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A DETAILED NETWORK STRUCTURE
We provide the detailed network structures of Speaker-specific Mo-
tion Translator and Inpainting Generator in Figure 1 and Figure 2,
respectively. In Figure 1, the transformer encoder has 4 layers, each
with a 512 model dimension, 1024 inner dimension and 4 attention
heads. The transformer decoder has 1 layer with the same param-
eter configuration as the encoder. MLP contains 3 hidden layers,
and the channels of hidden layers are 512.

audio speaker ID

Pretrained 
Universal 
Encoder

Speaker 
Embedding

Linear
(1024,512)

Linear
(1024,512)

feature

Transformer Encoder

Transformer Decoder

Linear(512,15069)+ReLU

FLAME

MLP(15069,53)

Figure 1: The detailed structure of Speaker-specific Motion
Translator.

B DETAILED EXPERIMENTAL SETTINGS
B.1 Speaker-specific Motion Translator
During training of Speaker-specificMotion Translator, we set hyper-
parameters of losses as follows: 𝜆𝑣 = 1000, 𝜆𝑦 = 10, 𝜆𝑠𝑡ℎ = 1000,
and 𝜆𝑙𝑎𝑡 = 0.001.

Table 1: Hyper-parameters of Dynamic Gaussian Renderer.

Name 𝑘 𝑄𝑖𝑛𝑖𝑡 𝜆1 𝜆2 𝜆3 𝜆𝑝 𝜖𝑝 𝜆𝑠 𝜖𝑠 𝜆𝑠𝑒𝑔

Value 3 10522 1.0 0.1 0.2 0.1 0.05 0.1 2.0 0.5

B.2 Dynamic Gaussian Renderer
In Dynamic Gaussian Renderer, we set hyper-parameters in Ta-
ble 1. Among these parameters, 𝑘 denotes the order of the spheri-
cal harmonic function, 𝑄𝑖𝑛𝑖𝑡 denotes the number of initialized 3D
Gaussians, and the remaining symbols are consistent with those
described in the main text.

We also list the learnable parameters and networks in Table 2.
Here, 𝑄 denotes the total number of 3D Gaussians, and 𝑇 denotes
the frame number of the video sequence. In the first part, we detail

Merged Image

Conv2d(3,64,3)+BN+ReLU

Conv2d(64,128,3,2)+BN+ReLU

Conv2d(128,256,3,2)+BN+ReLU

X4Inpainting Block

Upsample+Conv2d(256,128,3)
+BN+ReLU

Upsample+Conv2d(128,64,3)
+BN+ReLU

Conv2d(64,3,3)

Output Image

（b) Inpainting Block

（a) Inpainting Generator

Conv2d
(c,c/4,3,dilate1)

+BN+ReLU

Conv2d
(c,c/4,3,dilate2)

+BN+ReLU

Conv2d
(c,c/4,3,dilate4)

+BN+ReLU

Conv2d
(c,c/4,3,dilate8)

+BN+ReLU

feature 
(b*c*h*w)

x (b*c*h*w)

mask 
(b*c*h*w)

out
(b*c*h*w)

y (b*c*h*w)

1 − 𝑚𝑎𝑠𝑘 ∗ 𝑥 + 𝑚𝑎𝑠𝑘 ∗ 𝑜𝑢𝑡

Gate_Conv
(c,c,3,dilate1) Fuse_Conv

(c,c,3,dilate1)
Sigmoid

tanh

Figure 2: The detailed structure of Inpainting Generator. In
subfigure (a) and subfigure (b), we show the overall structure
of the model and the detailed structure of the Inpainting
Block, respectively.

the attribute information of the 3D Gaussians. In the second part,
we outline the network structure of the proposed Speaker-specific
BlendShapes. In the third part, we present the designed BS weight
information. In the fourth part, we enumerate the details of the
FLAME parameters.
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Figure 3: Comparison of six methods under the cross-driven setting. We show the results of head reconstruction and lip
synchronization on Testset A and Testset B.

Table 2: Learnable parameters and Networks of Dynamic
Gaussian Renderer.

Name Shape Learning Rate

𝒖̄ 𝑄 × 3 0.00016
𝒔 𝑄 × 3 0.005
𝒓 𝑄 × 4 0.001
𝜶 𝑄 × 1 0.05
𝜿 𝑄 × 16 0.0025

𝑊𝛾

Linear 16 × 256,
LeakyReLU,
Linear 256 × 256,
LeakyReLU,
Linear 256 × 8

0.0001

𝑊𝑝𝑜𝑠 𝑄 × 3 × 8 0.00016
𝑊𝑟𝑜𝑡 𝑄 × 4 × 8 0.001
𝑊𝑐𝑜𝑙𝑜𝑟 𝑄 × 1 × 3 × 8 0.0005

shape 𝑇 × 100 0.0001
expression 𝑇 × 50 0.001
jawpose 𝑇 × 3 0.0001
global orient 𝑇 × 3 1e-5
translation 𝑇 × 3 1e-5

C ADDITIONAL EXPERIMENTS
C.1 Additional Quantitative Evaluation
Our method only renders the speaker’s facial region, with the re-
maining regions utilizing the original reference frame. To more
fairly evaluate the generated image quality, we re-crop all video

Table 3: Quantitative results under the self-driven setting
with cropped face region. The best and second-best results
are in bold and underlined.

Method PSNR↑ SSIM↑ LPIPS↓ LMD↓

Wav2Lip 28.8987 0.8911 0.1528 6.498
AD-NeRF 29.6298 0.8933 0.1104 4.620
RAD-NeRF 28.4605 0.8746 0.1010 4.070
ER-NeRF 28.7008 0.8820 0.0608 3.668
GeneFace++ 25.6558 0.8263 0.1128 3.988

Ours 33.2232 0.9504 0.0431 3.048

frames to retain only the facial region. PSNR, SSIM, LPIPS, and LMD
metrics for the cropped video frames are recalculated, as shown in
Table 3. The results show that our method still has the best image
quality considering only the facial region.

C.2 Additional Qualitative Comparison
We show the comparisonwith othermethods under the cross-driven
setting in Figure 3. Regarding head reconstruction, our method
significantly outperforms other methods in facial details, such as
teeth. Concerning lip synchronization, our method demonstrates
strong generalization capabilities with cross-identity and cross-
gender audio. We strongly recommend watching our supplemental
video for better visualization and more results.
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