our method to the base-
line. For fairness, we use the same camera trajectory in all
videos. The order of the videos was also randomized to pre-
vent any biases due to the order of presentation. The user’s
preference was logged along with a brief explanation.

When comparing with Text2Room [&], instead of a
video, we showed users side-by-side sets of three multiview
images for each prompt, due to the degeneracy of the out-
put mesh far from the starting camera pose. The user’s pre-
ferred triplet was logged along with their brief explanation.
The images we showed looked slightly left and right of the
reference pose Ps.

5.1. Common themes of the user study.

All study participants were asked to justify their preferences
for one 3D scene over the other after making their choice.
Participants were not informed about the names or the na-
ture of any technique. We also adopted method-neutral lan-
guage to avoid biasing the user to prefer any particular tech-
nique. We find that their provided reasoning closely aligns
with several noted limitations of the baselines, which we
discuss further:

ProlificDreamer [17] can produce cloudy results. Sev-
eral participants described the NeRF renders as containing
“moving clouds”, a “hazy atmosphere”, and a “blotch of
colours”. This can likely be attributed to the presence of
floaters in the model, which is evident in the noisy depth
maps shown in Sec. 8. In contrast, participants described
our method as “clean and crisp when it comes to the colors
and sharpness of the pixels” and looking realistic, without
the presence of over-saturated colors.

Dreamfusion [12] lacks realism and detail. Feedback
from users when comparing with DreamFusion often mir-
rored feedback from the ProlificDreamer comparison, ref-
erencing a lack of realism and detail in the produced ren-
ders. One participant said “[Our technique] is more crisp
and does a better job with the content quality.”, while the
Dreamfusion result can “feel disjointed”. Another partici-
pant described a render as having a “distorted looking back-
ground”. In contrast to these issues, our technique syn-
thesizes realistic models with high detail and high-quality
backgrounds, with minimal blurriness.

Text2Room [8] can produce messy outputs. A com-
mon theme across feedback regarding Text2Room was that
it often looked like a mess, sometimes with a “strange dis-
tortion”. One user writes that our result is “less busy and
fits the description”. Another common reason users cited
when choosing our technique was the adherence to the input
prompt, with Text2Room often missing key objects that are
expected for an associated prompt. Our technique, however,
is capable of producing highly coherent outputs that are
faithful to the reference prompt and produce high-quality
renderings from multiple views.

LucidDreamer [5]’s scenes lack cohesion and can be
distorted. Multiple participants pointed out that Lucid-
Dreamer’s scenes degrade in quality when moving away
from the initial pose. One participant wrote “The image
on the left loses cohesion when rotated.” referring to Lu-
cidDreamer and in contrast another wrote “There is less vi-
sual distortion when the camera is moved around the room.”
about RealmDreamer. Some participants also noted that ob-
jects produced by our technique were more solid, with one
participant noting ‘“The shapes are solid on the right and
hold their form.”. These comments underscore the limita-
tions of purely iterative approaches.
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Point Cloud Render

2D Inpainted Samples

Ours (Render)

Figure 3. Comparison of sampling from 2D inpainting models and our optimized model. Left: Renders from the point cloud generated
in stage 1. Middle (cols 2-4): Inpainted Samples of the previous render using an occlusion-based inpainting mask and Stable Diffusion [14].
Right: A render from our final 3DGS model for the corresponding scene. We find that our distillation techniques produce results with high
cohesion while avoiding many artifacts from ancestral sampling of 2D inpainting models.

6. Additional Discussion
6.1. Impact of Distillation

In Fig. 3, we show the importance of our distillation pro-
cess for filling in occluded regions and the challenge in do-
ing so. Column 1 shows renders following stage 1, which
contains large holes, giving objects a thin look (such as the
bear in row 2 or the table in row 1). By computing an occlu-
sion volume and obtaining inpainting masks, we can inpaint
these renders to obtain several inpainted samples (columns
2-4). However, these samples can contain several artifacts.
For instance, in row 1 of Fig. 3, the surface of the table
is quite cluttered in individual samples. This is likely due
to the challenge of inpainting images with complex masks
that are out of distribution. These images also show the
challenge in building cohesive scenes with single view in-
painting. For instance the blackboard in row 2 has multi-
ple shades of green in the 2D samples. Despite these chal-
lenges, our final render for the scene, in column 5 of Fig. 3
is clean and free of stray artifacts such as bright colours or
ambiguous objects. We attribute this difference to our dis-

tillation process.

As mentioned earlier, since we optimize over multiple
views, we are less susceptible to artifacts present in indi-
vidual samples and can produce 3D inpaintings that satisfy
multiple views. Prior work, such as Text2Room [&] instead
relies primarily on dilating masks and deleting regions of
generated scenes to simplify the inpainting process. Our in-
painting distillation process does not require any aggressive
modification to the scene but can produce high-quality re-
sults. We highly encourage the viewer to view the video
renderings to appreciate the extent of occluded regions that
our distillation technique generates.

7. Limitations

Janus Problem. By adopting a distillation based approach,
we occasionally encounter the Janus problem, where the
face of an object appears multiple times across renders. An
example is shown in Fig. 4 As we focus on scene genera-
tion and additionally condition on the 3D scene, this is less
pronounced than in object generation [12] and can likely be
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Input Image Render Render

Figure 4. Janus Problem due to multi-view optimization. Since
we optimize over multiple-views, sometimes the final model can
show the same object multiple times to satisfy all views, such as
the pair of glasses above the octopus. Prompt: “A blue octopus
wearing glasses on a couch in the living room, watercolor style”

alleviated with view-dependent prompting [!].

Artifacts in rendering. Some scenes also display ar-
tifacts at the surface of objects over a wide baseline. We
believe improvements to our 3DGS implementation, such
as by incorporating anti-aliasing, and surface regularizers
might help with this. We note that our results are still sig-
nificantly better than prior work and uses only 2D priors.

8. Additional Qualitative Results

In the following pages, we show qualitative results from our
technique as well as all baselines.
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DreamFusion ProlificDreamer LucidDreamer ours

Text2Room

Prompt: “Editorial Style Photo, Coastal Bathroom, Claw-
foot Tub, Seashell, Wicker, Mosaic Tile, Blue and White”
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Prompt: ”A minimalist bedroom, 4K image, high resolu-
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