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ABSTRACT

This paper presents a novel implicit process-based meta-learning (IPML) algo-
rithm that, in contrast to existing works, explicitly represents each task as a contin-
uous latent vector and models its probabilistic belief within the highly expressive
IP framework. Unfortunately, meta-training in IPML is computationally challeng-
ing due to its need to perform intractable exact IP inference in task adaptation. To
resolve this, we propose a novel expectation-maximization algorithm based on the
stochastic gradient Hamiltonian Monte Carlo sampling method to perform meta-
training. Our delicate design of the neural network architecture for meta-training
in IPML allows competitive meta-learning performance to be achieved. Unlike
existing works, IPML offers the benefits of being amenable to the characteriza-
tion of a principled distance measure between tasks using the maximum mean
discrepancy, active task selection without needing the assumption of known task
contexts, and synthetic task generation by modeling task-dependent input distribu-
tions. Empirical evaluation on benchmark datasets shows that IPML outperforms
existing Bayesian meta-learning algorithms. We have also empirically demon-
strated on an e-commerce company’s real-world dataset that IPML outperforms
the baselines and identifies “outlier” tasks which can potentially degrade meta-
testing performance.

1 INTRODUCTION

Few-shot learning (also known as meta-learning) is a defining characteristic of human intelligence.
Its goal is to leverage the experiences from previous tasks to form a model (represented by meta-
parameters) that can rapidly adapt to a new task using only a limited quantity of its training data.
A number of meta-learning algorithms (Finn et al., 2018} Jerfel et al., 2019} |[Ravi & Beatsonl 2018;
Rusu et al.}, 2019;|Yoon et al.,|2018)) have recently adopted a probabilistic perspective to characterize
the uncertainty in the predictions via a Bayesian treatment of the meta-parameters. Though they can
consequently represent different tasks with different values of meta-parameters, it is not clear how
or whether they are naturally amenable to (a) the characterization of a principled similarity/distance
measure between tasks (e.g., for identifying outlier tasks that can potentially hurt training for the new
task, procuring the most valuable/similar tasks/datasets to the new task, detecting task distribution
shift, among others), (b) active task selection given a limited budget of expensive task queries (see
Appendix [A.2.3] for an example of a real-world use case), and (c) synthetic task/dataset generation
in privacy-aware applications without revealing the real data or for augmenting a limited number of
previous tasks to improve generalization performance.

To tackle the above challenge, this paper presents a novel implicit process-based meta-learning
(IPML) algorithm (Sec. [3) that, in contrast to existing works, explicitly represents each task as a
continuous latent vector and models its probabilistic belief within the highly expressive IPP_] frame-
work (Sec.[2)). Unfortunately, meta-training in IPML is computationally challenging due to its need
to perform intractable exact IP inference in task adaptation|| To resolve this, we propose a novel

"An IP (Ma et al.| 2019) is a stochastic process such that every finite collection of random variables has an
implicitly defined joint prior distribution. Some typical examples of IP include Gaussian processes, Bayesian
neural networks, neural processes (Garnelo et al.,2018)), among others. An IP is formally defined in Def.

>The work of Ma et al.| (2019) uses the well-studied Gaussian process as the variational family to perform
variational inference in general applications of IP, which sacrifices the flexibility and expressivity of IP by
constraining the distributions of the function outputs to be Gaussian. Such a straightforward application of IP
to meta-learning has not yielded satisfactory results in our experiments (see Appendix @
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expectation-maximization (EM) algorithm to perform meta-training (Sec.[3.T): In the E step, we per-
form task adaptation using the stochastic gradient Hamiltonian Monte Carlo sampling method (Chen
et al.l 2014) to draw samples from IP posterior beliefs for all meta-training tasks, which eliminates
the need to learn a latent encoder (Garnelo et al.,[2018). In the M step, we optimize the meta-learning
objective w.r.t. the meta-parameters using these samples. Our delicate design of the neural network
architecture for meta-training in [IPML allows competitive meta-learning performance to be achieved
(Sec.[3.2). Our IPML algorithm offers the benefits of being amenable to (a) the characterization of a
principled distance measure between tasks using maximum mean discrepancy (Gretton et al.,|2012),
(b) active task selection without needing the assumption of known task contexts in (Kaddour et al.,
2020), and (c) synthetic task generation by modeling task-dependent input distributions (Sec. [3.3).

2 BACKGROUND AND NOTATIONS

For simplicity, the inputs (outputs) for all tasks are assumed to belong to the same input (output)
space. Consider meta-learning on probabilistic regression tasksﬂ Each task is generated from a task
distribution and associated with a dataset (X, yx) where the set X’ and the vector yx = (Yx)ycx
denote, respectively, the input vectors and the corresponding noisy outputs

yx = f(x) +€(x) (1
which are outputs of an unknown underlying function f corrupted by an i.i.d. Gaussian noise €(x) ~
N(0,02) with variance o2. Let f be distributed by an implicit process (IP), as follows:

Definition 1 (Implicit process for meta-learning). Let the collection of random variables f(-) denote

an IP parameterized by meta-parameters 0, that is, every finite collection { f(x)}xcx has a joint

prior distribution p(fx = (f(x))ac.) implicitly defined by the following generative model:

z~p(z), [f(x)=go(x 2) 2)
for all x € X where z is a latent task vector to be explained below and generator gy can be an
arbitrary model (e.g., deep neural network) parameterized by meta-parameters 6.

Deﬁnitionﬂ]deﬁnes valid stochastic processes if z is finite dimensional (Ma et al.|[2019). Though, in
reality, a task may follow an unknown distribution, we assume the existence of an unknown function
that maps each task to a latent task vector z satisfying the desired known distribution p(z), like
in (Kaddour et al., 2020) Using p(yx|fx) = N (fx,0I) (1) and the IP prior belief p(fy) from
Def.|1] we can derive the marginal likelihood p(y x) by marginalizing out fx.

Remark 1. Two sources of uncertainty exist in p(yx): Aleatoric uncertainty in p(y x|fx) reflects
the noise (i.e., modeled in (I))) inherent in the dataset, while epistemic uncertainty in the IP prior
belief p(fx) reflects the model uncertainty arising from the latent task prior belief p(z) in @)

Let the sets 7 and 7, denote the meta-training and meta-testing tasks, respectively. Following the
convention in (Finn et al., 2018 |(Gordon et al., [2019; Ravi & Beatson, 2018; [Yoon et al.l [2018)),
for each meta-training task ¢ € 7, we consider a support-query (or train-test) split of its dataset
(X, yx,) into the support set (or training dataset) (X, yx;) and query set (or test/evaluation
dataset) (X, yya) where X; = X7 U X and XF N X! = . Specifically, for a N-way K-shot
classification proi)lem, the support set has K examples per class and N classes in total.

Meta-learning can be defined as an optimization problem (Finn et al.l 2017} |2018) and its goal is to
learn meta-parameters 6 that maximize the following objective defined over all meta-training tasks:

Tmeta = log H p()’xﬁ ‘y;(ts) = Z log/p(yxtg |fX;1> p(thq |th5) detq . (3)
teT teT
Task adaptation p(f x4 |y x;s) is performed via IP inference after observing the support set:
p(fxely ;) = / p(Exalz) p(zlyx; ) dz . )

3We defer the discussion of meta-learning on probabilistic classification tasks using the robust-max likeli-
hood (Hernandez-Lobato et al.| [2011) to Appendix

“p(z) is often assumed to be a simple distribution like multivariate Gaussian A (0, I) (Garnelo et al.,[2018).

