Deep Graph Mating
— Appendix -

Yongcheng Jing! Seok-Hee Hong! Dacheng Tao?
!University of Sydney ~ 2>Nanyang Technological University
{yongcheng. jing,seokhee.hong}@sydney.edu.au, dacheng.tao@ntu.edu.sg

Contents

(A_Extended Related Work|
[A.1 Graph Neural Networks (GNNs)[.

[A.3 Efficient Learning on Graphs| L .

[A.4 Over-smoothing Alleviation|
[A.5 Model Merging (Model Fusion)],

B Model-specific Formulas of Equation 2|

|C Dataset Statistics and Descriptions|

[D Sensitivity Analysis|

|E Additional Results and Implementation Details|

[Multi-model GRAMA|

\G__Proofs

HE Ted Gimitation Di :

I Broader Impacts|

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

W NN NN

Appendix

A Extended Related Work

A.1 Graph Neural Networks (GNNs)

GNNs have demonstrated their considerable potential as a robust tool in the non-Euclidean domain,
as highlighted in seminal works such as [35, [70} 61} (82, [10} [73] 39} 144 |63| 20} 38, 47]. GNNs
facilitate the representation of non-Euclidean data through an end-to-end model, optimized via
backpropagation. These models, which accept a broader format of input, have been employed in
various fields beyond traditional areas like computer vision and natural language processing, covering
numerous tasks reliant on grid data. For instance, recent studies, such as those by [14} 24]], have
focused on designing GNNSs to handle molecular structures, which are naturally representable as
graphs. Additionally, efforts like those by [55] aim to harness information from relational graphs. In
this paper, we investigate the implementation of resource-efficient model reuse strategies for GNNss,
aimed at minimising training efforts.

A.2 Model Reuse

Model reuse has been extensively explored in the Euclidean domain, particularly within convolutional
neural networks (CNNs), as evidenced by significant works such as [17, 153} 150,179, [12} [77] 184, 48]].
This approach leverages pre-trained models to enhance performance or reduce training efforts for
downstream tasks. However, the application of model reuse in the realm of GNNSs is relatively nascent,
despite the growing prevalence of topological data [33) |34} 154] and the availability of pre-trained
GNNss online, which facilitate reproducibility and experimentation.

Notably, pioneering efforts by Yang et al. [76] introduced a knowledge distillation method specifically
tailored for GNNSs, aiming to create a lightweight model from a more complex teacher GNN. This
work sparked further innovations, including those by Deng et al. [9], who introduced a more
challenging scenario of graph-free knowledge distillation, and Joshi et al. [32]], who enhanced the
method with contemporary contrastive learning techniques. Furthermore, the study in [29] expands
these concepts to multi-teacher scenarios, aiming to integrate knowledge from various heterogeneous
pre-trained GNNs into a compact student model without the need for labeled data. However, this
approach necessitates a cuambersome re-training process. In this paper, we introduce the first entirely
learning-free model reuse paradigm, specifically designed for GNNs.

A.3 Efficient Learning on Graphs

GNNs have become the predominant tool in the field of topological graph data analysis [35} 169, |82,
27,[10]]. Despite their impressive performance, the rapid evolution of GNNs introduces two primary
challenges: the increasing scale of graph data [23,[7,|18]], and the substantial growth in GNN model
size [36} 16, 128]], which leads to computationally intensive training [43l [80]. In response, researchers
have developed several efficient graph representation learning techniques [26]], including GNN
quantisation to produce lightweight 1-bit representations of parameters and features [64} 4, 21} 30],
neural architecture search to identify efficient architectures [59, 158, 160]] tailored for GNNs [13] 49]],
and model reuse strategies that leverage knowledge from pre-trained models to reduce model size
and training efforts [[76} 9, 83| [11} 62} 32| 29| |16 42, 31]]. This paper specifically explores model
reuse tailored for GNNs, aimed at facilitating efficient graph computing in a completely learning-free
manner.

