
Sparse and Local Hypergraph Reasoning Networks

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract1

Reasoning about the relationships between entities from input facts (e.g., whether2

Ari is a grandparent of Charlie) generally requires explicit consideration of other3

entities that are not mentioned in the query (e.g., the parents of Charlie). In this4

paper, we present an approach for learning inference rules that solve problems of5

this kind in large, real-world domains, using sparse and local hypergraph reasoning6

networks (SpaLoc). SpaLoc is motivated by two observations from traditional7

logic-based reasoning: relational inferences usually apply locally (i.e., involve only8

a small number of individuals), and relations are usually sparse (i.e., only hold for9

a small percentage of tuples in a domain). We exploit these properties to make10

learning and inference efficient in very large domains by (1) using a sparse tensor11

representation for hypergraph neural networks, (2) applying a sparsification loss12

during training to encourage sparse representations, and (3) subsampling based on13

a novel information sufficiency–based sampling process during training. SpaLoc14

achieves state-of-the-art performance on several real-world, large-scale knowledge15

graph reasoning benchmarks, and is the first framework for applying hypergraph16

neural networks on real-world knowledge graphs with more than 10k nodes.17

1 Introduction18

Performing graph reasoning in large domains, such as predicting the relationship between two entities19

based on facts given as input, is an important practical problem that arises in reasoning about many20

domains, including molecular modeling, knowledge networks, and collections of objects in the21

physical world [Schlichtkrull et al., 2018b, Veličković et al., 2020, Battaglia et al., 2016]. This paper22

focuses on an inductive learning-based approach that learns inference rules from data and uses them23

to make predictions in novel problem instances. Consider the problem of learning a rule that explains24

the grandparent relationship. Given a dataset of labeled family relationship graphs, we aim to build25

machine-learning algorithms that learn to predict a specific relationship (e.g., grandparent) based26

on other input relationships, such as father and mother. A crucial feature of such reasoning tasks is27

that: in order to predict the relationship between two entities (e.g., whether Ari is a grandparent of28

Charlie), we need to jointly consider other entities (e.g., the father and mother of Charlie).29

A natural approach to this problem is to use hypergraph neural networks to represent and reason30

about higher-order relations: in a hypergraph, a hyper-edge may connect more than two nodes.31

As an example, Neural Logic Machines [NLM; Dong et al., 2019] present a method for solving32

graph reasoning tasks by maintaining hyperedge representations for all tuples consisting of up to33

B entities, where B is a hyperparameter. Thus, they can infer more complex finitely-quantified34

logical relations than standard graph neural networks that only consider binary relationships between35

entities [Morris et al., 2019b, Barceló et al., 2020]. However, there are two disadvantages of such a36

dense hypergraph representation. First, the training and inference require considering all entities in a37

domain simultaneously, such as all of the N people in a family relationship database. Second, they38

scale exponentially with respect to the number of entities considered in a single type of relationship:39

inferring the grandparent relationship between all pairs of entities requires O(N3) time and space40

complexity. In practice, for large graphs, these limitations make the training and inference intractable41

and hinder the application of methods such as NLMs in large-scale real-world domains.42

Submitted to the First Learning on Graphs Conference (LoG 2022). Do not distribute.

Sparse and Local Hypergraph Reasoning Networks

To address these two challenges, we draw two inspirations from traditional logic-based reasoning:43

logical rules (e.g., my parent’s parent is my grandparent) usually apply locally (e.g., only three people44

are involved in a grandparent rule), and sparsely (e.g., the grandparent relationship is sparse across45

all pairs of people in the world). Thus, during training and inference, we don’t need to keep track of46

the representation of all hyperedges but only the hyperedges that are related to our prediction tasks.47

Inspired by these observations, we develop the Sparse and Local Hypergraph Reasoning Network48

(SpaLoc) for inducing sparse relational rules from data in large domains. First, we present a49

sparse tensor-based representation for encoding hyperedge relationships among entities and extend50

hypergraph reasoning networks to this representation. Instead of storing a dense representation for all51

hyperedges, it only keeps track of edges related to the prediction task, which exploits the inherent52

sparsity of hypergraph reasoning. Second, since we do not know the underlying sparsity structures a53

priori, we propose a training paradigm to recover the underlying sparse relational structure among54

objects by regularizing the graph sparsity. During training, the graph sparsity measurement is used55

as a soft constraint, while during inference, SpaLoc uses it to explicitly prune out irrelevant edges56

to accelerate the inference. Third, during both training and inference, SpaLoc focuses on a local57

induced subgraph of the input graph, instead of considering all entities and their relations. This is58

achieved by a novel sub-graph sampling technique motivated by information sufficiency (IS). IS59

quantifies the amount of information in a sub-graph for predictions about a specific hyperedge. Since60

the information in a sub-sampled graph may be insufficient for predicting the relationship between a61

pair of entities, we also propose to use the information sufficiency measure to adjust training labels.62

We study the learning and generalization properties of SpaLoc on a domain of relational reasoning63

in family-tree datasets and evaluate its performance on real-world knowledge-graph reasoning64

benchmarks. First, we show that, with our sparsity regularization, the computational complexity for65

inference can be reduced to the same order as the human expert-developed inference method, which66

significantly outperforms the baseline models. Second, we show that training via sub-graph sampling67

and label adjustment enables us to learn relational rules in real-world knowledge graphs with more68

than 10K nodes, whereas other hypergraph neural networks can be barely applied to graphs with69

more than 100 nodes. SpaLoc achieves state-of-the-art performance on several real-world knowledge70

graph reasoning benchmarks, surpassing several existing binary-edge-based graph neural networks.71

Finally, we show the generality of SpaLoc by applying it to different hypergraph neural networks.72

2 Related Work73

(Hyper-)Graph representation learning. (Hyper-)Graph representation learning methods, including74

message passing neural networks [Shervashidze et al., 2011, Kipf and Welling, 2017, Velickovic et al.,75

2018, Hamilton et al., 2017] and embedding-based methods [Bordes et al., 2013, Yang et al., 2015,76

Toutanova et al., 2015, Dettmers et al., 2018], have been widely used for knowledge discovery. Since77

these methods treat relations (edges) as fixed indices for node feature propagation, their computational78

complexity is usually small (e.g., O(NE)), and they can be applied to large datasets. However, the79

fixed relation representation and low complexity restrict the expressive power of these methods [Xu80

et al., 2019, 2020, Luo et al., 2021], preventing them from solving general complex problems like81

inducing rules that involve more than three entities. Moreover, some widely used methods, such as82

knowledge embeddings, are inherently transductive and cannot learn lifted rules that generalize to83

unseen domains. By contrast, the learned rules from SpaLoc are inductive and can be applied to84

completely novel domains with an entire collection of new entities, as long as the underlying patterns85

of relational inference remain the same.86

Inductive rule learning. In addition to graph learning frameworks, many previous approaches have87

studied how to learn generalized rules from data, i.e., inductive logic programming (ILP) [Muggleton,88