Our work here considers a point estimate of meta-parameters 6 instead of a Bayesian treatment of 8 (Finn
et al.| 2018} |Yoon et al.|[2018). This allows us to interpret the epistemic uncertainty in p(fx) via p(z) directly.
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The objective Jmewa () is the “test” likelihood on the query set, which reflects the idea of “learning
to learn” by assessing the effectiveness of “learning on the support set” through the query set. An
alternative interpretation views p(f xg |y x:) as an “informative prior” after observing the support set.
The objective Jeta @]) is also known as the Bayesian held-out likelihood (Gordon et al., [2019). In
a meta-testing task, adaptation is also performed via IP inference after observing its support set and
evaluated on its query set. Similar to GP or any stochastic process, the input vectors of the dataset
are assumed to be known/fixed beforehand. We will relax this assumption by allowing them to be
unknown when our IPML algorithm is exploited for synthetic task generation (Sec.[3.3).

3 IMPLICIT PROCESS-BASED META-LEARNING (IPML)

3.1 EXPECTATION MAXIMIZATION (EM) ALGORITHM FOR IPML

Recall that task adaptation requires evaluating p(f X7 lyxz) @. From Def. (1} if generator gy ()
can be an arbitrary model (e.g., deep neural network), then p(f xa|y x;) and p(f X;z) cannot be eval-
uated in closed form and have to be approximated by samples. Inspired by the Monte Carlo EM
algorithm (Wei & Tanner}, [1990) which utilizes posterior samples to obtain a maximum likelihood
estimate of some hyperparameters, we propose an EM algorithm for IPML: The E step uses the
stochastic gradient Hamiltonian Monte Carlo (SGHMC) sampling method to draw samples from
p(fxalyxs) @, while the M step maximizes the meta-learning objective Jimew () w.r.t. meta-
parameters 0:

Expectation (E) step. Note that since fys = (g(x,2)),. ys @), no uncertainty exists in p(fy|z)
p ;

in {@). So, p(fxa|y ;) can be evaluated using the same generator gy (2) and the latent task posterior

belief p(z|yx;), as follows:

Remark 2. Drawing samples from p(f X7 |y x;s) is thus equivalent to first drawing samples of z from
p(z|y x;) and then passing them as inputs to generator gy to obtain samples of f x2. Hence, given a
task ¢, adaptation p(f X7 |y x:) (@) essentially reduces to a task identification problem by performing
IP inference to obtain the latent task posterior belief p(z|yx;). This is a direct consequence of
epistemic uncertainty arising from p(z|yx;) and p(z) (Remark .

In general, p(z|yx:) also cannot be evaluated in closed form. Instead of using variational infer-
ence (VI) and approximating p(z|yx:) with a potentially restrictive variational distribution (Gar-
nelo et al., 2018; Kaddour et al., 2020; Ma et al., 2019), we draw samples from p(z|yx:) us-
ing SGHMC (Chen et al.| 2014). SGHMC introduces an auxiliary random vector r and sam-
ples from a joint distribution p(z,r|yx;) following the Hamiltonian dynamics (Brooks et al.,
20115 Neal, [1993): p(z, r|yx;) o< exp(—U(z) — 0.5r "M ~'r) where the negative log-probability
U(z) £ —log p(z|yx;s) resembles the potential energy and r resembles the momentum. SGHMC
updates z and r, as follows:

Az =aoM™'r, Ar=-aV,U(z) — aCM 'r + N(0,2a(C — B))

where o, C, M, and B are the step size, friction term, mass matrix, and Fisher informa-
tion matrix, respectivelyﬂ Note that V,U(z) = —V,logp(zlyx:) = —Vilogp(z,yx:) =
—Vallog p(yxsfx: = (g90(x, z))IExf) + log p(z)] can be evaluated tractably.

Maximization (M) step. We optimize Jera (B) W.r.t. 6 using samples of z. The original objective
Tmeta = EteTIOg(Ep(zlyxg)[p(YXf fxa = (go(x, z))IEqu)]) is not amenable to stochastic opti-
mization with data minibatches, which is usually not an issue in a few-shot learning setting. When a
huge number of data points and samples of z are considered, we can resort to optimizing the lower
bound J meta Of Tmeta bY applying the Jensen’s inequality:

Jmeta > u7s—mela £ ZtET I['Ep(thq|ths) [Ing(thqlef)] = ZteT EP(Zb’xf) [logp(yxﬂfxgl)] .

SThe sampler hyperparameters c, C, M, and B are set according to the auto-tuning method of|Springenberg
et al.|(2016) which has been verified to work well in our experiments; more details are given in Appendix
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Figure 1: (a) Graphical model corresponding to IPML. (b) DNN implementation of generator gy
where £ (6,,6,) and 6, can be convolutions to obtain high-level representations of the input
vector, while 6, is the last DNN layer’s parameters which are masked by z during the forward
passes. (c¢) Graphical model corresponding to input generation by X-Net. (d) CVAE implementation
of X-Net (i.e., decoder neural network with parameters ¢).

3.2 ARCHITECTURE DESIGN FOR META-TRAINING

Our generator gy is implemented using a deep neural network (DNN) parameterized by meta-
parameters 6. Under this setup, we have empirically observed that the design of the coupling of
z with the DNN gy(x, -) is crucial to achieving competitive performance of our IPML algorithm.
A naive design by concatenating z with x (or higher-level abstractions of x) as a contextual input
during forward passes has not worked well as the resulting gradients w.r.t. z may not have provided
enough guidance for SGHMC to learn a sufficiently useful representation of z in meta-training.

To this end, inspired by the atfention mechanism (Vaswani et al.| 2017) and dropout method (Sri-
vastava et al.} 2014])), we introduce a design of the coupling by applying z as a mask to the last DNN
layer’s parameters: The last DNN layer’s parameters are first masked by z (i.e., point-wise prod-
uct with z), as illustrated in Figs. [Th and[Ip. Different tasks can now be distinguished by different
masks, hence resembling different attentions on the last DNN layer’s connections during forward
propagation. We adopt soft mask (i.e., continuous values) instead of hard masks (i.e., either O or
1). Such a design of the coupling is empirically demonstrated to be effective in our experiments

(Appendix [A.4.3).

3.3 ARCHITECTURE DESIGN FOR SYNTHETIC TASK GENERATION

Recall the assumption of known/fixed input vectors in X in the last paragraph of Sec.[2||°| which we
will have to relax here. Synthetic task generation can be performed by the following procedure if
x is task-independent (e.g., p(x,2z) = p(x)p(z)): After meta-training is completed (Sec. [2), draw
a sample of latent task vector z ~ p(z), draw samples of x ~ p(x) to form A}, and then generate
noisy outputs yx, = (go(X,2) + €(x)) ¢ x, to obtain the dataset (X}, y x,) for task ¢.