A.4 Over-smoothing Alleviation

Over-smoothing remains a pervasive issue in GNNs, where node features progressively blur into non-
distinctiveness as the network depth increases, resulting in the dilution of essential information [52].
One approach to mitigate this effect involves architectural modifications to GNNs. Implementations
such as adding skip connections or residual layers have shown promise [37]. Notable models like
GCNII [6] and Jumping Knowledge Networks [71] incorporate these techniques to allow layers to
leverage both their immediate inputs and outputs from prior layers or initial features, aiding in the
preservation of the original node data.

Another strategy involves the use of normalisation methods during the training process to protect
the diversity of features. Techniques like DropEdge [S1], which intermittently omits edges during
training to avert homogeneous feature blending, and PairNorm [81]], designed to maintain consistent
pairwise distances across layers, play crucial roles in preserving a balanced distribution of node
features across the network. However, these techniques rely on ongoing learning processes, which
contradicts our aim of achieving efficient GNN reuse without the need for further training in GRAMA.

In this work, we identify and explore the over-smoothing effects in reused GNN models and propose
a learning-free normalisation layer that effectively counters the over-smoothing challenge in resource-
efficient GNN reuse.

A.5 Model Merging (Model Fusion)

Model merging, also known as model fusion, seeks to combine multiple deep neural networks into
a single model, relying solely on their parameters [67} 156\ [1} 22} 57} [72| 40, [75! 41} [78, 146\ 2| 25]].
A significant challenge in model merging involves establishing neuron correspondences between
different models. OTFusion [56], developed by Singh and Jaggi, utilises the Wasserstein distance
to align weight matrices, facilitating parameter fusion without the need for re-training. In contrast,
Git Re-basin [[1] suggests minimising the L, distance between weight vectors to determine neuron
associations. Building upon these works, recent advancements extend OTFusion’s application to
Transformer architectures [22] for enhanced efficiency and performance. A comprehensive survey on
recent model merging techniques is provided in [40,[74]]. Despite these developments, the integration
of model merging techniques within GNNs remains unexplored. This paper presents GRAMA, the
first method designed for weight space model merging in the non-Euclidean domain, addressing the
specific challenges inherent to graph tasks.

B Model-specific Formulas of Equation 2

To maintain clarity and simplicity, Eq. 2 in the main paper is based on the most basic form of GNNs.
In this section, we develop more detailed, model-specific formulas for Eq. 2. Our model formulation
presented here follows the unified mathematical framework detailed in [[10], albeit with symbols
adapted to those used in the main paper.

Eq. 2 tailored for GCN of Kipf and Welling [33] is as follows:

AF;~o | W . 1
7 ge%:(/deg,+/deg Z\/degj Z \/de Z\/de W
Eq. 2 tailored for GraphSAGE [15] is as follows:
AF; ~ ¢’ (W Concat (X;, Mean;e (X)) - (e Concat (X;, Mean;enr() X)) - (2)

In our future work, we are committed to developing more model-specific formulas tailored for more
GNNG.

C Dataset Statistics and Descriptions

Table Al: Summary of dataset statistics used in the main paper and the appendix.

Names Task Descriptions Nodes Edges # Graphs
ogbn-arxiv [65,19] Multi-class Node Classification 169,343 1,166,243 1
ogbn-products [5,[19] Multi-class Node Classification 2,449,029 61,859,140 1
ogbn-proteins [8,[19] Multi-label Node Classification 132,534 39,561,252 1
ogbg-molbace [68,[19] Graph Classification 51,577 111,539 1,513
ogbg-molbbbp [68,/19] Graph Classification 49,068 105,842 2,039
ModelNet40 [66] 3D Object Recognition 12,603,392 252,067,840 12,311
S3DIS [3] 3D Semantic Parsing 77,709,312 1,554,186,240 18,972

Table A2: Statistics on disjoint spaces per building area from Armeni et al. [3].

Area Area (m2) Volume (mB) Office Conf. Room Auditorium Lobby Lounge Hallway Copy Room Pantry Open Space Storage WC Total Num
N N N 1 N N

Area 1 965 2850 31 2 8 1 1 45
Area 2 1100 3065 14 1 2 - - 12 - 9 2 39
Area 3 450 1215 10 1 - - 2 6 2 2 24
Area 4 870 2780 22 3 2 - 14 - 4 2 49
Area 5 1700 5370 42 3 1 15 - 1 - 4 2 55
Area 6 935 2670 37 1 1 6 1 1 - - - 53

Table A3: Object class statistics from the dataset of Armeni et al. [3].

