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A APPENDIX

A.1 ADDITIONAL DISCUSSION

The next patch prediction for visual pre-training is equivalent to the next token prediction in large
language models. However, most languages have a clear sequential nature, therefore there is a clear
definition for the next word. This also makes the next word prediction task relatively harder, since the
model requires learning to extrapolate the data. On the other hand, images and videos, especially
over the spatial dimensions lack a sequential nature. We follow the previous works (Chen et al.,
2020a; Van Den Oord et al., 2016) to make the images and videos into a 1D sequence by scanning the
patches in raster order. While this ordering allows for example to learn to predict the bottom half of
the image from the top part of the image, in many places, the tokens can be predicted by interpolating
rather than extrapolating. On the time axis, yes, there is a clear sequential nature, however, video
frames compared to text tokens are more redundant, making the next frame prediction task much
easier.

A.2 LIMITATIONS

In this work, we introduced Toto, for generative pre-training from videos, showing its strong per-
formance across a variety of visual tasks. Despite its competitive performance, this approach has
limitations. A significant limitation stems from the use of internet videos, which, unlike carefully
curated datasets, introduces challenges related to data quality and diversity. This variance in data
quality can impact model performance, especially when compared to models trained on more curated
datasets. Another challenge is the considerable computational demand of our large-scale pre-training
approach, potentially placing it beyond the reach of researchers with limited computational resources.
Furthermore, we have not yet fully assessed our method’s effectiveness in dealing with dense predic-
tion tasks, fine-grained recognition, or comprehending complex temporal dynamics over extended
time frames. These areas represent key opportunities for further research, aiming to broaden the
fruitfulness of generative pre-trained models.

A.3 PREFIX ATTENTION

During fine-tuning, we experimented with causal and full attention. On ImageNet, our base model
achieved full attn: 82.6% vs causal attn: 82.2%. Even though our models are not pre-trained with
prefix attention, still able to utilize full attn at fine-tuning. This is an unrealized benefit of training
with videos, (a middle token in say, 8th frame won’t see the rest half of the 8th frame, but have seen
all the tokens from 7th frame, which are similar because of video, hence approximating full attention
at pre-training)

A.4 FULL FINE-TUNING

We fine-tuned our models on ImageNet, and performance is close to SOTA, compared to linear
probing (where we only use causal attention). But during the fine-tuning, we use full attention. We
will add this comparison including larger models variants to the main paper.

DINO MoCov3 BEiT MAE | Toto
82.8 83.2 83.2 83.6 ‘ 82.6

Table 13: Full Fine Tuning Performance: Comparison of different methods and their full fine
tuning performance on ImageNet-1K.

A.5 1GPT vs Toto ON IMAGENNET

Table 7 shows ImageNet evaluation performance. However, iGPT (Chen et al., 2020a) models
are evaluated only using linear probing. To have a fair comparison, between iGPT and Toto, we
reevaluated our models using linear probing. Both models have causal attention and are trained on
auto-regressive objectives. On the same model sizes, about 1 billion parameters, our achieve 66.2%
while the similar iGPT model’s ImageNet performance is 65.2%. This fair evaluation suggests the
modifications made on 7ofo have clear benefits over iGPT.
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Method Arch #0 Topl
iGPT-L (Chen et al., 2020a) GPT-2 1386 65.2
Toto-1b LLaMA 1100 66.2

Table 14: ImageNet Linear Probing Results: 7oro performs better than similar size iGPT models.

A.6 PROBING ACROSS LAYERS

As shown in Figure 4 for the ImageNet classification task, different layers for the model contribute
to the task differently for the image classification task. To study this behavior across multiple tasks,
we train probing layers for all other tasks such as action recognition, object tracking, and robot
manipulation. Figure 9 shows probing performance across layers, model size, and tasks. It shows that
action recognition follows a similar trend to ImageNet classification tasks, having peak performance
at the middle of the model stacks.

While Object tracking also shares a similar trend with image classification and action recognition,
object manipulation shows an interesting trend of the last layers performing well as middle layers
from picking objects. Compared to the first three tasks, robot manipulation has a generative nature as
a task and can benefit from generative pre-training.
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Figure 9: Probing Across Layers, Models, and Tasks: We study the behavior of our models across
multiple layers and tasks. For image classification, action recognition, and object tracking, all the
models behave similarly and peak around 50% of the model depth. This behavior is observed across
all model sizes. Robot tasks show a different behaviour, where the middle layers perform good at
picking the object, last layers also perform good as middle layers.

A.7 u-PARAMETERIZATION

To study the scaling behaviours of Toto using p-Parameterization (Yang et al., 2022). First we
train various models al-a6 (in Table 15), with hidden sizes (64-1536) and number of layers (12-48),
increasing linearly and we used VQGAN tokenizer (Esser et al., 2020). Then we tune the learning
rate for these models, with fixed depth using pi-Parameterization (Yang et al., 2022). Figure 16 shows
optimal learning rate of 277 for all the model widths. Once we find the optimal learning rate, we
train al-a6 models on the mixture of image and video data, as mentioned in Table 2.

A.8 N-GRAM DISTRIBUTION

In this section, we compare the 2-gram and 3-gram distribution of dVAE (Ramesh et al., 2021),
VQGAN (Esser et al., 2020) image tokeizers. We compute 2-gram and 3-gram distributions on the
discrete tokens of 10000 ImageNet validation images. Figure 10 and Figure 11 show the distributions
of these tokenizers respectively. On 2-gram distribution, dVAE (Ramesh et al., 2021) has more
discrete combination of tokens compared to both VQGAN-1K and VQGAN-16k tokenizers.