When x is task-dependent (e.g., for image classifications of different objects, p(x,z) # p(x)p(z)),
not modeling p(x|z) limits the ability to generate ¢-dependent X;. To resolve this, our IPML al-
gorithm includes an X-generative network (X-Net): x £ hy(z,w) that learns to generate an input
vector x given samples of the latent task vector z and random vector w ~ p(w) = N(0,I) where
w models the diversity of the input distribution given a fixed task represented by the sample of z.
There are several options to implement X-Net: Note that during the training of X-Net, both X;
and the samples of z ~ p(z|yx;) for all meta-training task ¢ € 7 are available. So, generative
models such as the conditional variational autoencoder (CVAE) (Sohn et al.| 2015) or conditional
generative adversarial networks (Mirza & Osindero}, |2014)) are suitable for X-Net as they can utilize
z as the contextual information. Our work here uses (the decoder of) CVAE to implement X-Net.
Figs. [Tk and[T{d illustrate such a design. We have empirically observed that a simple concatenation
with z suffices here as our delicate architecture design for meta-training (Sec. can yield a useful
representation of z for training X-Net well. Further details and a method to ensure balanced data
generation are given in Appendix [A.5] The training objective for synthetic task generation is the

"The latent task prior belief p(z) is thus assumed to be a multivariate Gaussian A (1, T).
8This assumption is reasonable for meta-training since only p(yx) (and not p(x)) needs to be modeled.
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empirical lower bound (Sohn et al.,[2015) of VI on p(w|x, z):

Tx = Vet Bamptalyas) |14 7 Xerr, (Bqy (wixa) log po (2, )] — DKL[%(wIXJ)Hp(w)])}

where ¢ and v are, respectively, the parameters of X-Net (decoder neural network) and the encoder
neural network, and Dgp, denotes the KL distance. In the training of X-Net, we sample one z per
update. We also sample one w per update to train with reparameterization tricks. Algorithms[T]and[2]
describe meta-training (with training of X-Net) and synthetic task generation, respectively.

Algorithm 1: IPML: Meta-Training Algorithm 2: Synthetic Task Generation
while not converged do Sample z ~ p(z)

Sample task ¢ from T Initialize synthetic task ¢ and X; = ()

E step: Sample {z1,...,2,} with SGHMC fori =1,..., final size of X; do

M step : Sample z from {z1,...,z,} Sample w ~ N(0,T)

0 < 0+ nVoTmet Compute x = hy(z,w)
Update X-Net with z and X : Compute yx = go(X,z) + €(x)
¢ d+nVeIx, ¥ p+nVyIx (X, ya,) < (X U{x},yx,0(x))

return 6, ¢, ¢ return (X;,y,) for task ¢

4 EXPERIMENTS AND DISCUSSION

Benchmark datasets: sinusoid regression and few-shot image classification. We first empirically
evaluate the performance of our IPML algorithm against that of several Bayesian meta-learning
baselines like the neural process (NP) (Garnelo et al., 2018), Bayesian model-agnostic meta-
learning (BMAML) (Yoon et al., [2018)), PLATIPUS (Finn et al., 2018)), and amortized Bayesian
meta-learning (ABML) (Ravi & Beatson, 2018)) on benchmark meta-learning datasets. For few-
shot image classification, we also empirically compare IPML with a strong baseline: prototypical
network (PN) (Snell et al.,[2017). We run experiments on three datasets: sinusoid, Omniglot (Lake
et al., 2011), and mini-ImageNet (Ravi & Larochellel 2017). Sinusoid is a regression task of sine
waves with uniformly sampled amplitude in [0.1,5.0], phase in [0, 7], and input x in [—5, 5]. The
generator of IPML and the baseline regressors are neural networks with 2 hidden layers of size 40
with ReLU nonlinearities. The Omniglot dataset consists of 20 instances of 1623 characters from 50
different alphabets. The mini-ImageNet dataset involves 64 training classes, 12 validation classes,
and 24 test classes. For Omniglot and mini-ImageNet, our implementation and baselines all use the
same data pre-processing, same train-test split, and same data augmentation as that in (Finn et al.,
2017). The generator of IPML and the baseline classifiers are convolutional neural networks with 4
modules of 3 x 3 convolutions and 64 filters, followed by batch normalization, ReLLU nonlinearities,
and strided convolutions (Omniglot) or 2 X 2 max-pooling (mini-ImageNet). More details of the
experimental settings can be found in Appendix[A.2.2]

For sinusoid regression (Table [T)), IPML outperforms MAML and BMAML by a fair margin. For
Omniglot (Table[2), IPML is competitive with MAML and PN. For mini-ImageNet (Table [3), IPML
outperforms MAML and all tested Bayesian meta-learning algorithmsﬂ while being competitive
with PN. PN achieves a higher classification accuracy for 1-shot 20-way Omniglot and 5-shot 5-way
mini-ImageNet because PN utilizes more information from the extra classes during training (Snell
et all 2017). Specifically, though meta-testing involves /N-way classification for all tested algo-
rithms, the training of PN requires more than N classes, that is, 60-way classification which is also
the setting adopted in (Snell et al) 2017). As a result, since PN utilizes more information from
the extra classes during training, it is reasonable to expect that PN achieves a higher classification
accuracy at times. Overall, IPML is effective for benchmark datasets.

For both sinusoid regression (Table [I)) and Omniglot (Table [2), NP performs unsatisfactorily as
compared to IPML, likely because (a) it performs amortized variational inference of z through a
heavily parameterized encoder which may introduce optimization difficulties and overfitting during
meta-training, and (b) the encoder of NP takes in the simple concatenation of (x, yx) and thus does
not explicitly capture the x — y relationship in the support set

?Some of the results are taken from (Finn et al., 2018} [Nguyen et al.| 2020; [Yoon et al.,[2018). The 5-shot
5-way results for PLATIPUS and ABML are missing because there are no publicly available implementations.
19An ablation study of the limitations of NP can be found in Appendix
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Table 1: Mean square error (MSE) on few-shot Table 2: Few-shot classification accuracy (%) on

sinusoid regression. held-out Omniglot characters.
Sinusoid 5-shot ~ Sinusoid 10-shot Omniglot Omniglot
NP 0.460 0.264 1-shot 5-way  1-shot 20-way
MAML 0.712 0.287 NP 95.9 553
BMAML 0.409 0.200 MAML 98.7 92.5
IPML(Ours) 0.373 0.123 PN 98.8 96.0
IPML(Ours) 98.8 94.0

Table 3: Few-shot classification accuracy

. T — R R
(%) on mini-Imagenet test set. 3 NS+ active tearming

IPML

E 21 — MAML E —— IPML + active learning
mini-ImageNet  mini-ImageNet 11 \ 3 30+ IPML
1-shot 5-way 5-shot 5-way . . \' < LA — Ml‘\ML . .
MAML 48.6 65.9 0 500 1000 1500 2000 0 2000 4000 6000 8000 10000
PN 49 4 68.2 Tasks sampled Tasks sampled

PLATIPUS 50.1 - @ (b)

B}%‘/}IS/;/IMLL 32'(1) 64.2 Figure 2: Results of active task selection on (a) 5-shot
IPML(Ours) 50.5 67.6 sinusoid and (b) 1-shot 5-way mini-ImageNet.

Active task selection. We can evaluate the effectiveness of the uncertainty measure arising from la-
tent task posterior belief p(z|y ;) by performing active task selection. Unlike previous works (Yoon
et al.l 2018} |[Finn et al.,[2018) that can only perform active learning by querying data points, IPML
can perform active learning by querying fasks and does not need the assumption of known task
contexts in (Kaddour et al., [2020). In every iteration, a set of tasks are proposed with only the sup-
port set (X, yx:) given; in image classification, it is usually one-shot. IPML will select among
them the task with the maximum variance in p(z|yx;) (with samples from the E step/SGHMC):
arg max, Var(z|yx:), and request for its query set to perform meta-training. This corresponds
to a variance-based active task selection criterion. We test on both sinusoid regression and mini-
ImageNet classification. Fig. |2 shows that the performance of IPML with active task selection
improves over that of both MAML or IPML without active task selection, that is, it reaches a
given MSE/accuracy with less training tasks. This shows that the uncertainty measure arising from
p(z|y x;) can be exploited to benefit meta-training.