Area Ceiling Floor Wall Beam Column Door Window Table Chair Sofa Bookcase Board
Areal 56 45 235 62 58 87 30 70 156 7 91 28
Area2 82 51 284 62 58 94 9 47 546 7 49 18
Area3 38 24 160 14 13 38 9 31 68 10 42 13
Aread 74 51 281 4 39 108 41 80 160 15 99 11
AreaS 77 69 344 4 75 128 53 155 259 12 218 43
Area6 64 50 248 69 55 94 32 78 180 10 91 30

The datasets used in this paper cover various tasks, including node classification, graph classification,
and 3D object recognition, offering a thorough assessment of the proposed methods. The ogbn-arxiv
dataset supports multi-class node classification with 169,343 nodes and 1,166,243 edges, while
ogbn-products presents a larger scale with 2,449,029 nodes and 61,859,140 edges. Another multi-
class node classification dataset, ogbn-proteins, consists of 132,534 nodes and 39,561,252 edges,
introducing additional complexity through multi-label classification. For graph classification, the
ogbg-molbace and ogbg-molbbbp datasets are used, comprising 51,577 nodes and 111,539 edges
across 1,513 graphs, and 49,068 nodes and 105,842 edges across 2,039 graphs, respectively. These
datasets offer diverse challenges for evaluating GNNs.

The ModelNet40 and S3DIS datasets are used for 3D object recognition and semantic parsing tasks,
respectively. The ModelNet40 dataset contains 12,603,392 nodes and 252,067,840 edges across
12,311 graphs, supporting the evaluation of 3D object recognition models. In comparison, the S3DIS
dataset, intended for 3D semantic parsing, comprises 77,709,312 nodes and 1,554,186,240 edges
distributed over 18,972 graphs, significantly increasing the data complexity and volume. Additional
statistics for S3DIS are provided in Tabs.[AT] [AZ] and[A3]

D Sensitivity Analysis

We include in Tab.[A4]a sensitivity analysis with varying « for interpolation. This analysis explores
the impact of different interpolation factors on the performance of our model across two datasets,
Dataset A and Dataset B.

The results demonstrate a clear trend: as « increases from 0.1 to 0.9, the performance varies
significantly. For Dataset A, the performance gradually improves as « increases, reaching its peak at
a = 0.9 with a score of 0.7222. Similarly, for Dataset B, the performance decreases as « increases,
peaking at a = 0.1 with a score of 0.7254 and reaching its lowest at a = 0.9 with a score of 0.5755.

Notably, v = 0.5 generates a balanced performance across both datasets, with a score of 0.6531 for
Dataset A and 0.5957 for Dataset B. This outcome aligns with our assumption that o = 0.5 ensures
unbiased knowledge incorporation from both parent models, providing a compromise between the
extremes observed at lower and higher « values. This balanced performance at o = 0.5 supports the
idea that this interpolation factor is optimal for integrating the knowledge from two parent models
without favouring one over the other.

Overall, the sensitivity analysis confirms that while varying a can lead to significant changes in
performance, an interpolation factor of & = 0.5 delivers a balanced and unbiased integration of the
knowledge from the parent models.

Table A4: Sensitivity analysis of the interpolation factor « for Tab. 2 of the main paper.

« 0.1 0.3 0.5 0.7 0.9
Dataset A 0.6344 0.6345 0.6531 0.7077 0.7222
Dataset B 0.7254 0.6504 0.5957 0.5855 0.5755

E Additional Results and Implementation Details

In this section, we provide additional implementation details for our experiments. All experiments
were conducted on a single RTX 4090 GPU, with each parent model pre-trained using different
initialisations. The code and models are included in the supplemental material.

In Tab. we present the architecture used for the experiments on ogbn-arxiv. During pre-training,
we use the Adam optimiser, with a learning rate of 0.005.

Table AS: Detailed network architectures for the task of node property prediction on the ogbn-arxiv
dataset.