A.9 ATTENTION PROBING VARIANTS ON K400

We also evaluate our models and baselines on the Kinetics 400 dataset using a variant of attention
probing. In the main paper, we use attention probing, with only learning Wy, W,, matrices, and a
single learnable query vector. We also test with cross attention with MLP layers as the attention
classifier, to give more capacity to the learnable head. Table 17 show the performance on the attention
classifier with an additional MLP head. This helps to performance improve across over all models.
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Model Params Dimension Heads Layers 0! Minimum Loss vs Learning Rate for Different Model Widths
al 14.8M 256 16 12
a2 77.2M 512 16 16 g
a3 215M 768 16 20
H Width 64
a4 458M 1024 16 24 width 256
—e— Width 512
as 1.2B 1536 16 28 o Vi 1090
—e— Width 1536
a6 1.9B 1792 16 32 22 218 > > > 2 3 »

Leaming Rate

Table 15: Toto Varients: We scale Toto models
by increasing hidden dimension and number of
layers linearly while keeping number of heads
constant following (Yang et al., 2022; Touvron
et al., 2023).

Table 16: ;-Parameterization Learning Rate:
We show that p-Parameterization Yang et al.
(2022), we can train all width Toro models, with
an single optimal learning rate of 277
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Figure 10: 2-gram Distribution of Various Tokens: We compute the 2-gram distribution on 10000
images from the ImageNet validation set. Compared to VQGAN 1k and 16k vocabulary tokenizers,
the dVAE tokenizer has a larger set of token combinations.
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Figure 11: 3-gram Distribution of Various Tokens: We compute the 3-gram distribution on 10000
images from the ImageNet validation set. All the tokenizers has similar almost flat distribution when
it comes to 3-gram tokens.

A.10 VISUALIZING OBJECT PERMANENCE

We identify specific attention layers that attend to the last appearances of the currently generated
object tokens (e.g. attention layer 15 in 1 model). Visualizations of the attention coefficients of such
layer for two videos with reappearing bottles are presented in 12. In the first video (left), the bottle
with the sticker is occluded by a bag and reappears. In the second video (right), the bottle disappears
and reappears due to camera motion. In both cases, when visualizing the attention coefficients for
this layer for a token corresponding to the first reappearance of the stickers on the bottles, the only
attended tokens are tokens from the same frame and tokens that correspond to the same sticker in the
first frame. This suggests that the model learns temporal correspondences across the video.
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Method Arch Topl
Hiera (Ryali et al., 2023) Hiera-L/14 74.2
Hiera (Ryali et al., 2023) Hiera-H/14 75.2
VideoMAE (Wang et al., 2023a) ViT-B/14 654
VideoMAE (Wang et al., 2023a) ViT-L/14 74.8
Toto-base LLaMA 61.2
Toto-large LLaMA 65.8
Toto-1b LLaMA 74.8

Table 17: K400 Results: We evaluate our models using cross attention and MLP layer as the
classification head. Overall using a high-capacity head improves the performance across all models.
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Figure 12: Attention Visualization. We manually identify layers in which the model attends to the
previous occurrences of the token that the network generates (e.g. the tokens that correspond to the
reappearing stickers on the bottles). Layer 15 sparsely attends to such tokens in the first frame in
context, as well as nearby tokens in the current frame.

A.11 GENERATION SAMPLES

Solve tasks with generation: long video generation: we can generate up to 64 frames, first raw:
periodic motion, second raw: object permanence (light stand).

prompt < generated frames >

prompting (pre-trained model): shows 3D rotation

o \é?"

prompting (finetuned model): A small 1000-step fine-tuning leads to a promptable model for
various vision tasks.

prompt generated frames —
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Figure 13: Samples from CO3D dataset: We prompt our model with first 8 frames from co3d
dataset, and generate the rest 8 frames.
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Figure 14: Samples from pandaset dataset: We prompt our model with first 8 frames from pandaset
dataset, and generate the rest 8 frames.
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Figure 15: Depth Estimation: We finetune our model on depth estimation, given RGB frames as a
prompt and generate the depth image.

1056 Figure 16: Flow Estimation: We finetune our model on flow estimation task, given first and second
1057 RGB frames as a prompt and we generate the flow image on x direction and y direction.
1058

1059

1060  A.12 VISUALIZING FEATURES

122; We take our large model and use randomly selected 100 images from the ImageNet Vali.dati.OI.l set to
store the intermediate features from all layers. Then we compute PCA on each layer individually.

1959 After this, we use a few more images to get their intermediate features and compute their first 3 PCA

1084 components as in (Amir et al., 2021). Figure 17 shows the first three projections of the Toto-large

1065 model features.
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1075 Figure 17: Features Visualization. First 3 PCA components of each layer of vGPT-large model
1076 features.
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o A.13 ADDITIONAL LAYER-WISE PROBING RESULTS
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We also probe the multiple variants of our models at each
layer for the best ImageNet performance. First, we test the
models on linear probing, on both sizes of 128 and 256
resolution. We also plot the probing curves for the models
trained with attention probing at 128 resolution. Across
all these models, the performance has a similar behavior
to the pre-trained models, with peak performance at the
middle of the depth of the model.
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Figure 18: Training Loss Curves: We
show the training loss curves for multi-
ple variants of our models.
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