Measuring distance between tasks using latent task representation. A most interesting question
yet to be answered is the following: Does IPML learn a useful latent task representation? IPML
learns to model the task through z. If IPML learns the correct representation, then it can reflect
patterns of task distribution in the latent space. While a solid criterion for assessing the correctness
of learned latent task representation is hard to define, we can resort to an oracle (e.g., human expert
with prior knowledge in designing the tasks). Our visualization of the latent task representation
and quantitative evaluation of distance measure between tasks using maximum mean discrepancy
(MMD) (Gretton et al., [2012)) provide ways to assess the correctness of the learned task representa-
tion. We denote the set of samples from p(z|y th) as Z;. The MMD between tasks ¢; and ¢y can be
calculated using

MMDIHM, 1, t2] 2 sub,.cp (120171 C ez, #(2) = |20 Sy, #(2))
where H is a unit ball in the reproducing kernel Hilbert space with a radial basis function kernel.

We conduct experiments with the following 5-way 1-shot settings. Setting A: For subsampled
Omniglot, we applied one rotation out of 4 possibilities (0,7 /2, 7w, 37 /2) uniformly across all the
input images for each sampled taskE] Setting B: For subsampled mini-ImageNet, a random artistic
filter (normal, brighten, or darken) is applied for each sampled task. Setting C: For subsampled
mini-ImageNet, a random artistic filter (3 different types of hue) is applied for each sampled task.
Setting D: For subsampled mini-ImageNet, a random zooming (no zooming, zooming 3 times, or
zooming 10 times) is applied for each sampled task. Setting E: On subsampled mini-ImageNet,
a random artistic filter (normal, low contrast, or high contrast) is applied for each sampled task.
Setting A has 4 types of tasks while settings B to E result in 3 types of tasks.

"n the previous experiment, the Omniglot dataset is augmented with rotations, but is random across the
classes in a single task.
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Figure 3: Visualization of latent task embeddings from settings A to E.

Table 4: Values of MMD metric between 4 types of tasks for Table 5: Results of meta-testing
Omniglot (setting A). Larger value means larger dissimilarity. ~for training with real and generated

tasks.
Rotations 0 /2 us 3m/2
0 0 1.166 0.594 1.134 Train on Accuracy (%)
/2 1.166 0 0913  0.596 real 73.83
i 0.594 0913 0 0.917 generated 78.33
3m/2 1.134  0.596 0917 0 real + generated 88.16

For each setting mentioned above, we first train our models in IPML to converge, and then sample
tasks from their latent task posterior beliefs (i.e., one sample of z per task). Finally, we visual-
ize their latent task embeddings in the 2D space using TSNE (van der Maaten & Hinton, [2008]).
Furthermore, for setting A, we evaluate the distance measure between tasks using the well-known
MMD metric with radial basis function kernels on the z samples. It can be observed from Fig. 3]
and Table [ that IPML successfully distinguishes 4 types of rotations for Omniglot. Both Fig.[3]and
Table ] contemporaneously show that flipping upside down (i.e., either right half of the embedding
0 = 7 or left half of the embedding 7/2 = 37 /2) are reckoned to be closer tasks compared with
rotation of 7/2, thus revealing that our visualization and evaluation of distance measure between
tasks are in accordance. From Fig.[3B to Fig.[3D, IPML successfully distinguishes different types of
transformations on the tasks while revealing interesting facts: for example, tasks of high brightness
are more isolated from that of low or normal brightness. Fig. shows that tasks of low contrast
are more distinct from that of normal or high contrast. The values of MMD metric for settings B
to E and more details of the experiments are provided in Appendix [A.6] On the overall, both the
visualization and evaluation of distance measure between tasks reveal that IPML successfully learns
useful latent task representations and even provides interesting insights.

Synthetic task generation for Omniglot. We assess the usefulness of latent task representation
z by performing synthetic task generation. The training tasks we consider are three types of sub-
sampled binary classifications: classification of characters A vs. B, B vs. C, and C vs. A, as in
Fig. @p. During meta-learning, we train a X-Net concurrently to learn to generate task-related input
images (Sec. [3.3). The CVAE implementation of X-Net contains a decoder neural network with 3
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Figure 4: (a) TSNE visualization of (samples of) 3 types of binary classification tasks; images of
black/white background are black/white samples (yx = 1/yx = 0). (b) Visualization of latent em-
bedding of real tasks in (normalized) z space [—2, 2]%. (c) Sampled generated task data by walking
through the (normalized) z space [—2, 2]?; note that the inversion of color is only for visualization
to distinguish black and white samples. In training, NO images are inverted.
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hidden layers of size [128, 128, 256] and ReLU nonlinearity, and a symmetric design of the encoder.
After meta-training is completed, we continue to train the X-Net to converge. In this experiment,
the dimension of z is set as 2, which further allows walking through such a latent space/embedding
to visualize how the generated tasks map to their latent representations. Fig. @b shows the latent
embedding of real tasks. Fig. fc shows the sampled synthetic tasks by walking through the latent
space. It can be observed that X-Net successfully captures the task-dependent input distributions
and can generate high-quality data of task type 1, 2, and 3 when sampled from their corresponding
latent clusters (see samples of task type 1, 2, and 3 in the colored bounding boxes in Fig. ).

We further evaluate the quality of generated tasks by training on it. We hold out half of the images
for each character during meta-training to construct the meta-testing tasks. The results are presented
in Table E} When training on both real and generated tasks, we first train on the generated tasks to
converge and then train on the real tasks for another 30 iterations. It can be observed that compared to
only using real tasks, a higher accuracy is achieved with training merely using generated tasks. When
training on both real and generated tasks, a huge boost in accuracy is observed. We conjecture that
due to their diversity, generated tasks (i.e., sometimes containing more ambiguous tasks) alleviate
overfitting and provide a promising direction on meta-task augmentation.

Real-world risk detection. We perform experiments on a real-world risk detection dataset provided
by an anonymous e-commerce company. The task is to classify whether an item in the online shop
has risks (e.g., fraud, pornography, contraband). Such risks appear in different forms and in different
categories (of items). It is hard to detect risks in different categories by training models separately
for each category because some categories have only very limited amounts of black samples (i.e.,
< 50). The similarities of the detected risks in different categories, if discovered, can help improve
the performance. Meta-learning is thus a suitable algorithm for its ability to perform (a) detection
of risks across different categories of items and (b) adaptation to new categories. The input x of the
dataset is the text (title and descriptions) embedding obtained from self-supervised learning, while
its label is a binary variable indicating whether it contains risks (i.e., yx = 1 for black samples and
yx = 0 for white samples). The data are separated by categories of items to yield 47 categories in
total. Initially, we hold out 10 categories for meta—testiné]z] while the rest are used for meta-training.

Table E] shows results comparing the performance of IPML vs. a multi-task learning baselineE] It
can be observed that IPML outperforms multi-task learning, which indicates its stronger ability to
generalize to unseen categories. Fig.[5] visualizes the latent task embedding of the 10 meta-testing
categories for analysis. IPML learns useful latent task representations: For example, from Fig. [Bh,
gaming-related categories with IDs 46 and 47 are mapped closely in the latent task space/embedding.