Pre-trained Architectures
Architecture-ogbn-arxiv

GNN Type Layers Input Hidden Output
GCN 5 128 256 40

For the dataset ogbn-products, which is used for node-level property prediction, the architecture
details with GraphSAGE are outlined in Tab. [A6]

Table A6: GraphSAGE-based network architectures for the experiments on the ogbn-products
dataset.

Pre-trained Architectures
Architecture-ogbn-products

GNN Type Layers Input Hidden Output
GraphSAGE 3 100 256 47

We also report the standard deviations for the results on these two node property prediction datasets in
Tab. Upon conducting 20 independent runs using various random seeds, our method demonstrated
encouraging consistency, evidenced by the low standard deviations. Specifically, for the ogbn-arxiv
dataset pair A/B, the standard deviations are 5.067 x 10~7 and 2.441 x 107, respectively, while
for the ogbn-products dataset pair C/D, they are 3.829 x 1075 and 1.157 x 10~°. These results
indicate that our method reliably delivers stable performance across different datasets.

Table A7: Standard derivations of the results of our method for Tab. 2 in the main paper, obtained
with 20 independent runs using different random seeds. Given a pair of the same pre-trained GNNss,
our method achieves stable results.

ogbn-arxiv
Dataset A / Dataset B
5.067 x 1077 / 2.441 x 1076

ogbn-products
Dataset C / Dataset D
3.829 x 1075 / 1.157 x 107°

Fig. [AT] presents additional visualisation results by employing t-SNE [45] to depict the features
from the intermediate layers. The representations of our PMC and CMC demonstrate more distinct
clustering.

Table A8: Architecture details for the task of multi-label node classification on ogbn-proteins.

Pre-trained Architectures GNN Type GIN Layers Input Hidden Output
Architecture-ogbn-proteins| GIN 3 (2 MLPs per layer) 8 256 112

Hao

-20 0 20 -20

20 -0 0 10 20 -30 -10 0 10 20 -20 -fo 0 1 20

0

(a) KA [29] (b) VPI [Iﬁl]z0 (c) VAPI 1] (d) Ours (w/o CMC) (e) Ours (w/ CMC)

Figure Al: Additional t-SNE visualisations of various methods for the remaining 30 classes of the

ogbn-arxiv dataset.

The details of our GIN-based architecture for experiments on ogbn-proteins are presented in
Tab. [A8] while those of the GAT-based architecture for graph-level tasks are provided in Tab.[A9]

Table A9: Network architectures used in our experiments on ogbg-molbace and ogbg-molbbbp.

Pre-trained Architectures

GNN Type Layers Attention Heads Output Layer Input Hidden Output

Architecture-ogbg-molbace
Architecture-ogbg-molbbbp

GAT 4 {1,1,1} Linear 9 256 1
GAT 4 {1,1,1} Linear 9 256 1

Tabs. [AT0]and [ATT] detail the architectures used for 3D object recognition and semantic parsing tasks
on the ModelNet40 and S3DIS datasets, respectively.

Table A10: Detailed network architectures for the task of 3D object recognition on Mode1Net40.

Pre-trained Models GNN Type Layers Feature Map Channels

Architecture-Mode1Net40 DGCNN 8 [64, 64, 128, 256, 1024]

Fig.[AZ|presents additional v
the structures of the feature

isualisation results for reusing GNNs in 3D object recognition, illustrating
spaces. Our proposed method produces results with a feature structure

more closely resembling those of the cumbersome re-training-based KA method, compared to VPI
and VAPI, highlighting the superiority of the proposed method.

Table A11: Architecture details for semantic parsing on the S3DIS dataset.

Pre-trained Model

S Layers GNN Type Feature Map Channels

Architecture-S3DIS

9 DGCNN [64, 64, 64, 64, 64, 1024, 512, 256]

KA VPI VAPI Ours !

VAPI

Near O o

Figure A2: Additional visualisations of the feature space structure, shown by measuring the distance
from the red point to other points. The features visualised are derived from the models’ intermediate
layers.

In particular, we performed additional experiments across various network architectures and dataset
splits using the Mode1Net40 dataset. Detailed descriptions of the additional architecture are provided
in Tab. [A12)

Table A12: Additional network architectures for the task of 3D object recognition on ModelNet40 in
the appendix.