1991, Friedman et al., 1999], with recent work integrating neural networks into ILP systems to89

combat noisy and ambiguous inputs [Dong et al., 2019, Evans and Grefenstette, 2018, Sukhbaatar90

et al., 2015]. However, due to the large search space of target rules, the computational and memory91

complexities of these models are too high to scale up to many large real-world domains. SpaLoc92

addresses this scalability problem by leveraging the sparsity and locality of real-world rules and thus93

can induce knowledge with local computations.94

Efficient training and inference methods. There is a rich literature on efficient training and inference95

of neural networks. Two directions that are relevant to us are model sparsification and sampling96

training. Han et al. [2016] proposed to prune and compress the weights of neural networks for97

efficiency, and Yang et al. [2020] adopted Hoyer-Square regularization to sparsify models. SpaLoc98

2

Sparse and Local Hypergraph Reasoning Networks

I

Sparsify

Input Domain

…

Adjusted
Sub-domains

…

Nullary: p

Unary: p(x)

Binary: r(x, y)

Tenary: r(x, y, z)

…

Expand

Reduce

Expand

Reduce

Expand

Reduce

Expand …

Concat + Permute
NN

NN

NN

NN

…

…

…

…

…

NN

NN

NN

NN

… …

NN

NN

NN

NN

NN

NN

NN

(iii) Sub-domain Training and Information
Sufficnecy Based Adjustment (Section 2.4)

(i) Sparse Hypergraph Reasoning
Network (Section 2.2)

Global
Prediction

Object-Level
Prediction

Binary-Relation
Prediction

Tenary-Relation
Prediction

…

(ii) Sparsification Through Hoyer
Regularization (Section 2.3)

I

I

V

V

V

V

Breadth

Depth

Figure 1: The overall training pipeline of SpaLoc, including sub-graph sampling with label ad-
justment (Sec. 3.3), sparse hypergraph reasoning networks (Sec. 3.1), and sparsity regularizations
(Sec. 3.2). I and V denote the index tensor and value tensor, respectively.

extends this sparsification idea by adding regularization at intermediate sparse tensor groundings99

to encourage concise induction. Chiang et al. [2019] and Zeng et al. [2020] proposed to sample100

sub-graphs for GNN training and Teru et al. [2020] proposed to construct sub-graphs for link101

prediction. SpaLoc generalizes these sampling methods to hypergraphs and proposes the information102

sufficiency-based adjustment method to remedy the information loss introduced by sub-sampling.103

3 SpaLoc Hypergraph Reasoning Networks104

This section develops a training and inference framework for hypergraph reasoning networks. As105

illustrated in Fig. 1, we make hypergraph networks practical for large domains by using sparse tensors106

(Sec. 3.1). To encourage models to discover sparse interconnections, we add sparsity regularization107

to intermediate tensors (Sec. 3.2). We exploit the locality of the task by sampling subgraphs and108

compensate for information loss due to sampling through a novel label adjustment process (Sec. 3.3).109

The fundamental structures used for both training and inference are hypergraphs H = (V, E), where110

V is a set of vertices and E is a set of hyperedges. Each hyperedge e = (x1, x2, · · · , xr) is an ordered111

tuple of r elements (r is called the arity of the edge), where xi ∈ V . We use f : E → S to denote a112

hyperedge representation function, which maps hyperedge e to a feature in S . Domains S can be of113

various forms, including discrete labels, numbers, and vectors. For simplicity, we describe features114

associated with arity-1 edges as “node features” and features associated with the whole graph as115

“nullary” or “global” features.116

A graph-reasoning task can be formulated as follows: given H and the input hyperedge representation117

functions f associated with all hyperedges in E , such as node types and pairwise relationships (e.g.,118

parent), our goal is to infer a target representation function f ′ for one or more hyperedges, i.e. f ′(e)119

for some e ∈ E , such as predicting a new relationship (e.g., grandparent(Kim,Skye)). We consider120

two problem settings in this paper. The first one is to predict a target relation over all edges in the121

graph. The second one is to predict the relation on one single edge.122

3.1 Sparse Hypergraph Reasoning Networks123

SpaLoc is a general formulation that can be applied to a range of hypergraph reasoning frameworks.124

We will primarily develop our method based on the Neural Logic Machine [NLM; Dong et al., 2019],125

a state-of-the-art inductive hypergraph reasoning network. We choose an NLM as the backbone126

network in SpaLoc because its tensor representation naturally generalizes to sparse cases. In Sec. 4.1,127

we also integrate SpaLoc with other hypergraph neural networks like k-GNNs [Morris et al., 2019a].128

In SpaLoc, hypergraph features such as node features and edge features are represented as sparse129

tensors. For example, as shown in Fig. 1, at the input level, the parental relationship can be represented130

as a list of indices and values. In this case, each index (x, y) is an ordered pair of integers, and the131

corresponding value is 1 if node x is a parent of node y. To leverage the sparsity in relations, we treat132

values for indices not in the list as 0. This convention also extends to vector representations of nodes133

and hyperedges. In general, vector representations f(x1, x2, · · · , xr) associated with all hyperedges134

of arity r are represented as coordinate-list (COO) format sparse tensors [Fey and Lenssen, 2019].135

That is, each tensor is represented as two tensors F = (I,V), each with M entries. The first tensor I136

is an index tensor, of shape M × r, in which each row denotes a tuple (x1, x2, · · · , xr). The second137

tensor V is a value tensor, of shape M ×D, where D is the length of f(x1, x2, · · · , xr). Each row138

3

Sparse and Local Hypergraph Reasoning Networks

Index 𝑝𝑎𝑟𝑒𝑛𝑡

(1,3) 1

(2,3) 1

(2,4) 1

Index 𝑚𝑎𝑙𝑒 𝑝𝑎𝑟𝑒𝑛𝑡

1 1 1

2 0 1

4 1 0

Index 𝑝𝑎𝑟𝑒𝑛𝑡 𝑚𝑎𝑙𝑒

(1, 3) 1 1

(2, 3) 1 0

(2, 4) 1 0

(1, 2) 0 1

(1, 4) 0 1

(4, 1) 0 1

(4, 2) 0 1

(4, 3) 0 1

Expand

Reduce
Permute NN

Unary: 𝑸𝟎

Binary: 𝑹𝟎

Index 𝑚𝑎𝑙𝑒

1 1

4 1
Index 𝑝𝑎𝑟𝑒𝑛𝑡 𝑚𝑎𝑙𝑒 𝑝𝑎𝑟𝑒𝑛𝑡் 𝑚𝑎𝑙𝑒்

(1, 3) 1 1 0 0

(2, 3) 1 0 0 0

(2, 4) 1 0 0 1

(1, 2) 0 1 0 0

(1, 4) 0 1 0 1

(4, 1) 0 1 0 1

(4, 2) 0 1 1 0

(4, 3) 0 1 0 0

(3, 1) 0 0 1 1

(3, 2) 0 0 1 0

(2, 1) 0 0 0 1

(3, 4) 0 0 0 1

⋯

Input Domain:

3

2

4

1

Index 𝑠𝑜𝑛

(1, 3) 0

(2, 3) 0

(2, 4) 0

(1, 2) 0

(1, 4) 0

(4, 1) 0

(4, 2) 1

(4, 3) 0

(3, 1) 0

(3, 2) 0

(2, 1) 0

(3, 4) 0

Sparsify Index 𝑠𝑜𝑛

(4, 2) 1

Binary: 𝑹𝟏

Figure 2: A running example of a single layer SpaLoc: inferring the binary relationship of
son(x, y) := male(x) ∧ parent(y, x) from the attribute male and the binary relationship parent. The
model first expands the unary tensor (containing the male information) into a binary relation, indicat-
ing whether the first entity in the pair is a male. Then, the permutation operation fuses the information
for (x, y) and (y, x). For each pair (x, y), we now have four predicates: whether x is a parent of y,
whether y is a parent of x, whether x is a male, and whether y is a male. Finally, a neural network
predicts the target relationship son for each pair (x, y). Blue entries denote values that are reduced
from high-arity tensors. Green entries are expanded from low-arity tensors. Yellow entries are created
by the “permutation” operation. Gray entries are zero paddings.