The individual meta-testing performance on the 10 meta-testing categories, which are given in Ap-
pendix can be further examined: For the five categories with IDs 19, 21, 23, 36, and 44 covered
by the shaded light green zone in Fig. [5p, IPML outperforms multi-task learning by a large margin.
They are mapped to the center of the latent task space (Fig.[5p), which may imply that IPML’s adap-
tations to them can largely build on previous experiences of the meta-training categories and IPML’s
exploitation of such similarities allows their performance to improve over multi-task learning. For

"2Their category names and IDs are given in Fig.
3When testing on an unseen category, multi-task learning performs adaptation by randomly initializing its
untied parameters for retraining on the few-shot support data.



Under review as a conference paper at ICLR 2021

the three categories with IDs 3, 9, and 39 covered by the shaded light orange zone, IPML does not
have a performance advantage over multi-task learning. For the two categories with IDs 46 and 47
covered by the shaded light pink zone, both IPML and multi-task learning perform unsatisfactorily.
As a matter of fact, for IPML, the categories with unsatisfactory performance (i.e., either covered
by the shaded light orange or pink zone) are all mapped to be some distance away from the center,
which indicates that they are likely considered by IPML as “outlier”/dissimilar tasks.

We further compare meta-learning on (A) the same setting as before by holding out the 10 meta-
testing categories vs. (B) training on all categories in setting A as well as the dissimilar ones with
IDs 3, 9, 39, 46, and 47. Table shows results on the desired categories with IDs 19, 21, 23, 36,
and 44. It can be observed that when a meta-learning model is trained to perform well (during meta-
testing) on the desired categories/tasks, training alongside with dissimilar ones can compromise its
performance. More details of the experimental settings and data preparation, experimental results,
and analysis are given in Appendix [A.3] We have also empirically compared the time efficiency of
IPML against that of several meta-learning baselines and reported the results in Appendix

5 RELATED WORK

A number of meta-learning algorithms (Finn et al., [2018}; |Ravi & Beatson, 2018 Yoon et al., [2018])
have proposed a Bayesian extension of the MAML framework (Finn et al., 2017). Their difference
with IPML is that they model the uncertainty in the predictions with a set of particles (Yoon et al.,
2018) or a variational distribution (Finn et al.| |2018}; [Ravi & Beatson, 2018)), which does not allow
latent task modeling. The work of [Rusu et al.| (2019) introduces a generative model that decodes
latent vectors into the meta-parameters, but does not scale well in the dimension of meta-parameters.
In comparison, IPML explicitly represents each task as a latent continuous vector and models its
probabilistic belief and is hence scalable in the dimension of meta-parameters. Moreover, MAML-
based algorithms usually require evaluating computationally-intensive second-order derivatives of
the meta-parameters during meta-training because they approximate the Bayesian inference through
an inner loop of gradient descent. Although this issue can be addressed by methods such as first-
order approximations (e.g., first-order MAML (Finn et al., 2017)), Reptile (Nichol et al., |2018)) or
implicit MAML (Rajeswaran et al., | 2019) using implicit gradient, these works are not Bayesian. In
contrast, our IPML algorithm naturally utilizes Bayes’ rule to perform sampling during Bayesian
inference and does not need second-order derivatives.

The work of |[Kaddour et al.| (2020) uses latent information to perform active task selection, but
assumes known task-descriptor (task context) which is usually unknown. The work of |Garnelo et al.
(2018)) introduces the first use of stochastic processes (i.e., neural processes) in meta-learning and
learns a heavily parameterized encoder to encode a dataset into its latent representation, which might
introduce optimization difficulties and overfitting and can only output Gaussian posterior beliefs. In
comparison, our IPML algorithm is the first to consider SGHMC in task adaptation/inference of
meta-learning, which can capture a non-Gaussian posterior belief to achieve a better performance
(Appendix [A.4). Our IPML algorithm is also the first to explicitly model task-dependent input
distributions, which is lacking in the literature. Such a modeling enables synthetic task generation
of complex image classification tasks for the first time.

6 CONCLUSION

This paper describes a novel IPML algorithm that, in contrast to existing works, explicitly repre-
sents each task as a continuous latent vector and models its probabilistic belief within the highly
expressive IP framework. Unlike existing works, IPML offers the benefits of being amenable to
(a) the characterization of a principled distance measure between tasks using MMD, (b) active task
selection without needing the assumption of known task contexts in (Kaddour et al.| 2020)), and (c)
synthetic task generation of complicated image classifications via modeling of task-dependent input
distributions using our X-Net. Empirical evaluation on benchmark datasets shows that IPML out-
performs existing Bayesian meta-learning algorithms. We have also empirically demonstrated on an
anonymous e-commerce company’s real-world dataset that IPML outperforms the multi-task learn-
ing baseline and identifies “outlier”/dissimilar tasks which can degrade meta-testing performance.
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A APPENDIX: ADDITIONAL DETAILS, EXPERIMENTAL SETTINGS, RESULTS,
AND ANALYSIS

A.1 CLASSIFICATION WITH ROBUST-MAX LIKELIHOOD

Following the work of |Hernandez-Lobato et al.| (2011), the likelihood for the prediction of a data
pair (x, yx) in a N-way classification problem given IP output f (where this /N-dimensional output

is defined as f = [f1, fa, ..., fn]) and a binary variable a (one per data instance to indicate whether
an arg max prediction is satisfied or not) is

plylx,£.a) = T O(fy = fo)' = (1/N)"
cFYx
where ©(+) is the Heaviside step function and the binary variable « is defined to follow a priori a
factorizing multivariate Bernoulli distribution:

l—a

p(alp) £ Bern(alp) = p* (1 - p)

such that p is the fraction of training data pairs expected to be outliers. The prior for p is defined as
a conjugate beta distribution:

prt (A= p)t
B(ag, bo)
where B(-, ) is the beta function, and ag and by are free hyperparameters which do not have a big

impact on the final model, provided that by > a and that they are not too small (Hernandez-Lobato
et al.l 2011). By default, we set ayp = 1 and by = 9.

p(p) £ Beta(p|ag, by) =

A.2 DETAILS OF EXPERIMENTAL SETTINGS

A.2.1 SAMPLER HYPERPARAMETERS

In practice, running the SGHMC sampling process has two phases: The first is the burn-in phase
used to determine the suitable sampler hyperparameters, while the second is the sampling phase
which is run using the fixed sampler hyperparameters. In the burn-in phase, the hyperparameters of
the sampler are selected using a heuristic auto-tuning approach following that of |Springenberg et al.
(2016) with initial value of ¢ = 0.03, C' = 0.05, and M = 1.

Since consecutive samples are highly correlated, we do not choose consecutive samples to perform
the M step to prevent the risk of overfitting to those samples. Instead, we randomly select one sample
of z per task from the sampling phase to carry out optimization in the M step. In the sampling
phase, we acquire a total of 40 samples for sinusoid regression, and 5 samples for Omniglot and
mini-Imagenet classification.

A.2.2 META-TRAINING SETTINGS

For sinusoid regression, we train for a total of 15000 iterations with an Adam optimizer of meta-
learning rate (i.e., learning rate of the outer gradient step) 0.001 and meta-batch size 25. For Om-
niglot and mini-Imagenet classification, we train for a total of 60000 iterations with an Adam opti-
mizer of meta-learning rate 0.001, and meta-batch size is 16 and 4 for Omniglot and mini-Imagenet,
respectively. Gradient clipping of +10 is applied in both the SGHMC step and the outer gradient
step.