Pre-trained Models GNN Type Layers Feature Map Channels
Architecture-Mode1Net40-Appendix DGCNN 7 [32, 32, 64, 128, 512]

The corresponding GRAMA results for the additional architecture in Tab. [AT2] are presented in
Tab. [AT3] demonstrating that our proposed approach consistently yields promising results across
various architectures.

Table A13: Additional results with different network architectures on the Mode1Net40 dataset.

Architecture Partition Datasets Parent 1 Parent2 Ours (w/o CMC) Ours (w/ CMC)
Architecture-Appendix | 20%/80% Dataset 1 09184 0.8920 0.8236 0.8846
Architecture-Appendix | 20%/80% Dataset2 0.8175 0.9299 0.8279 0.8550

Furthermore, we demonstrate the performance of our DuMCC across various dataset partition ratios in
Tab.[AT4] supplementing the 20%/80% split discussed in the main paper. Notably, DuMCC exhibits
promising performance across different pre-trained parent models trained on diverse partitioned
datasets.

Table A14: Additional results with different dataset splits on the Mode1Net40 dataset.

Architecture Partition Datasets Parent 1 Parent2 Ours (w/o CMC) Ours (w/ CMC)
Architecture-Main | 10%/90% Dataset 1 0.9246 0.8393 0.8451 0.8782
Architecture-Main | 10%/90% Dataset2 0.7621 0.9294 0.8374 0.8422

We further conducted additional experiments by re-training a model using combined parent datasets
with ground-truth labels. The results, shown in Tab.[AT3] establish an upper bound for GRAMA’s
performance.

Table A15: Results of retraining a multi-dataset model that can jointly combine the expertise of both

parent models.

Tables Datasets Parent 1 Parent 2 Re-training
Tab. 2 ogbn-arxiv 0.7193/0.5516 0.6564/0.7464 0.6903 /0.7268
Tab. 2 ogbn-products 0.7982/0.7308 0.7626/0.7904 0.7981/0.7787
Tab. 3 ogbn-proteins 0.7478 0.7222 0.7514
Tab. 3 ogbg-molbace, ogbg-molbbbp 0.7247 / 0.4681 0.4067 / 0.6366 0.6954 / 0.6087
Tab. 4 ModelNet40 0.9159/0.8151 0.8862/0.9275 0.9390/0.9243
Tab. 5 S3DIS 0.8181 0.8174 0.8428

F Multi-model GRAMA

In this section, we explore the feasibility of multi-model GRAMA by conducting additional experi-
ments on disjoint partitions of the ogbn-arxiv dataset, focusing on the simultaneous reuse of three
pre-trained models. The results, presented below, demonstrate that our proposed DuMCC approach is
also effective in multi-model GRAMA contexts.

Table A16: Results of multi-model GRAMA involving the simultaneous reuse of three pre-trained
parent models.

Models Performance: Dataset 1 Performance: Dataset 2 Performance: Dataset 3
Parent 1 0.6645 0.6476 0.6040
Parent 2 0.4796 0.7044 0.4651
Parent 3 0.5805 0.6078 0.7728
Child 0.5574 0.6360 0.5478
G Proofs

G.1 Proof of Lemma 4.1

Lemma 4.1 (Amplified Sensitivity of GNNs to Parameter Misalignment) GNNs exhibit greater
sensitivity to mismatches in parameter alignment compared to CNNs, amplified by the degree of
connectivity and heterogeneity of the node features in the graph topology:

SNWeX; | > e Xy, ?3)

JEN) JEN()

AFZ ~ (T/

where AF; refers to the change in output at node i due to the perturbations € in the weights W,
and o' represents the derivative of the activation function. X; denotes the features of the nodes
within the neighbourhood N (i) of node i.

Proof. For CNNs, consider the scenario where a convolution operation is applied to an input feature
matrix X using a filter W. The convolution aims to extract spatially relevant features from X by
applying W across its entirety.

We introduce a perturbation e to W such that W/ = W + e. This allows us to examine its impact on
the output. The output F' from the original convolution operation is derived as follows:

Fij=Y Wi Xitrjti- (4)
k,l

After the perturbation, the new output F’ becomes:

Fl ;= Wi+ en) Xitkja
ol

®)
=Fi;+ Z €k, Xith,jri

Here, the first term F; ; is the original convolution output, and the second term represents the impact
of the perturbation across the spatial dimensions of X.