V[i] denotes the vector representation associated with the tuple I[i]. For all tuples that are not recorded139

in I, their representations are treated as all-zero vectors.140

Based on the sparse feature representations, a sparse hypergraph reasoning network is composed of141

multiple relational reasoning layers (RRLs) that operate on hyperedge representations. Fig. 1 shows142

the detailed computation graph of an SpaLoc model with ternary relations. The input to first RRL is143

the input information (e.g., demographic information and parental relationships in a person database).144

Each RRL computes a set of new hyperedge features as inputs to the next layer. The last layer output145

will be the final prediction of the task (e.g., the “son” relationship). During training time, we will146

supervise the network with ground-truth labels for final predictions.147

Next, we describe the computation of individual RRLs. The descriptions will be brief and focus on148

differences from the original NLM layers. The input to and output of each RRL are both R+ 1 sparse149

tensors of different arities, where R is the maximum arity of the network. Let F (i−1,r) denote the150

input of arity r of layer i, the output of this layer F (i,r) is computed as the following:151

F (i,r) = NN(i,r)
(

PERMUTE
(

CONCAT
(
F (i−1,r), EXPAND

(
F (i−1,r−1)

)
, REDUCE

(
F (i−1,r+1)

))))
In a nutshell, the EXPAND operation propagates representations from lower-arity tensors to a higher-152

arity form (e.g., from each node to the edges connected to it). The REDUCE operation aggregates153

higher-arity representations into a lower-arity form (e.g., aggregating the information from all edges154

connected to a node into that node). The PERMUTE operation fuses the representations of hyperedges155

that share the same set of entities but in different orders, such as (A,B) and (B,A). Finally, NN is a156

linear layer with nonlinear activation that computes the representation for the next layer. Fig. 2 gives157

a concrete running example of a single RRL.158

Formally, the EXPAND operation takes a sparse tensor F of arity r and creates a new sparse tensor159

F ′ with arity r + 1. This is implemented by duplicating each entry f(x1, · · · , xr) in F by N times,160

creating the N new vector representations for (x1, · · · , xr, oi) for all i ∈ {1, 2, · · · , N}, where N is161

the number of nodes in the hypergraph.162

The REDUCE operation takes a sparse tensor F = (I,V) of arity r and creates a new sparse tensor F ′163

with arity r− 1: it aggregates all information associated with all r-tuples: (x1, x2, · · · , xr−1, ?) with164

the same r − 1 prefix. In SpaLoc, the aggregation function is chosen to be max. Thus,165

f ′(x1, · · · , xr−1) = max
z:(x1,··· ,xr−1,z)∈I

f(x1, · · · , xr−1, z).

The CONCAT operation concatenates the input hyperedge representations along the channel dimension166

(i.e., the dimension corresponding to different relational features). Specifically, it first adds missing167

entries with all-zero values to the input hyperedge representations so that they have exactly the same168

set of indices I. It then concatenates the V’s of inputs along the channel dimension.169

4

Sparse and Local Hypergraph Reasoning Networks

The PERMUTE operation takes a sparse tensor F of arity r and creates a new sparse tensor F ′ of the170

same arity. However, the length of the vector representation will grow from D to D′ = r!×D. It171

fuses the representation of hyperedges that share the same set of entities. Mathematically,172

f ′(x1, · · · , xr) = CONCAT
(x′

1,··· ,x′
r) is a permutation of (x1,··· ,xr)

[f(x′
1, · · · , x′

r)] .

If a permutation of (x1, · · · , xr) does not exist in F , it will be treated as an all-zero vector. Thus, the173

number of entries M may increase or remain unchanged.174

Finally, the i-th sparse relational reasoning layer has R + 1 linear layers L(i,0), L(i,1), · · · , L(i,R)175

with nonlinear activations (e.g., ReLU) as submodules with arities 0 through R. For each arity r, we176

will concatenate the feature tensors expanded from arity r − 1, those reduced from arity r + 1, and177

the output from the previous layer, apply a permutation, and apply L(i,r) on the derived tensor.178

To make the intermediate features F (i,r) sparse, SpaLoc uses a gating mechanism. In SpaLoc, for179

each linear layer L(i,r), we add a linear gating layer, L(i,r)
g , which has sigmoid activation and outputs180

a scalar value in range [0, 1] that can be interpreted as the importance score for each hyperedge.181

During training, we modulate the output of L(i,r) with this importance value. Specifically, the output182

of layer i arity r is F (i,r) = L(i,r)(F)⊙ L
(i,r)
g (F), where F is the input sparse tensor, and ⊙ is the183

element-wise multiplication operation. Note that we are using the same gate value to modulate each184

channel dimension of L(i,r)(F). During inference, we can prune out edges with small importance185

scores L(i,r)
g < ϵ, where ϵ is a scalar hyperparameter. We use ϵ = 0.05 in our experiments.186

We have described the computation of a sparsified Neural Logic Machine. However, we do not know a187

priori the sparse structures of intermediate layer outputs at training time, nor at inference time before188

we actually compute the output. Thus, we have to start from the assumption of a fully-connected189

dense graph. In the following sections, we will show how to impose regularization to encourage190

learning sparse features. Furthermore, we will present a subsampling technique to learn efficiently191

from large input graphs.192

Remark. Even when the inputs have only unary and binary relations, allowing intermediate tensor193

representations of higher arity to be associated with hyperedges increases the expressiveness of194

NLMs [Dong et al., 2019], and Luo et al. [2021] proves that NLMs with max arity k + 1 are as195

expressive as k-GNN hypergraph models (note that the regular GNN is 1-GNN). An intuitive example196

is that, in order to determine the grandparent relationship, we need to consider all 3-tuples of entities,197

even though the input relations are only binary. Despite their expressiveness, hyperedge-based NLMs198

cannot be directly applied to large-scale graphs. For a graph with more than 10,000 nodes, such as199

Freebase [Bollacker et al., 2008], it is almost impossible to store vector representations for all of the200

N3 tuples of arity 3. Our key observation to improve the efficiency of NLMs is that relational rules201

are usually applied sparsely (Sec. 3.2) and locally (Sec. 3.3).202

3.2 Sparsification through Hoyer Regularization203

We use a regularization loss to encourage hyperedge sparsity, which is based on the Hoyer sparsity204

measure (2004). Let x (in our case, the edge gate g(x1, · · · , xr)) be a vector of length n. Then205

Hoyer(x) =
(
∑n

i |xi|)/
√∑n

i x
2
i − 1√

n− 1
.

