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We study neural forecasters for dynamical systems through the

lens of representational alighment. We introduce anchor-based, . S . #
) . . - arbitrary geometric differences. To address this, we m ~
geometry-agnostic relative embeddings that remove rotational adapt the relative-embedding alignment framework of “ ;
and scaling ambiguities, enabling robust cross-seed and cross- Moschella et al. (2023), which represents each latent 7
architecture comparison. Across diverse periodic, quasi- Sta,tet byt;]ts ;']m"g“t'ss |t°t a f'X(ej‘?' StEt ‘}L,a",chlgr /
ST . . I points rather than by absolute coordinates. This yields i
periodic, and chaotic systems, we observe consistent family oeometry-agnostic, anchor-based tent &
level patterns: MLPs align with MLPs, RNNs with RNNs, and representations that remove rotational and scaling
ESNs show reduced alignment on chaotic dynamics, while ambiguities, enabling direct and stable comparison of
Transformers often align weakly but still perform well. forecasters across models, seeds, and architectures.
Alignment generally correlates with forecasting accuracy, yet
high accuracy can coexist with low alighment. Relative
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Figure 1: Relative embeddings reveal consistent geometric structure across model Figure 2: Alignment-performance trade-offs across model families and dynamical
families while removing rotational and scaling ambiguities. Six systems (Lorenz, systems. At the end of training, RNNs consistently combined high forecasting accuracy with
double pendulum, skew-product; trajectories can differ markedly across seeds due to strong alignment, MLPs showed a clear positive relationship between the two, while transformers
sensitivity to initial conditions; POD wake, limit cycle, Hopf). Rows show trajectories, achieved superior accuracy despite weaker alignment. Under increasing noise perturbations, all
absolute embeddings, relative embeddings (PCA), and cross-model similarity heatmaps models exhibited reduced alignment and degraded forecasting, revealing distinct family-specific
(avg. over five seeds). Relative embeddings reduce geometric variability, enabling direct balances between predictive performance and representational stability.
comparison across forecasters.
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Latent Space Alignment

Neural forecasters can predict complex dynamics well,
but their latent spaces are hard to compare due to
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