Thus, the change in the convolution output J F; ; due to the perturbation can be formulated as:
SFij =Y eni- Xiyhj, (6)
k.l

which illustrates how each element of the perturbation ;. ; affects the corresponding local regions of
X.

By applying the activation function o, which introduces non-linearity into the network, to both the
original and perturbed outputs, and using the first-order Taylor expansion at F; ;, we can obtain:

O-(Fi7j+6Fi>j)%U(F)+U() 6F17> (7N
where ¢ is the derivative of o at F; ;.

As such, by substituting Eq. @mto Eq.[7 ' the change in the activated output AF; ; due to the weight
perturbations can be approximated as:

AF, j ~d'(F;;)- Zek,l - Xtk - (8)
Kl

Eq. [8| demonstrates the localised impact of weight perturbations within CNNss, illustrating how
changes to the weights affect outputs primarily in the specific regions where those weights are applied.
The effect of such perturbations is regulated by the derivative of the activation function at each output
location. As a result, the perturbation’s influence is confined to the region corresponding to the
receptive field of the weights within the convolutional filter.

For GNNs, consider a node ¢ with a neighborhood N (4), and let the feature vector at node j in the
neighborhood be X ;. If the weight matrix W is also perturbed by €, then: W/ = W + €.

The output F;; for node ¢ before perturbation can be formulated as:
Fi=o|W- > X;].)
JEN(3)
After perturbation, the output F} thereby becomes:
Fl=a|(W+e- > X;|. (10)
JEN(4)

By using a Taylor approximation similar to the CNN case in Eq.[7} F in Eq. can be further derived
as:

F/~F +o |W- Z X;||e Z X;|. an
JEN(4) JEN(4)

Thus, the change A F; can be formulated as:

AFmo [W- > X;|- e Y X, (12)
JEN(3) FEN(4)

Eq. [12] shows that in GNNG, the effect of weight changes can be amplified by the aggregation
of inputs from a node’s neighborhood, contrasting with the more localised impact seen in CNNs
(Eq.[8). The sensitivity in GNNGs is further influenced by the complex graph structure, which can
lead to diverse impacts depending on the node’s position and connectivity within the graph. These
characteristics render GNNs particularly susceptible to small parameter misalignment during model
merging processes.

The proof is complete.]

G.2 Proof of Lemma 5.1

Lemma 5.1 (Variance Reduction in Interpolated Graph Embeddings) The variance of the
graph embeddings in an interpolated child GNN is typically smaller than the variances of the
embeddings from the individual pre-trained parent GNNs.

Proof. Assume that G, and G, are two parent GNN models that have been trained independently, as
defined in Alg. 1. For a particular center node ¢, the output embeddings produced by these models at
layer ¢ are denoted as Ffa and Ff »» respectively, consistent with Sect.

We then perform a linear parameter interpolation between two parent models G, and G, to obtain a
child GNN G. For simplicity, we consider a scenario in which node features are linearly combined.
Aligning with the equations in Sect. 4, we have: Ff ~ aFf, + (1 — a)F},.

Consider each feature dimension of Ff ., and Ff , to be a random variable, due to input variations,
model initialisation, or stochastic training processes. We can then model F,, and F,f , as having
variances o2 and 05, respectively.

The variance of the interpolated features F in each dimension can be computed as follows:

Var(F) = Var (aF}, + (1 - a)F}}) . (13)

By exploiting the properties of variance, Eq.[I3|can be further derived into:

Var(Ff) = o®Var(F},) + (1 — a)*Var(F{,) + 2a(1 — a)Cov(F},, Ff,). (14)

i,a

Assume that the embeddings from G, and G, are independent, the covariance term Cov(Ff;a, Fip) =
0. Thus, Eq.[I4]can be simplified into:

Var(Ff) = o202 4 (1 — a)?0}. (15)
Now, we consider a specific case where 02 = g7 = o2 for simplicity. As such, we have:

Var(Ff) = a?0% + (1 — a)?0? = (1 -2a+2a%)0% = (1 — 2a(1 — a))o?. (16)

Given that a(1 — «) > 0 for o within the range [0, 1], and that 2a(1 — «) reaches its maximum
value when o = 0.5, it follows that:
Var(F}) < o2 (17)

Specifically, in the framework of GRAMA, the interpolation coefficient « is usually set to 0.5. This
choice is made to ensure an equitable integration of knowledge from both pre-trained models, facili-
tating a balanced contribution that avoids favouring the characteristics of either model. Consequently,
at a = 0.5, the variance Var(F, f) is minimised, indicating that the variance of node representations in
the resulting child GNN is typically less than that in the parent GNNs.

The proof is complete.

G.3 Proof of Proposition 5.1

10

Proposition 5.1 (Increased Susceptibility to Over-Smoothing in Child GNNs) Interpolated child
GNNs exhibit increased susceptibility to over-smoothing compared to their parent networks, as
measured by Dirichlet energy:

E(X*) < max (£(X7),E(Xy)) , (18)

where £(X*) denotes the Dirichlet energy for the node features X* at layer £ of the child GNN.

Proof. In the literature 52, Dirichlet Energy is employed to measure the smoothness of graph
signals, where a lower value indicates higher similarity or smoothness among node features. To
quantify over-smoothing in GNNs, Dirichlet energy is typically defined as:

1
EX) =5 D IX - X, (19)
i€V jEN;

where X represents the node features at layer £, and V is the set of vertices. N; denotes the neighbors
of node 7, and N is the total number of vertices.

In the context of the GRAMA framework, Eq. @] can be extended as:

1
E(X) = ~ Z Z [e(Xia = Xja) + (1 = @)(Xip — X;p)|1?
i€V jEN;

1
= DY @1 Xia = Xl + (1=)| Xip — X0
i€V JEN;

(20)

+ 2a(1 — Ck)<Xi’a — Xj’a, Xz',b — Xj7b>).

Assume that X; , and X ; are independently distributed, due to the independent training regimes of
G, and Gy. The cross-term (X, , — X o, X; , — X) will typically not contribute significantly to
increasing the total energy compared to the individual energies of X; , and X; ;. Therefore, Eq.[20]
simplifies to:

1
EX)m =YY (P Xia = Xjal® + (1=)| Xip — Xl
N iex. @1)

=a?E(X,) + (1 — a)?E(Xy).

From Eq. |21} the following inequality can be derived:
E(X) < max (£(X.),E(X)). 22)

Eq.[22|demonstrates that the Dirichlet energy of the resulted GNN from PMC is bounded above by
the maximum Dirichlet energy of the parent networks.

Notably, with an interpolation coefficient & = 0.5 in Eq. 2] the Dirichlet energy is effectively
reduced due to the equal weighting average of the energies from both parent models. This reduction
in Dirichlet energy typically results in greater homogeneity of node features across the network,
thereby increasing the susceptibility of the child GNN to over-smoothing. Such over-smoothing can
affect the network’s expressive power and discriminative capability, which are crucial for effectively
performing downstream tasks.

The proof is complete.

H Extended Limitation Discussion

In this section, we discuss potential solutions to address the limitations outlined in the main paper.
The current DuMCC framework does not accommodate scenarios where parent models have different
architectures or address tasks at different levels, challenges that fall within the scope of heterogeneous
GRAMA.

11

A potential solution could involve Partial GRAMA, which entails first identifying shared features
between two parent models that have different architectures or handle varied tasks. Subsequently,
this possible method would yield a multi-head child GNN that selectively integrates elements of the
pre-trained parent GNNs. Although this method would increase the model size compared to full
GRAMA, which combines the entire models, it would be expected to offer a more favourable balance
and trade-off between model size and performance.

To explore the possibility of a completely data-independent GRAMA scheme, one potential solution
is to generate fake graphs, as described in [9]], followed by alignment and calibration using these
generated graphs.