Although IPML does not require any inner gradient step, we have found that adding such inner
optimization further improves performance. Thus, in our implementation, we perform inner gradient
optimization of the whole model’s parameter after E step, and the M step will differentiate through
those inner gradient steps (only in a first-order manner). Note that this does not violate our analysis
in Sec. [3.1] Our analysis on the E step is accurate given the current best estimation of the meta-
parameter 6. However, after knowing the support set, we are able to optimize our current estimation
of 0. The inner gradient optimization corresponds to such a step of refining our estimation of # and
can be interpreted as an inner M step nested in the outer E step. We perform 5 inner gradient steps
by default.
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A.2.3 ACTIVE TASK SELECTION SETTINGS

For sinusoid, we consider 25 meta-tasks per iteration and IPML will choose 1 of them according to
our proposed active task selection criterion (i.e., variance in samples of z). For mini-Imagenet, we
consider 16 meta-tasks per iteration and IPML will choose 1 of them. IPML will store these selected
tasks in a buffer and train on them with meta-batch size of 5 and 4 for sinusoid and mini-Imagenet,
respectively. Without active task selection, the model will just train on all tasks received.

Motivating active task selection with a real-world use case. In our real-world risk detection
experiment (Sec. , a considerable fraction of black and white labels (i.e., risk or no risk) are
labeled manually due to the rapidly evolving nature of risks or fast emergence of new variants of
risks. However, for the anonymous e-commerce company, the labeling budget is limited (e.g., a
human can only label a fixed amount of items per day). This will require us to select the best
sequence of tasks to be labeled to best improve the model. Such problem is crucial and is essentially
an active task selection problem that can be tackled using our proposed IPML.

A.3 EXPERIMENTS ON AN ANONYMOUS E-COMMERCE COMPANY’S RISK DETECTION
DATASET

In an anonymous company’s online e-shop, the items advertised by the sellers may contain risks
(e.g., fraud, pornography, contraband). Such risks appear in different forms and in different cat-
egories (of items). It is hard to detect risks in different categories by training models separately
for each category because some categories have only very limited amounts of black samples (i.e.,
< 50). The similarities of the detected risks in different categories, if discovered, can help improve
the performance and the model can quickly adapt to detect risks on new categories of items with
only few-shot data given. Meta-learning is thus a suitable algorithm for its ability to perform (a)
detectionof risks across different categories of items and (b) adaptation to new categories.

Data preparation and training settings. We first perform self-supervised learning on the texts
of an item using all the raw data available (including items with risk labels or without risk labels).
The texts we use are concatenations of an item’s title and descriptions. This allows us to obtain
an embedding for each item, which has a dimension of 32768. The embedding will serve as the
input x while its label is a binary variable indicating whether it contains risks (yx = 1 for black
samples and yx = 0 for white samples). The data containing all items are separated by categories
of items yielding 47 categories in total. Initially, 10 held-out categories are used for meta-testing
(see Table [8) while the rest are used for meta-training. Some of the categories have nearly 200000
items while some only have less than 100 items. The fractions of black samples are typically small
(average of 14% across 47 categories). We train with a meta-batch size of 10 (each subsampled from
a category) and a batch size of 32 (16 support items and 16 query items). During training, we ensure
that a task in a minibatch should contain > 2 black samples; otherwise, we skip that task.

Table 8: Ten held-out categories for meta-testing.

Category ID Category Name
3 Personal nursing and Cosmetics
9 Antique collection
19 Domestic and Daily-use
21 Cellular
23 Costume and accessories
36 Network equipment
39 Watches and glasses
44 In-game currencies
46 Gaming accounts
47 Gaming items

We use a 2-layer neural network with the first layer having 1024 hidden neurons, and the second
layer outputs a binary classification. A leaky ReLU activation of slope 0.1 is used in the hidden
layer. We choose a multi-task learning baseline for performance comparison, which explicitly ties
the parameters on the first layer of neural networks, and extends a separate second layer for binary

13
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Table 9: Meta-testing performance on 10 held-out meta-testing categories for IPML.

Category ID  Accuracy (%) F1  Recall Precision

3 85.3 76.1  88.8 66.6
9 83.0 73.8  88.8 63.1
19 90.2 814  88.0 75.8
21 94.5 81.7 86.0 77.8
23 89.0 81.3  88.9 75.0
36 79.4 63.1 66.6 60.0
39 93.6 85.7 100.0 75.0
44 84.0 714 80.0 64.5
46 72.1 439  40.7 47.8
47 74.0 45.8 4038 52.3
Average 84.5 70.5  76.8 65.8

Table 10: Meta-testing performance on 10 held-out meta-testing categories for multi-task learning
baseline.

Category ID  Accuracy (%) F1  Recall Precision

3 90.2 79.1  70.3 90.4
9 87.0 754 744 76.9
19 82.2 57.1  48.1 70.5
21 87.3 69.7  60.3 83.3
23 78.7 559 518 60.8
36 80.0 523 407 73.3
39 93.6 833 833 83.3
44 79.0 533 482 60.0
46 78.1 388 259 71.7
47 77.5 41.0 29.6 66.6
Average 84.1 60.5 54.1 73.9

classification (i.e., one for each category). When testing on an unseen category, multi-task learning
performs adaptation by randomly initializing its second layer’s parameters for the new category
(while tying the first layer’s parameters) and optimizing them on the few-shot support data. For both
methods, we train with a learning rate of 0.01 for a total of 8000 iterations. At 8000 iterations, we
have observed that the mean meta-training accuracy of IPML on 37 categories is stabilized at around
96.33%. In meta-testing for a particular category, we sampled 200 items (150 white samples and
50 black samples) and split them into a support set of size 100 and a query set of size 100 in every
cross-validation trial. The results are averaged over 2 cross-validation trials.

More discussion on the latent task representation. As can be seen from Tables 9] and [I0] IPML
outperforms multi-task learning, which indicates its stronger ability to generalize to unseen cat-
egories. Fig. [5] visualizes the latent task embedding of the 10 meta-testing categories for analysis.
IPML learns useful latent task representations: For example, from Fig.[5h, gaming-related categories
with IDs 46 and 47 are mapped closely in the latent task space/embedding, which coincides with
the fact that they both represent risks on categories involving gaming. Another category with ID 44,
which is also gaming-related, is mapped closest to them among the rest of 8 categories. IDs 21, 23,
and 36 are also mapped closely in the latent space, but a clear interpretation cannot be obtained as
they represent quite different categories (i.e., cellular, costume and accessories, and network equip-
ment). Although the white samples of these 3 categories may be considerably dissimilar, we have
found that their black samples bear a striking similarity after digging into their raw text (title and
descriptions): There is a huge fraction of overlap between their black samples because certain types
of malicious sellers (e.g., on fraud and forging of certificates and diplomas) are more likely to adver-
tise their duplicated risk items (black samples) on these three categories, while they are less likely
to advertise on other categories such as gaming (e.g., IDs 46 and 47). This shows that our latent task
representation and embedding can aid our understanding and instruct us to identify categories that
are influenced more by a certain type of malicious sellers.
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Table 11: Meta-testing performance on desired categories with IDs 19, 21, 23, 36, and 44 trained
without (setting A) or with (setting B) dissimilar tasks.