The Hoyer measure takes values from 0 to 1. The larger the Hoyer measure of a tensor, the denser the206

tensor is. In order to assign weights to different tensors based on their size, we use the Hoyer-Square207

measure [Yang et al., 2020],208

HS(x) =
(
∑n

i |xi|)2∑n
i x

2
i

,

which ranges from 1 (sparsest) to n (densest). Intuitively, the Hoyer-Square measure is more suitable209

than L1 or L2 regularizers for graph sparsification since it encourages large values to be close to 1 and210

others to be zero, i.e., extremity. It has been widely used in sparse neural network training and has211

shown better performance than other sparse measures [Hurley and Rickard, 2009]. We empirically212

compare HS with other sparsity measures in Appendix C.213

The overall training objective of SpaLoc is the task objective plus the sparsification loss, L =214

Ltask + λLdensity, where Ldensity is the sum of the HS , divided by the sum of the sizes of these tensors.215

5

Sparse and Local Hypergraph Reasoning Networks

3.3 Subgraph Training216

Regularization enables us to learn a sparse model that will be efficient at inference time, but does217

not address the problem of training on large graphs. We describe a novel strategy that substantially218

reduces training complexity. It is based on the observation that an inferred relation among a set of219

entities generally depends only on a small set of other entities that are “related to” the target entities220

in the hypergraph, in the sense that they are connected via short paths of relevant relations.221

Specifically, we employ a sub-graph sampling and label adjustment procedure. Here, we first present222

a measure to quantify the sufficiency of information in a sub-sampled graph for determining the223

relationship between two entities, namely, information sufficiency. Next, we present a sub-graph224

sampling procedure designed to maximize the information sufficiency for training. We further show225

that sub-graph sampling can also be employed at inference time. Finally, since information loss226

is inevitable during sampling, we further propose a training label adjustment process based on the227

information sufficiency.228

Information sufficiency. Let HS = (VS , ES) be a sub-hypergraph of hypergraph H = (V, E), and229

e∗ = (y1, . . . , yr) be a target hyperedge in HS , where y1, · · · , yr ∈ VS ⊂ V . Intuitively, in order230

to determine the label for this hyperedge, we need to consider all “paths” that connect the nodes231

{y1, . . . , yr}. More formally, we say a sequence of K hyperedges (e1, . . . , eK), represented as232

(x1
1, · · · , x1

r1)
e1

, (x2
1, · · · , x2

r2)
e2

, · · · , (xK
1 , · · · , xK

rk
)

eK

,

is a hyperpath for nodes {y1, · · · yr} if and only if {y1, · · · yr} ⊂
⋃K

j=1 ej and ej ∩ ej+1 ̸= ∅ for all233

j. In a graph with only binary edges, this is equivalent to the existence of a path from one node y1 to234

another node y2. We define the information sufficiency measure for a hyperedge e∗ in subgraph HS235

as (00 is defined as 1.)236

IS ((y1, · · · , yr) | HS ,H) :=
#Paths connecting (y1, · · · , yr) in HS

#Paths connecting (y1, · · · , yr) in H
.

237
1. Sample a sub-domain

from a large domain.
2. Adjust labels with the
information sufficiency.

IS1 = 0

IS2 = 1

Adjusted Sub-DomainLarge Domain parent (Input)

grandparent (Target)

Figure 3: Subgraph training contains two steps. First, we
sample a subset of nodes from the whole graph. Next, we
adjust labels for edges in the sub-sampled graph. IS1 = 0
because no paths connecting two nodes are sampled, while
IS2 = 1 because all paths connecting two nodes are sampled.

In practice, we approximate IS by only238

counting the number of paths whose239

length is less than a task-dependent240

threshold τ for efficiency. The number241

of paths in a large graph can be pre-242

computed and cached before training,243

and the overhead of counting paths in244

a sampled graph is small, so this com-245

putation does not add much overhead246

to training and inference. When input247

graphs have maximum arity 2, paths248

can be counted efficiently by taking249

powers of the graph adjacency matrix.250

Subgraph sampling. During training, each data point is a tuple (H, f, f ′) where H is the input graph,251

f is the input representation, and f ′ is the desired output labels. We sample a subgraph H′ ⊂ H, and252

train models to predict the value of f ′ on H′ given f . For example, we train models to predict the253

grandparent relationship between all pairs of entities in H′ based on the parent relationship between254

entities in H′. Thus, our goal is to find a subgraph that retains most of the paths connecting nodes in255

this subgraph. We achieve this using a neighbor expansion sampler that uniformly samples a few256

nodes from V as the seed nodes. It then samples new nodes connected with one of the nodes in the257

graph into the sampled graph and runs this “expansion” procedure for multiple iterations to get VS .258

Finally, we include all edges that connect nodes in VS to form the final subsampled hypergraph.259

When the task is to infer the relations between a single pair of entities f ′(y1, y2) given the input260

representation f , a similar sub-sampling idea can also be used at inference time to further speed it261

up. Specifically, we use a path sampler, which samples paths connecting y1 and y2 and induces a262

subgraph from these paths. We provide ablation studies on different sampling strategies in Sec. 4.1.263

The implementation details of our information sufficiency and samplers are in Appendices B and F.264

Training label adjustment with IS. Due to the information loss caused by graph subsampling,265

the information contained in the subgraph may not be sufficient to make predictions about a target266

6

Sparse and Local Hypergraph Reasoning Networks

Table 1: Results (Per-class Accuracy) on family tree reasoning benchmarks. Models are trained on
domains with 20 to 2000 entities, and tested on domains with 100 entities. Minus mark means the
model runs out of memory or cannot handle ternary predicates. All experiments are conducted on a
single NVIDIA 3090 GPU with 24GB memory. The standard errors are computed based on three
random seeds.

Family Tree MemNN ∂ILP NLM GraIL (R-GCN) SpaLoc (Ours)

Ntrain 20 2,000 20 2,000 20 2,000 20 2,000 20 2,000

HasFather 65.24 - 100 - 100 - 100 100 100±0.00 100±0.00

HasSister 66.21 - 100 - 100 - 97.05 97.95 100±0.00 98.01±0.04

Grandparent 64.57 - 100 - 100 - 99.95 98.08 100±0.00 100±0.00

Uncle 64.82 - 100 - 100 - 97.87 96.50 100±0.00 100±0.00

MGUncle 80.93 - 100 - 100 - 54.67 71.29 100±0.00 100±0.00

FamilyOfThree - - - - 100 - - - 100±0.00 100±0.00

ThreeGenerations - - - - 100 - - - 100±0.00 100±0.00

0 200 400 600 800 1000 1200 1400
Number of Objects (n)

0

2

4

6

8

10

12

M
em

or
y

(G
B

)

Grandparent

NLM
f = (0.5n3 + 0.2n2 + 7n) × 10 6

SpaLoc
f = (0.0n3 + 4.7n2 + 0n) × 10 6

0 200 400 600 800 1000 1200 1400
Number of Objects (n)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
un

tim
e

(s
)

