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A COMPARISON METHODS
(1) Random: Construct a coreset consisting of examples chosen
from the full training set by uniform random sampling.
(2) Forgetting [7]: Construct a coreset composed of examples with
the highest forgetting scores. The forgetting score counts howmany
times the forgetting happens during model training, i.e. an example
was misclassified in the current epoch after being correctly classi-
fied in the previous epoch.
(3) Entropy [1]: Construct a coreset of examples with the highest
entropy score. It is an uncertainty-based method. Entropy indicates
the uncertainty of a sample given a certain classifier and training
epoch, and examples with higher entropy are more important for
model training.
(4) EL2N [4]: Construct a coreset of examples with the highest
EL2N score. As an approximation of the GraNd score [4], which
measures the average contribution of each sample to the decline of
the training loss at early epochs across several independent runs,
the EL2N score measures the data difficulty or importance by the
L2 norm of error vectors.
(5) Area under the margin (AUM) [5]: Construct a coreset con-
sisting of examples with the lowest AUM score. AUM is a data
difficulty and importance metric that identifies noisy and misla-
beled data by observing a network’s training dynamics. (It measures
the probability gap between the target class and the next largest
class across all training epochs.)
(6) Coverage-Centric Coreset Selection (CCS) [8]: CCS jointly
considers overall data coverage across a distribution and the im-
portance of individual examples by employing a modified stratified
sampling technique. In our experiments, AUM is used as the metric
for determining the importance within the CCS framework.

B PERFORMANCE AT HIGH SELECION RATES
We provide more comparison results between EVA and other SOTA
baselines at high selection rates. As reported in Tab. 1, EVA con-
sistently exhibits superior performance in the majority of cases.
Notably, EVA outperforms the full dataset at high selection rates,
for instance, it achieves 98.80% accuracy using only half of the
OrganAMNIST data, compared to the 98.39% accuracy with the
full dataset, underlining its capability to maintain or even enhance
model performance despite utilizing a pruned dataset.

C EFFECTIVENESS ON NATURAL IMAGE
DATASET

The applicability of EVA extends beyond medical imagery, as ev-
idenced by our exploration of its effectiveness on natural image
datasets such as CIFAR-10 and CIFAR-100. As detailed in Tab. 2
and Tab. 3, our method demonstrates robust performance across
varying selection rates. On CIFAR-10, EVA attains 90.50% accuracy
at 30% selection rate, closely approaching the full dataset’s accuracy
benchmark of 93.06%. In the more complex CIFAR-100 dataset, EVA
achieves commendable results at low selection rates, i.e., reaching
62.93% accuracy with 30% of the full dataset. In addition, EVA ’s

Table 1: High selection rate performance on OrganAMNIST
and OrganSMNIST with ResNet-18. The models trained with
the full datasets achieves 98.39% and 91.76%, respectively. The
first and second best results in each column are marked in
red and blue, respectively.

OrganAMNIST OrganSMNIST
𝛼 50% 70% 90% 50% 70% 90%

Random 98.14
±0.04

98.29
±0.15

98.44
±0.43

89.63
±0.68

90.23
±0.72

91.16
±0.23

Forgetting [7] 98.46
±0.16

98.31
±0.82

98.70
±0.44

91.18
±0.69

91.46
±0.38

91.58
±0.26

Entropy [1] 97.93
±0.44

98.32
±0.03

98.50
±0.55

90.41
±0.27

91.31
±0.50

91.36
±0.78

EL2N [4] 98.39
±0.89

98.24
±0.04

98.48
±1.27

89.94
±0.57

90.43
±0.90

91.53
±0.61

AUM [5] 98.13
±0.02

98.54
±0.76

98.55
±0.51

89.81
±0.52

90.97
±0.87

91.58
±0.03

CCS [8] 97.55
±0.19

97.56
±0.60

97.07
±0.81

85.53
±0.11

85.69
±0.15

86.38
±0.91

EVA (Ours) 98.80
±0.56

98.96
±0.73

98.68
±1.45

91.21
±0.98

91.94
±0.74

91.89
±0.96

performance consistently outpaces various SOTA baselines across
different low selection rates tested, showcasing its generalizability
and the robustness of its coreset selection efficacy in diverse image
contexts.

D PARAMETER SETTINGS
We train the ResNet-18 over 200 epochs with a batch size of 256.
For networks update, SGD optimizer with momentum of 0.9 and
weight decay of 0.0005 is used. The learning rate is initialized as
0.1 and decays with the cosine annealing scheduler.
Besides, this section details the optimal window combinations iden-
tified for each dataset and selection rate assessed in our study. We
represent each window combination of early and late stages, (𝑡𝑒 ,
𝑡𝐸 )+(𝑡𝑙 , 𝑡𝐿), more concisely as (𝑡𝑒 , 𝑡𝑙 ), since we set the window size
to 𝐾 = 10 throughout our experiments. For each dataset, We list
the optimal (𝑡𝑒 , 𝑡𝑙 ) of every selection rate 𝛼 as follows in the format
of (𝑡𝑒 , 𝑡𝑙 , 𝛼).

• For OrganAMNIST, the optimal settings are (1, 190, 2%), (1, 190,
5%), (100, 190, 10%), (1, 150, 20%), (90, 150, 30%), (90, 150, 50%), (1,
190, 70%), (90, 190, 90%).

• For OrganSMNIST, the optimal settings are (90, 100, 2%), (150,
190, 5%), (100, 190, 10%), (100, 190, 20%), (170, 190, 30%), (150, 190,
50%), (90, 150, 70%), (1, 100, 90%).