Category ID | Accuracy (%) F1 Recall Precision
Setting A B A B A B A B
19 90.2 890 | 814 799 | 8.0 88.0 | 758 733
21 945 904 | 817 80.7 | 8.0 84.0| 778 777
23 89.0 90.1 | 813 832 | 889 925|750 1757
36 794 765 | 631 586 | 666 629 | 60.0 548
44 84.0 850 | 714 693 | 80.0 68.0 | 645 708
Average 874 864 | 758 744 | 819 798 | 70.6 70.5

More results on learning with or without the “outlier”/dissimilar tasks. From our analysis
in Sec. 4] we conjecture that when a meta-learning model is trained to perform well (during meta-
testing) on the desired categories/tasks with IDs 19, 21, 23, 36, and 44 which are shown to be similar
to previous meta-training tasks, training alongside with dissimilar ones (i.e., with IDs 3, 9, 39, 46,
and 47) can compromise its performance. To verify our conjecture, we compare meta-learning on
(A) the same setting as before by holding out the 10 meta-testing categories vs. (B) training on
all categories in setting A as well as the dissimilar ones with IDs 3, 9, 39, 46, and 47. Table E]
shows detailed results on the individual meta-testing performance on the 10 meta-testing categories.
The experimental results agree with our conjecture: By looking at the F1 score, meta-training that
additionally includes dissimilar tasks/categories results in degradation of performance in 4 of the 5
desired categories. Thus, to achieve competitive meta-testing performance, one should consider not
to include dissimilar tasks during meta-training.

A.4 ABLATION STUDY OF THE EFFECTIVENESS OF IPML COMPONENTS
This subsection empirically evaluates the effectiveness of each component of the IPML algorithm.
A.4.1 SGHMC vs. VI AND AMORTIZED VI

Table 12: Comparison between IPML-VI vs. IPML on benchmark meta-learning datasets.

Sinusoid Omniglot Omniglot mini-Imagenet mini-Imagenet

10-shot  1-shot 5-way  1-shot 20-way  1-shot 5-way 5-shot 5-way

(MSE)  (Accuracy %) (Accuracy %) (Accuracy %)  (Accuracy %)
IPML-VI 0.160 98.7 94.3 50.2 66.6
IPML 0.123 98.8 94.0 50.5 67.6

To obtain the posterior samples from p(z|yx:), we use SGHMC. Other methods exist to obtain
posterior samples from p(z|yx;). The first method is variational inference (VI) that directly con-
structs a variational distribution for p(z|yx;). The resulting approach, which we call IPML with VI
(IPML-VI), replaces SGHMC with VI in our IPML algorithm while keeping its other components
unchanged. Unfortunately, such a variational approximation usually yields a biased latent task pos-
terior belief while SGHMC can ideally recover (samples from) the true latent task posterior belief
p(z|yxs). It can be observed from our visualization of the latent task embeddings in Figs. and
that the distribution of a cluster of tasks is highly non-Gaussian. We thus conjecture that even for
a single task, its distribution is not likely to be Gaussian. So, IPML-VI is limited in its ability to
recover the true latent task posterior belief p(z|y xs). This is empirically supported by the results in
Table [12] showing that our IPML algorithm with SGHMC outperforms IPML-VI in 4 of the 5 test
cases.

The other method that can obtain posterior samples from p(z|y x; ) is amortized VI which is used by
the neural process (NP) (Garnelo et al., 2018)): It learns an encoder that can take in the support set
and output the variational distribution for p(z|yx=). As analyzed in Sec. {4} NP utilizing amortized
VI performs unsatisfactorily as compared to IPML for both sinusoid regression (Table[I)) and Om-
niglot (Table[2)), likely because (a) it employs a heavily parameterized encoder which may introduce
optimization difficulties and overfitting during meta-training, and (b) the encoder of NP takes in the
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simple concatenation of (x, yx) and thus does not explicitly capture the x — yy relationship in the
support set. An ablation study of the limitations of NP is presented in Appendix [A.§]

A.4.2 EM ALGORITHM VS. VARIATIONAL GAUSSIAN PROCESS FRAMEWORK

Table 13: Few-shot classification accuracy (%) on held-out Omniglot characters.

Omniglot 1-shot 5-way ~ Omniglot 5-shot 5-way
VGPML 62.7 80.4
IPML 98.8 99.5

Using SGHMC, our EM algorithm can directly maximize the original meta-learning objective
Jmeta B)- In contrast, the VI framework directly models p(f X7 ly th) and maximizes the varia-
tional/evidence lower bound (ELBO) of Jyewn (B). Such a framework typically assumes f to be
distributed by a Gaussian process (GP) (Ma et al.| |2019) instead of an IP (Def. E]) and we call the
resulting framework variational GP-based meta-learning (VGPML). Its flexibility is then largely
constrained by the GP and its chosen kernel. Table[I3|shows that VGPML using the widely used ra-
dial basis function kernel performs unsatisfactorily as compared to IPML on few-shot classification,
hence reflecting the effectiveness of our proposed EM algorithm for IPML over VGPML.

A.4.3 COUPLING OF LATENT TASK VECTOR z WITH DNN GENERATOR gy

Table 14: Mean square error (MSE) on few-shot sinusoid regression.

Sinusoid 5-shot  Sinusoid 10-shot
Concatenation 0.817 0.525
Soft mask 0.373 0.123

As mentioned in Sec. the design of the coupling of z with the DNN gy (x, -) is crucial to achiev-
ing competitive performance of our IPML algorithm. Table[T4]shows results comparing (a) the naive
design of concatenating z with x as a contextual input during forward passes vs. (b) our delicate de-
sign of applying z as a continuous-valued (soft) mask to the last DNN layer’s parameters (Sec. [3.2)),
the latter of which is used by our IPML algorithm to produce the experimental results in Sec. 4} It
can be observed from Table[T4]that our delicate design using z as a soft mask outperforms the naive
design concatenating z with x by a considerable margin.

A.5 DOUBLY-CONTEXTUAL X-NET

In Sec. we have introduced X-Net that can generate both synthetic regression or classification
tasks. For the more specific case of balanced /N-way classification tasks, we have prior knowledge
that y is uniformly distributed over [1,. .., N] in a sampled task. Thus, when performing synthetic
task generation, our X-Net can be additionally conditioned on yy uniformly sampled from [1,. .., N]
when generating x. We refer to such a design as doubly-contextual X-generative network (DC X-
Net) since it now takes in both z and g as contexts. Note that with DC X-Net, we no longer need
the IP to generate labels as the labels are sampled in the first place. Although there is now no explicit
forward pass in IP during synthetic task generation, this does not make the DC X-Net an independent
model of IP. On the contrary, since z (i.e., samples obtained from IP) is taken in as a context during
training, the learning of DC X-Net can be interpreted as a knowledge distillation process of the IP.

Now, let the DC X-Net: x £ hg(yx,z,w) learn to generate an input vector x given a sample of
the latent task vector z, label yx (i.e., converted into one-hot encoding), and a sample of the random
vector w ~ p(w) = N(0,I) where w models the diversity of the input distribution given a fixed
class yx in a fixed task represented by the sample of z. As before, we use (the decoder of) CVAE
to implement DC X-Net. The training objective for synthetic task generation is then the empirical
lower bound (Sohn et al.||2015) of VI on p(w|x,y, z):

Tx 2D Baptalyas) | 1617 D (Bay (i) 108 Po(X|yx: 2, @)] = D lay (w]x, yx, 2)l|p(w)])
teT xXEAX
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where ¢ is the parameter of the DC X-Net (decoder neural network), v is the parameter of the
encoder neural network, and Dy;, denotes the KL distance. In the training of DC X-Net, we sample
one z per update. We also sample one w per update to train with reparameterization tricks.

A.6 EVALUATION OF DISTANCE MEASURE BETWEEN TASKS FOR SETTINGS B TO E IN
SEC.[]

For setting A, the subsampled Omniglot contains 15 characters, each of which has around 20 images.
For settings B to E, the subsampled mini-Imagenet contains 50 classes. For each setting, we evaluate
the distance measure between different types of tasks using maximum mean discrepancy (MMD)
metric with radial basis function kernels on the z samples, and show the results in Table By
comparing with Fig. [3] the distances evaluated using the MMD metric are in accordance with our
visualization of the latent task embeddings.