Grandparent

NLM
f = 203n3 × 10 10

SpaLoc
f = (2n3 + 171n2) × 10 10 + 2.2 × 10 2

0 200 400 600 800 1000 1200
Number of Objects (n)

0

2

4

6

8

10

12

M
em

or
y

(G
B

)

Has-Sister

NLM
f = (0.5n3 + 0.2n2 + 5n) × 10 6

SpaLoc
f = (0.0n3 + 8.0n2 + 134n) × 10 6

0 200 400 600 800 1000 1200
Number of Objects (n)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
un

tim
e

(s
)

Has-Sister

NLM
f = 207n3 × 10 10

SpaLoc
f = 3n3 × 10 10 + 4.0 × 10 2

Figure 4: The memory usage and the inference time of each sample vs. the number of objects in the
evaluation domains. SpaLoc reduces the memory complexity from O(n3) to O(n2) and achieves
significant runtime speedup.

relationship. For example, in a family relationship graph, removing a subset of nodes may cause the267

system to be unable to conclude whether a specific person x has a sibling.268

Thus, we propose to adjust the model training by assigning each example f ′(y1, · · · , yr) with a soft269

label, as illustrated in Fig. 3. Consider a binary classification task f ′. That is, function f ′ is a mapping270

from a hyperedge tuple of arity r to {0, 1}. Denote the model prediction as f̂ ′. Typically, we train the271

SpaLoc model with a binary cross-entropy loss between f̂ ′ and the ground truth f ′. In our subgraph272

training, we instead compute a binary cross-entropy loss between f̂ ′ and f ′
HS

⊙ IS, where HS is the273

sub-sampled graph. Mathematically,274 (
f ′
HS

⊙ IS
)
(y1, · · · , yr) ≜ f ′

HS
(y1, · · · , yr) · IS ((y1, · · · , yr) | HS ,H) .

We empirically compare IS with other label smoothing methods in Appendix E.275

4 Experiments276

In this section, we compare SpaLoc with other methods in two aspects: accuracy and efficiency277

on large domains. We first compare SpaLoc with other baseline models on a synthetic family tree278

reasoning benchmark. Since we know the underlying relational rules of the task and have fine-grained279

control over training/testing distributions, we use this benchmark for ablation studies about the space280

and time complexity of our model and two design choices (different sampling techniques and different281

label adjustment techniques). We further extend the results to several real-world knowledge-graph282

reasoning benchmarks.283

4.1 Family Tree Reasoning284

We first evaluate SpaLoc on a synthetic family-tree reasoning benchmark for inductive logic pro-285

gramming. The goal is to induce target family relationships or member properties in the test domains286

based on four input relations: Son, Daughter, Father, and Mother. Details are defined in Appendix G.287

Baseline. We compare SpaLoc against four baselines. The first three are Memory Net-288

works [MemNNs; Sukhbaatar et al., 2015], ∂ILP [Evans and Grefenstette, 2018], and Neural289

Logic Machines [NLMs; Dong et al., 2019], which are state-of-the-art models for relational rule290

learning tasks. For these models, we follow the configuration and setup in Dong et al. [2019]. The291

fourth baseline is an inductive link prediction method based on graph neural networks, GraIL [Teru292

7

Sparse and Local Hypergraph Reasoning Networks

Table 2: Per-class Accuracy, per-sample inference time
(ms), and memory usage (MB) when applying SpaLoc
on 2-GNNs. Recall that 1-GNN is the standard GNN
with only binary edge message passing. Models are
tested on domains with 200 entities.

Uncle Grandparent

Acc. Time Mem. Acc. Time Mem.

NLM 100 133.8 3,846 100 135.0 3,846
SpaLoc + NLM 100 37.2 214 100 23.9 181

2-GNN 100 145.1 5,126 100 145.5 5,126
SpaLoc + 2-GNN 100 23.7 645 100 19.2 519

Table 3: Comparison of different samplers.
The first column shows the size of the sub-
sampled graph during training (Ns) and
the full training graph (N). Models are
tested on domains with 100 entities.

Ns/N
Node Walk Neighbor

Acc MIS Acc MIS Acc MIS

20 / 50 100 54.82 100 85.14 100 89.78
20 / 200 100 33.05 100 71.51 100 80.60
20 / 500 58.18 27.27 100 78.22 100 78.70
20 / 1,000 1.84 24.49 100 77.18 100 78.38
20 / 2,000 0 19.66 100 79.69 100 78.53

Table 4: Results (AUC-PR) on real-world knowledge graph inductive reasoning datasets from GraIL.

Model WN18RR FB15k-237 NELL-995

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

Neural-LP 86.02 83.78 62.90 82.06 69.64 76.55 73.95 75.74 64.66 83.61 87.58 85.69
DRUM 86.02 84.05 63.20 82.06 69.71 76.44 74.03 76.20 59.86 83.99 87.71 85.94
RuleN 90.26 89.01 76.46 85.75 75.24 88.70 91.24 91.79 84.99 88.40 87.20 80.52
GraIL 94.32 94.18 85.80 92.72 84.69 90.57 91.68 94.46 86.05 92.62 93.34 87.50
TACT 96.15 97.95 90.58 96.15 88.73 94.20 97.10 98.30 94.87 96.58 95.70 96.12
SpaLoc 98.18 99.83 96.66 99.30 99.73 99.38 99.53 99.39 100 98.27 96.19 97.37

et al., 2020]. Since GraIL can only be used for link prediction, we use the full-batch R-GCN293

[Schlichtkrull et al., 2018b], the backbone network of GraIL, for node property predictions.294

Accuracy & Scalability. Table 1 summarizes the result. Overall, SpaLoc achieves near-perfect295

performance across all prediction tasks, on par with the inductive logic programming-based method296

∂ILP and the baseline model NLM. This suggests that our sparsity regularizations and sub-graph297

sampling do not affect model accuracy. Importantly, our SpaLoc framework has drastically increased298

the scalability of the method: SpaLoc can be trained on graphs with 2000 nodes, which is infeasible299

for the baseline NLM model due to memory issues.300

Another essential comparison is between GraIL and SpaLoc. GraIL is a graph neural network–based301

approach that only considers relationships between binary pairs of entities. This is sufficient for302

simple tasks such as HasFather, but not for more complex tasks such as Maternal Great Uncle303

(MGUncle). By contrast, SpaLoc explicitly reasons about hyperedges and solves more complex tasks.304

Runtime & Memory. We study the time and memory complexity of SpaLoc against NLM on305

the HasSister and Grandparent tasks. Results are shown in Fig. 4, where we plot the curve of306

average memory consumption and inference time as a function of the input graph size. We fit a cubic307

polynomial equation to the data points to approximate the learned inference complexity of SpaLoc.308

The experimental results show that our method can reduce the space complexity from the original309

O(n3) complexity of NLM to approximately O(n2). Note that this learned network has the same310

complexity as the optimal relational rule that can be designed to solve both tasks. The inference time311

also gets significantly improved.312

Application to other hypergraph neural networks. SpaLoc is a general framework for scaling up313

hypergraph neural networks rather than a method that can only be used on NLMs. Here we apply our314

framework SpaLoc to a new method, k-GNN [Morris et al., 2019a] on the family tree benchmark.315