• For CIFAR-10, the optimal settings are (1, 100, 2%), (1, 150, 5%),
(1, 190, 10%), (1, 100, 20%), (100, 190, 30%).

• For CIFAR-100, the optimal settings are (170, 190, 2%), (100, 190,
5%), (170, 190, 10%), (100, 190, 20%), (90, 190, 30%).



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Table 2: Performances on natural image dataset CIFAR-10 with ResNet-18. The model trained with the full dataset achieves
93.06% accuracy.

𝛼 2% 5% 10% 20% 30%

Random 41.64 ± 0.92% 58.62 ± 0.29% 71.64 ± 0.47% 84.57 ± 0.33% 89.79 ± 0.32%
Forgetting [7] 36.20 ± 0.24% 41.67 ± 0.58% 52.29 ± 0.33% 76.00 ± 1.45% 90.27 ± 0.88%
Entropy [1] 32.08 ± 0.42% 47.70 ± 0.39% 60.52 ± 0.15% 75.69 ± 0.90% 86.46 ± 0.57%
EL2N [4] 10.54 ± 0.49% 15.94 ± 0.61% 23.45 ± 0.86% 42.62 ± 0.68% 81.69 ± 1.27%
AUM [5] 14.66 ± 0.52% 18.54 ± 0.59% 25.35 ± 0.22% 49.51 ± 1.10% 73.92 ± 0.72%
CCS [8] 43.95 ± 1.66% 51.45 ± 2.18% 71.78 ± 1.98% 85.53 ± 0.97% 89.70 ± 0.65%

EVA (Ours) 46.27 ± 0.37% 61.75 ± 0.57% 73.73 ± 0.42% 85.12 ± 0.68% 90.50 ± 0.49%

Table 3: Performances on natural image dataset CIFAR-100 with ResNet-18. The model trained with the full dataset achieves
78.46% accuracy.

𝛼 2% 5% 10% 20% 30%

Random 13.35 ± 0.39% 20.53 ± 0.93% 37.10 ± 1.01% 53.68 ± 1.33% 62.74 ± 0.15%
Forgetting [7] 6.86 ± 0.08% 10.14 ± 0.32% 16.87 ± 0.12% 26.18 ± 0.61% 38.25 ± 0.69%
Entropy [1] 8.92 ± 0.40% 14.64 ± 0.50% 25.01 ± 0.46% 40.33 ± 0.24% 48.95 ± 0.46%
EL2N [4] 3.63 ± 0.02% 5.16 ± 0.22% 7.26 ± 0.22% 14.65 ± 0.87% 34.83 ± 0.50%
AUM [5] 3.92 ± 0.03% 5.25 ± 0.04% 8.38 ± 0.29% 16.64 ± 0.07% 31.34 ± 0.49%
CCS [8] 13.50 ± 0.47% 23.84 ± 1.07% 36.39 ± 1.94% 53.14 ± 1.34% 64.72 ± 0.21%

EVA (Ours) 13.28 ± 0.33% 24.38 ± 0.87% 39.60 ± 0.46% 55.86 ± 0.92% 62.93 ± 0.37%

Figure 1: Window combinations on CIFAR-10. Different colors indicate the start epoch of different late windows 𝑡𝑙 , and x-axis
represents the start epoch of the early window 𝑡𝑒 . From left to right and top to bottom, the corresponding selection rates are
0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, and 0.9.

As reported in Fig. 1, we analyze the influence of window combina-
tion on performance. For a smaller selection rate, we should select
samples earlier in training, and as the selection rate increase, the

data budgets also increase, therefore the optimal window combina-
tion gradually slides from early to later stage.
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Table 4: Cross-architecture generalization performance. We train ResNet-50, MobileNet-v2 and LeNet models with coresets of
OrganSMNIST selected by scores calculated on training dynamics with ResNet-18.

ResNet-50 MobileNet-v2 LeNet
𝛼 5% 10% 20% 30% 5% 10% 20% 30% 5% 10% 20% 30%

Random 23.73 76.81 82.13 83.79 48.10 77.64 83.45 86.91 49.95 62.99 67.09 79.35
Forgetting [7] 4.64 35.79 59.42 68.21 4.10 28.66 53.47 76.61 4.59 24.76 33.59 63.62
Entropy [1] 26.71 48.29 76.90 81.05 24.80 54.15 73.00 84.91 21.58 47.56 65.92 72.56
EL2N [4] 15.33 56.64 67.24 78.71 20.56 52.34 70.56 79.98 14.60 46.92 61.08 68.26
AUM [5] 4.10 22.36 37.16 53.81 4.00 21.44 37.55 58.01 4.30 13.38 32.08 42.82
CCS [8] 43.90 71.88 78.27 82.52 45.65 77.98 81.40 84.91 52.15 69.48 71.44 77.10

EVA (Ours) 52.83 77.00 82.96 85.84 51.17 79.79 84.38 88.43 59.67 70.90 77.00 80.32

E GENERALIZATION ACROSS
ARCHITECTURE

In this section, we investigate the generalization ability across
architectures. Specifically, We train a ResNet-18 model with the
entire dataset and use various scores to select coresets with different
selection rates. Then we train three representative architectures
including ResNet-50 [2], MobileNet-v2 [6] and LeNet [3] models
with these coresets. The evaluation results in Tab. 4 demonstrate
that the coresets selected by the proposed EVA outperform the
compared SOTA baselines and have good transferability across
architectures.
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