Table 15: Values of MMD metric between different types of tasks for mini-Imagenet (settings B to
E). Larger value means larger dissimilarity.

Setting B brightness —0.5 normal brightness 4-0.5

brightness —0.5 0 0.69 2.02
normal 0.69 0 1.26
brightness +0.5 2.02 1.26 0
Setting C huel (red) hue2 (green) hue3 (blue)
huel (red) 0 0.70 1.97
hue2 (green) 0.70 0 1.69
hue3 (blue) 1.97 1.69 0
Setting D original 3xzoom-in  10Xxzoom-in
original 0 0.58 2.06
3xzoom-in 0.58 0 1.48
10xzoom-in 2.06 1.48 0
Setting E contrast=1/10 normal contrast=10
contrast=1/10 0 0.73 0.95
normal 0.73 0 0.15
contrast=10 0.95 0.15 0

To illustrate that the latent task representation produced by IPML captures the semantic difference
between tasks instead of the input-level modification, we consider the latent input representation
learned by an ordinary classifier which has the same architecture as gyp. To compute the latent input
embedding of a task, we average the last layer’s outputs over all data in this task. Fig.[6] shows a
TSNE visualization of latent input embeddings from settings A to E based on the ordinary classifier.
A comparison of Fig. [f] vs. Fig. 3] shows that except for setting C (i.e., different types of hue), the
ordinary classifier cannot produce a latent input representation that captures the semantic difference
between tasks. In contrast, [IPML is capable of producing a latent task representation that captures
such semantic difference between tasks.

n ®3n/2 @ normal brightness -0.5 ~ ® huel (red) © hue2 (green)  ® normal 3 X zoom-in @ normal contrast=1/10
® brightness +0.5 ® hue3 (blue) ® 10 X zoom-in ® contrast=100
(A) (8) @ (D) (E)

Figure 6: TSNE visualization of latent input embeddings from settings A to E based on an ordinary
classifier.
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A.7 EMPIRICAL EVALUATION OF TIME EFFICIENCY OF IPML ON THE ANONYMOUS
E-COMMERCE COMPANY’S RISK DETECTION DATASET

This subsection empirically compares the time efficiency of different tested meta-learning algo-
rithms on the aforementioned anonymous e-commerce company’s risk detection dataset which con-
tains around 1 million entries. The training setting is the same as that in Appendix with a
meta-batch size of 10. One training epoch spans approximately 950 iterations. Table |16| reports
the results during meta-training: Model forward corresponds to the E step/SGHMC of IPML or the
inner optimization loop of MAML-based algorithms, while model backward corresponds to the M
step of IPML or the outer optimization loop of MAML-based algorithms. Our implementation of
IPML obtains a total of 30 SGHMC samples per iteration for each task and MAML-based algorithms
have 20 gradient steps in the inner optimization loop. The convergence is checked by inspecting the
difference in the validation losses every 500 iterations.

The results in Table[T6]show that the time efficiency of IPML is comparable to that of the first-order
MAML baseline since (a) the forward passes are not that slow compared with the inner optimization
loops of first-order MAML, and (b) the cost of backward passes of IPML is similar to that of first-
order MAML. The time efficiency of BMAML baseline (Yoon et al., |2018) is lower than that of
both IPML and vanilla MAML because BMAML maintains a set of particles (i.e., 5 particles in this
setting), each representing a distinct network parameter. Unless efficient parallel optimization of
those particles are implemented, BMAML or other particle-based Bayesian variant of MAML (e.g.,
(Jerfel et al.,[2019)) can be a few times slower than vanilla MAML. In comparison, IPML does not
maintain a set of particles of network weights and is thus more time-efficient.

Table[T7|reports results during meta-testing (i.e., adaptation to a new task): Model adaptation corre-
sponds to the E step/SGHMC of IPML or the inner optimization loop of MAML-based algorithms.
Similar to the case during meta-training, IPML is comparable to first-order MAML in time effi-
ciency during model adaptation, and BMAML has the worst time efficiency due to the use of par-
ticles. When performing prediction of new inputs, the time efficiency of all tested meta-learning
algorithms are nearly the same. Both IPML and BMAML can estimate uncertainty by using more
samples/particles in their predictions. For IPML, we have observed that using only 1 SGHMC sam-
ple in its prediction can already give satisfactory results.

The neural process (NP) uses amortized VI which introduces an additional encoder. Thus, it is faster
in model forward but slower in model backward.

Table 16: Time efficiency of tested meta-learning algorithms during meta-training on the anonymous
e-commerce company’s risk detection dataset.

Total Iterations

. Model Forward Model Backward
until Convergence

NP 8000 0.74s/iteration 0.14s/iteration

MAML (first-order) 8000 0.99s/iteration 0.024s/iteration
BMAML (5 particles) 7000 3.7s/iteration 0.045s/iteration
IPML 8000 1.24s/iteration 0.026s/iteration

Table 17: Time efficiency of tested meta-learning algorithms during meta-testing (i.e., adaptation to
a new task) on the anonymous e-commerce company’s risk detection dataset.

Support Set Size  Model Adaptation Model Prediction

(100 entries)
NP 0.098s 0.009s/sample
MAML (first-order) 100 0.112s 0.009s
BMAML (5 particles) 0.308s 0.009s/particle
IPML 0.132s 0.009s/SGHMC sample
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A.8 ABLATION STUDY OF THE LIMITATIONS OF NEURAL PROCESS

In Sec. Al we have empirically compared the performance of IPML with the neural process
(NP) (Garnelo et al.l 2018). For the implementation of NP, the default encoder is a 5-layer feed-
forward neural network (i.e., with 100 hidden neurons) whose output is z. The aggregator is the
mean function, as proposed in the original work of |Garnelo et al.|(2018). The decoder has the same
architecture as our IPML by adopting the same coupling of z with the DNN gy (i.e., by applying
z as a mask to the last DNN layer’s parameters). When performing classification tasks, we use the
aforementioned robust-max likelihood (Appendix [A.T)).

We have observed that for both sinusoid regression (Table[T) and Omniglot (Table [2), NP performs
unsatisfactorily as compared to IPML, likely due to the causes mentioned below.

Optimization difficulties and overfitting. NP performs amortized variational inference of z
through a heavily parameterized encoder which may introduce optimization difficulties and over-
fitting during meta-training. This is supported by the empirical evidence in Table With an
increasing depth of the encoder from the default of 2 layers, its performance improves and then
deteriorates.

Table 18: Mean square error (MSE) on few-shot sinusoid regression.

Encoder depth | Sinusoid 5-shot  Sinusoid 10-shot
2 layers 0.780 0.417
3 layers 0.521 0.328
5 layers 0.460 0.264
7 layers 0.477 0.289

No explicit modeling of x — y relationship in the support set. Our IPML algorithm performs
SGHMC to obtain posterior samples of z from p(z|yx:). SGHMC relies on our IP framework
(Def. [T) which explicitly defines the x — yx relationship. Thus, the x — yx relationship in the
support set is well captured by IPML with SGHMC. On the other hand, the encoder of NP takes in
the simple concatenation of (X, yx) and thus does not explicitly capture the x — y relationship in
the support set, which we think is crucial to accurately recovering the true latent task posterior belief

p(zlyx;).
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