Specifically, we use a fully-connected k-hypergraph. The edge embeddings are initialized as a one-hot316

encoding of the input relationship. Shown in Table 2, we see consistent improvements in terms of317

inference speed and memory cost for k-GNNs and NLMs.318

Ablation: Subgraph sampling. We compare our neighbor expansion sampler with two other319

sub-graph samplers, proposed in Zeng et al. [2020]: random node (Node) and random walk (Walk)320

samplers. We compare these samplers with two metrics: the final accuracy of the model and the321

average information sufficiency of all pairs of nodes in the sub-sampled graphs (MIS). Table 3 shows322

the result on the Grandparent task. The Node sampler does not leverage locality, so the performance323

of models and MIS drop as the domain size grows larger. The SpaLocs trained with Walk and324

Neighbor samplers perform similarly well in terms of test accuracy. Note that the accuracy results325

are consistent with the MIS results: comparing the Node sampler and others, we see that a higher326

MIS score leads to higher test accuracy. This supports the effectiveness of our proposed information327

sufficiency measure.328

8

Sparse and Local Hypergraph Reasoning Networks

4.2 Real-World Knowledge Graph Reasoning329

To further demonstrate the scalability of SpaLoc, we apply it to complete real knowledge330

graphs. We test SpaLoc on both inductive and transductive relation prediction tasks, following331

GraIL [Schlichtkrull et al., 2018a]. In this setting, the test-task time is to infer the relationship on332

a given edge, so test-time graph subsampling is used. We evaluate the models with a classification333

metric, the area under the precision-recall curve (AUC-PR).334

In the inductive setting, the training and evaluation graphs are disjoint sub-graphs extracted from335

WN18RR [Dettmers et al., 2018], FB15k-237 [Toutanova et al., 2015], and NELL-995 [Xiong et al.,336

2017]. For each knowledge graph, there are four versions with increasing sizes. In the transductive337

setting, we use the standard WN18RR, FB15k-237, and NELL-995 benchmarks. For WN18RR and338

FB15k-237, we use the original splits; for NELL-995, we use the split provided in GraIL. We also339

include the Hit@10 metric used by knowledge graph embedding methods. Following the setting of340

GraIL, we rank each test triplet among 50 randomly sampled negative triplets.341

Baseline. We compare SpaLoc with several state-of-the-art models, including Neural LP [Yang et al.,342

2017], DRUM [Sadeghian et al., 2019], RuleN [Meilicke et al., 2018], GraIL, and TACT [Chen et al.,343

2021]. For transductive learning tasks, we compare SpaLoc with four representative knowledge graph344

embedding methods: TransE [Bordes et al., 2013], DistMult [Yang et al., 2015], ComplEx [Trouillon345

et al., 2017], and RotatE [Sun et al., 2019].346

Results. Table 4 and Table 5 show the inductive and transductive relation prediction results347

respectively. In the inductive setting, SpaLoc significantly outperforms all baselines on all348

datasets. This demonstrates the scalability of SpaLoc on large-scale real-world data. SpaLoc349

is the only model that explicitly uses hyperedge representations, while none of the existing350

hypergraph neural networks are directly applicable to such large graphs due to memory and351

time complexities. In the transductive setting, SpaLoc outperforms all knowledge embedding352

(KE) methods and GraIL on WN18RR and NELL-995. SpaLoc also has comparable perfor-353

mance with KE methods on the FB15K-237 datasets, outperforming GraIL with a large margin.354

Table 5: Results of transductive link prediction
on real-world knowledge graphs. We also in-
clude Hit@10 as an additional metric follow-
ing knowledge graph embedding literature and
GraIL [Schlichtkrull et al., 2018a].

WN18RR NELL-995 FB15K-237

AUC-PR H@10 AUC-PR H@10 AUC-PR H@10

TransE 93.73 88.74 98.73 98.50 98.54 98.87
DistMult 93.08 85.35 97.73 95.68 97.63 98.67
ComplEx 92.45 83.98 97.66 95.43 97.99 98.88

RotatE 93.55 88.85 98.54 98.09 98.53 98.81
GraIL 90.91 73.12 97.79 94.54 92.06 75.87

SpaLoc 96.76 99.97 99.27 98.90 99.61 96.97

Comparing SpaLoc with node embedding–355

based methods (TransE) and GNN-based meth-356

ods (GraIL) that only consider binary edges,357

we see that our hyperedge-based model enables358

better relation prediction that requires reason-359

ing about other entities. The necessity of hy-360

peredges is further supported by Appendix D,361

where we show that setting the maximum arity362

of SpaLoc to 2 (i.e., removing hyperedges) sig-363

nificantly degrades the performance. Notably,364

in contrast to other methods for the transduc-365

tive setting that store entity embeddings for all366

knowledge graph nodes, SpaLoc directly uses the inductive learning setting. That is, SpaLoc does not367

store identity information about each knowledge graph node. We leave better adaptations of SpaLoc368

to transductive learning settings as future work.369

5 Conclusion370

We present SpaLoc, a framework for efficient training and inference of hypergraph reasoning networks.371

SpaLoc leverages sparsity and locality to train and infer efficiently. Through regularizing intermediate372

representation by a sparsification loss, SpaLoc achieves the same inference complexities on family373

tree tasks as algorithms designed by human experts. SpaLoc samples sub-graphs for training and374

inference, calibrates training labels with the information sufficiency measure to alleviate information375

loss, and therefore generalizes well on large-scale relational reasoning benchmarks.376

Limitations.. The locality assumption applies to many benchmark datasets, but we admit that it is377

not a completely general solution. It may lead to problems on datasets where the property of interest378

may depend on distant nodes, i.e., SpaLoc may not perform well on problems that require long chains379

of inference (e.g., detecting that A is a 5th cousin of B). Nevertheless, the locality assumption is380

good enough for many real-world relational inference tasks. Meanwhile, it is hard to directly apply381

SpaLoc on extremely high-arity hypergraph datasets such as WD50K [Galkin et al., 2020], where the382

maximum arity is 67, because the permutation operation in SpaLoc has an O(r!) complexity, where r383

is the arity. We leave the application of SpaLoc on extremely high-arity hypergraphs as future work.384

9

Sparse and Local Hypergraph Reasoning Networks

References385

Pablo Barceló, Egor V Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan Pablo Silva.386

The logical expressiveness of graph neural networks. In International Conference on Learning387

Representations (ICLR), 2020. 1388

Peter W Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, and Koray Kavukcuoglu. Interac-389

tion networks for learning about objects, relations and physics. In Advances in Neural Information390

Processing Systems (NeurIPS), 2016. 1391

Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a392

collaboratively created graph database for structuring human knowledge. In Jason Tsong-Li Wang,393

editor, ACM SIGMOD Conference on Management of Data (SIGMOD), 2008. 5394

Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Oksana Yakhnenko.395

Translating embeddings for modeling multi-relational data. In Advances in Neural Information396

Processing Systems (NeurIPS), 2013. 2, 9397

Jiajun Chen, Huarui He, Feng Wu, and Jie Wang. Topology-aware correlations between relations398

for inductive link prediction in knowledge graphs. In AAAI Conference on Artificial Intelligence399

(AAAI), 2021. 9400

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An401

efficient algorithm for training deep and large graph convolutional networks. In ACM SIGKDD402

International Conference on Knowledge Discovery and Data Mining (KDD), 2019. 3403

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d404

knowledge graph embeddings. In AAAI Conference on Artificial Intelligence (AAAI), 2018. 2, 9405

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic406

machines. In International Conference on Learning Representations (ICLR), 2019. 1, 2, 3, 5, 7, 15407

Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data. Journal of408

Artificial Intelligence Research, 61:1–64, 2018. 2, 7409

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In410

ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019. 3411

Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning probabilistic relational models.412

In International Joint Conference on Artificial Intelligence (IJCAI), 1999. 2413

Mikhail Galkin, Priyansh Trivedi, Gaurav Maheshwari, Ricardo Usbeck, and Jens Lehmann. Message414

passing for hyper-relational knowledge graphs. In Empirical Methods in Natural Language415

Processing (EMNLP), 2020. 9416

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In417

Advances in Neural Information Processing Systems (NeurIPS), 2017. 2418

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network419

with pruning, trained quantization and huffman coding. In Yoshua Bengio and Yann LeCun, editors,420

International Conference on Learning Representations (ICLR), 2016. 2421

Patrik O. Hoyer. Non-negative matrix factorization with sparseness constraints. Journal of Machine422

Learning Research, 5:1457–1469, 2004. 5423

Niall P. Hurley and Scott T. Rickard. Comparing measures of sparsity. IEEE Transactions on424

Information Theory, 55(10):4723–4741, 2009. 5425

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International426

Conference on Learning Representations (ICLR), 2015. 13427

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.428

In International Conference on Learning Representations (ICLR), 2017. 2429

Zhezheng Luo, Jiayuan Mao, Joshua B. Tenenbaum, and Leslie Pack Kaelbling.430

On the expressiveness and learning of relational neural networks on hypergraphs.431

https://openreview.net/forum?id=HRF6T1SsyDn, 2021. 2, 5432

Christian Meilicke, Manuel Fink, Yanjie Wang, Daniel Ruffinelli, Rainer Gemulla, and Heiner433

Stuckenschmidt. Fine-grained evaluation of rule- and embedding-based systems for knowledge434

graph completion. In International Semantic Web Conference (ISWC), 2018. 9435

10

Sparse and Local Hypergraph Reasoning Networks

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav436

Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.437

In AAAI Conference on Artificial Intelligence (AAAI), 2019a. 3, 8438

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav439

Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.440

In AAAI Conference on Artificial Intelligence (AAAI), 2019b. 1441

Stephen Muggleton. Inductive logic programming. New Gener. Comput., 8(4):295–318, 1991. 2442

Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang. DRUM: end-to-end443

differentiable rule mining on knowledge graphs. In Advances in Neural Information Processing444

Systems (NeurIPS), 2019. 9445

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max446

Welling. Modeling relational data with graph convolutional networks. In Extended Semantic Web447

Conference (ESWC), 2018a. 9448

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max449

Welling. Modeling relational data with graph convolutional networks. In Extended Semantic Web450

Conference (ESWC), 2018b. 1, 8451

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M.452

Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12:2539–453

2561, 2011. 2454

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-end memory networks.455

In Advances in Neural Information Processing Systems (NeurIPS), 2015. 2, 7456

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding by457

relational rotation in complex space. In International Conference on Learning Representations458

(ICLR), 2019. 9459

Komal Teru, Etienne Denis, and Will Hamilton. Inductive relation prediction by subgraph reasoning.460

In International Conference on Machine Learning (ICML), 2020. 3, 7461

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury, and Michael462

Gamon. Representing text for joint embedding of text and knowledge bases. In Lluís Màrquez,463

Chris Callison-Burch, Jian Su, Daniele Pighin, and Yuval Marton, editors, Empirical Methods in464

Natural Language Processing (EMNLP), 2015. 2, 9465

Théo Trouillon, Christopher R. Dance, Éric Gaussier, Johannes Welbl, Sebastian Riedel, and Guil-466

laume Bouchard. Knowledge graph completion via complex tensor factorization. Journal of467

Machine Learning Research, 2017. 9468

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua469

Bengio. Graph attention networks. In International Conference on Learning Representations470

(ICLR), 2018. 2471

Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. Neural execution472

of graph algorithms. In International Conference on Learning Representations (ICLR), 2020. 1473

Wenhan Xiong, Thien Hoang, and William Yang Wang. Deeppath: A reinforcement learning method474

for knowledge graph reasoning. In Martha Palmer, Rebecca Hwa, and Sebastian Riedel, editors,475

Empirical Methods in Natural Language Processing (EMNLP), pages 564–573. Association for476

Computational Linguistics, 2017. 9477

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural478

networks? In International Conference on Learning Representations (ICLR), 2019. 2479

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.480

What can neural networks reason about? International Conference on Learning Representations481

(ICLR), 2020. 2482

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and483

relations for learning and inference in knowledge bases. In International Conference on Learning484

Representations (ICLR), 2015. 2, 9485

Fan Yang, Zhilin Yang, and William W. Cohen. Differentiable learning of logical rules for knowledge486

base reasoning. In Advances in Neural Information Processing Systems (NeurIPS), 2017. 9487

11

Sparse and Local Hypergraph Reasoning Networks

Huanrui Yang, Wei Wen, and Hai Li. Deephoyer: Learning sparser neural network with differentiable488

scale-invariant sparsity measures. In International Conference on Learning Representations (ICLR),489

2020. 2, 5490

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna.491

Graphsaint: Graph sampling based inductive learning method. In International Conference on492

Learning Representations (ICLR), 2020. 3, 8493

12

Sparse and Local Hypergraph Reasoning Networks

SUPPLEMENTARY MATERIAL494

The supplementary material is organized as follows. First, we provide the experimental configurations495

and hyperparameters in Appendix A. Second, in Appendix B, we provide implementation details496

of the subgraph samplers we used. Next, we provide the ablation study on sparsification loss and497

SpaLoc’s maximum arity in Appendix C, Appendix D, and Appendix E, respectively. Besides, we498

elaborate the calculation of information sufficiency in Appendix F. Finally, we define relations in the499

Family Tree reasoning benchmark in Appendix G.500

A Experimental configuration501

Table 6: Hyper-parameters for SpaLoc.

Tasks Depth Breadth Hidden Dims Batch size Subgraph size τ

Family
Tree

HasFather 5 3 8 8 20 1
HasSister 5 3 8 8 20 2
Grandparent 5 3 8 8 20 2
Uncle 5 3 8 8 20 2
MGUncle 5 3 8 8 20 2
Family-of-three 5 3 8 8 20 2
Three-generations 5 3 8 8 20 2

Inductive
KG

WN18RR 6 3 64 128 10 3
FB15K-237 6 3 64 64 20 3
NELL-995 6 3 64 128 10 3

Transductive
KG

WN18RR 6 3 64 64 20 3
FB15K-237 6 3 64 64 20 3
NELL-995 6 3 64 64 20 3

We optimize all models with Adam [Kingma and Ba, 2015] and use an initial learning rate of 0.005.502

All experiments are under the supervised learning setup; we use Softmax-Cross-Entropy as the loss503

function.504

Table A shows hyper-parameters used by SpaLoc. For all MLP inside SpaLoc, we use no hidden layer505

and the sigmoid activation. Across all experiments in this paper, the maximum arity of intermediate506

predicates (i.e., the “breadth") is set to 3 as a hyperparameter, which allows SpaLoc to realize all507

first-order logic (FOL) formulas with at most three variables, such as a "transitive relation rule."508

We set the specification threshold ϵ to 0.05 in our experiments. This value is chosen based on the509

validation accuracy of our model. In practice, we observe that any values between 0.01 and 0.1 do510

not significantly impact the performance of our method and the inference complexity. We also set the511

multiplier of the sparsification loss λ to 0.01 in all SpaLoc’s experiments.512

B Implementation of subgraph samplers513

Both the neighbor expansion and the path sampler sample subgraphs by inducing from selected node514

sets. To deal with input hypergraphs with any arities, the samplers simplify the input hypergraphs515

into binary graphs. We define two nodes in the hypergraph are connected if they are covered by a516

hyperedge. Therefore, the neighbor expansion and path-finding algorithms used by the samplers can517

be applied to any hypergraphs for finding node sets. After enough nodes are collected, the sampler518

will induce a sub-hypergraph from the original hypergraph by preserving all of the hyperedges lying519

in the set.520

C Ablation study on sparsification loss521

We compare our Hoyer-Square sparsification loss against the L1 and L2 regularizers on the family522

tree datasets. In Table 7, we show the performance of SpaLoc trained with different sparsification523

losses. All models are tested on domains with 100 objects.524

"Density" is the percentage of non-zero elements (NNZ) in the intermediate groundings. The lower525

the density, the better the sparsification and the lower the memory complexity. We can see that,526

13

Sparse and Local Hypergraph Reasoning Networks

Table 7: Comparison of different sparsification losses.

HasSister Grandparent Uncle

Accuracy Density Accuracy Density Accurcay Density

L1 91.81 0.48% 99.8% 0.99% 74.69% 0.68%
L2 100 0.75% 100% 0.61% 94.46% 2.44%
HS 100 0.51% 100% 0.48% 100% 0.87%

Table 8: Comparison (Per-class Accuracy) of SpaLoc with different max arities on family tree
reasoning benchmarks.

HasSister Grandparent Uncle

Max Arity = 2 87.66 86.74 50.00
Max Arity = 3 100 100 100

compared with L1 and L2 regularizers, the Hoyer-Square loss yields a higher or comparable sparsity527

while maintaining nearly perfect accuracy.528

D Ablation study on SpaLoc’s maximum arity529

In this section, we compare two different SpaLoc models with different maximum arity, to validate530

the necessity and effectiveness of hyperedges in inductive reasoning. Shown in Table 8 and Table 9,531

we compare SpaLoc models with max arity 2 and 3. Note that, even if the input and output relations532

are binary, adding ternary edges in the intermediate representations significantly improves the result.533

E Ablation Study on Label Adjustment534

In this section, we compare our information sufficiency-based label adjustment method (IS) against535

two simple baselines: no adjustment (“NC”), and label smoothing (LS). In “LS”, we multiply all536

positive labels with a constant α = 0.9.537

Results are shown in Table 10. Overall, our method (IS) outperforms both baselines, even when the538

average information sufficiency of training graphs is very low (e.g., when using the Node sampler).539

Especially on the HasFather task, using constant label smoothing only has a close-to-chance accuracy540

(50%). Combining our IS-based label adjustment with the Neighbor sampler yields the best result.541

F Calculation of the information sufficiency542

The crucial part in the computation of the information sufficiency is to count the number of k-hop543

hyperpaths connecting a given set of nodes {v1, . . . , vr} in a hypergraph. We use the incidence544

matrix to calculate this. Firstly, we use a n × m incidence matrix B to represent the hypergraph545

H = (V, E), where n = |V| and m = |E|, such that Bij = 1 if the vertex vi and edge ej are incident546

and 0 otherwise. Next, B(k) := (BBT)k−1B is the k-hop incidence matrix of the hypergraph, i.e.,547

B
(k)
ij is the number of k-hop paths that the vertex vi and edge ej are incident.548

For example, when r = 2, there are B
(k)
i BT

j k-hop paths connecting vertex vi and vj . When r = 1,549

there are
∑

j B
(k)
ij k-hop paths connecting to vertex vi.550

G Definition of Relations in Family Tree551

The inputs predicates are: Father(x, y), Mother(x, y), Son(x, y), Daughter(x, y).552

The target predicates are:553

• HasFather(x) := ∃a Father(x, a)554

14

Sparse and Local Hypergraph Reasoning Networks

Table 9: Comparison (AUC-PR) of SpaLoc with different max arities on real-world knowledge graph
inductive relation prediction task.

WN18RR-v1 FB15k-237-v1 NELL-995-v1

Max Arity = 2 97.65 90.71 94.58
Max Arity = 3 98.18 99.73 100

Table 10: Comparison (per-class accuracy) for different label calibration methods.

Sampler HasFather HasSister

NC LS IS NC LS IS

Node 50.00 50.00 50.00 50.00 50.00 80.72
Walk 50.00 52.41 100 59.90 75.13 93.16
Neighbor 50.00 51.63 100 75.29 78.06 98.01

• HasSister(x) := ∃a∃b Father(x, a) ∧ Daughter(a, b) ∧ ¬(b = x)555

• Grandparent(x, y) := ∃a parent(x, a) ∧ parent(a, y)556

parent(x, y) := Father(x, y) ∨ Mother(x, y)557

• Uncle(x, y) := ∃a Grandparent(x, a) ∧ Son(a, y) ∧ ¬Father(x, y)558

• MGUncle(x, y) := ∃a∃b Grandmother(x, a) ∧ Mother(a, b) ∧ Son(b, y)559

Grandmother(x, y) = ∃a Parent(x, a) ∧ Mother(a, y)560

• Family-of-three(x, y, z) = Father(x, y) ∧ Mother(x, z)561

• Three-generations(x, y, z) = Parent(x, y) ∧ Parent(y, z)562

We follow the dataset generation algorithm presented in Dong et al. [2019]. In detail, we simulate the563

growth of families to generate examples. For each new family member, we randomly assign gender564

and a pair of parents (can be none, which means it is the oldest person in the family tree) for it. After565

generating the family tree, we label the relationships according to the definitions above.566

15

	1 Introduction
	2 Related Work
	3 SpaLoc Hypergraph Reasoning Networks
	3.1 Sparse Hypergraph Reasoning Networks
	3.2 Sparsification through Hoyer Regularization
	3.3 Subgraph Training

	4 Experiments
	4.1 Family Tree Reasoning
	4.2 Real-World Knowledge Graph Reasoning

	5 Conclusion
	A Experimental configuration
	B Implementation of subgraph samplers
	C Ablation study on sparsification loss
	D Ablation study on SpaLoc's maximum arity
	E Ablation Study on Label Adjustment
	F Calculation of the information sufficiency
	G Definition of Relations in Family Tree