I Broader Impacts

Graph-based artificial intelligence (Al) is becoming increasingly essential to modern society, espe-
cially in key industries like transportation and healthcare, where data is often modeled as topological
graphs. In such graphs, nodes correspond to clusters of entities, and edges represent direct relation-
ships, such as pathways and connections in transportation networks or atoms and bonds in molecular
structures. The use of graph-based Al spans various applications from enhancing autonomous vehicle
navigation and predicting traffic patterns to accelerating drug development and improving medical
diagnoses.

In the realm of analysing topological graph data, Graph Neural Networks (GNNs) have become the
leading Al technology in recent years. Nonetheless, the increasing reliance on GNN models has led
to concerns about their environmental impact due to higher energy demands. This paper proposes
leveraging existing GNNs to reduce the need for training from scratch, aiming to improve the energy
efficiency of graph-based Al systems. By doing so, it enhances the sustainability of graph-based Al
operations, contributing to lower energy emissions and decreasing production costs. This reduction
in costs is expected to drive economic growth, potentially leading to more employment opportunities
and broader economic benefits over time.

References

[1] Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
modulo permutation symmetries. In /CLR, 2023.

[2] Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization of
model merging recipes. arXiv preprint arXiv:2403.13187, 2024.

[3] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, loannis Brilakis, Martin Fischer, and
Silvio Savarese. 3d semantic parsing of large-scale indoor spaces. In CVPR, 2016.

[4] Mehdi Bahri, Gaétan Bahl, and Stefanos Zafeiriou. Binary graph neural networks. arXiv
preprint arXiv:2012.15823, 2020.

[5] K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal, Y. Prabhu, and M. Varma. The extreme
classification repository: Multi-label datasets and code, 2016.

[6] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In /ICML, 2020.

[7] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi Muthukrishnan.
One trillion edges: Graph processing at facebook-scale. Proceedings of the VLDB Endowment,
2015.

[8] Gene Ontology Consortium. The gene ontology resource: 20 years and still going strong.
Nucleic acids research, 47(D1):D330-D338, 2019.

[9] Xiang Deng and Zhongfei Zhang. Graph-free knowledge distillation for graph neural networks.
In IJCAI 2021.

[10] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

12

[11] Kaituo Feng, Changsheng Li, Ye Yuan, and Guoren Wang. Freekd: Free-direction knowledge
distillation for graph neural networks. In KDD, 2022.

[12] Tommaso Furlanello, Zachary Lipton, Michael Tschannen, Laurent Itti, and Anima Anandkumar.
Born again neural networks. In ICML, 2018.

[13] Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. Graph neural architecture
search. In IJCAI, 2021.

[14] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In /CML, 2017.

[15] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NeurIPS, 2017.

[16] Yunzhi Hao, Yu Wang, Shunyu Liu, Tongya Zheng, Xingen Wang, Xinyu Wang, Mingli Song,
Wenqi Huang, and Chun Chen. Attribution guided layerwise knowledge amalgamation from
graph neural networks. In ICONIP, 2023.

[17] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. In
NIPS Deep Learning and Representation Learning Workshop, 2015.

[18] Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec.
Ogb-lsc: A large-scale challenge for machine learning on graphs. In NeurIPS Datasets and
Benchmarks, 2021.

[19] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv preprint arXiv:2005.00687, 2020.

[20] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast
graph representation learning. In NeurIPS, 2018.

[21] Ttay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. In NeurIPS, 2016.

[22] Moritz Imfeld, Jacopo Graldi, Marco Giordano, Thomas Hofmann, Sotiris Anagnostidis, and
Sidak Pal Singh. Transformer fusion with optimal transport. In /CLR, 2024.

[23] Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph
condensation for graph neural networks. In ICLR, 2022.

[24] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In ICML, 2018.

[25] Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion
by merging weights of language models. In ICLR, 2023.

[26] Yongcheng Jing. Efficient representation learning with graph neural networks. PhD thesis,
2023.

[27] Yongcheng Jing, Yining Mao, Yiding Yang, Yibing Zhan, Mingli Song, Xinchao Wang, and
Dacheng Tao. Learning graph neural networks for image style transfer. In ECCV, 2022.

[28] Yongcheng Jing, Xinchao Wang, and Dacheng Tao. Segment anything in non-euclidean domains:
Challenges and opportunities. arXiv preprint arXiv:2304.11595, 2023.

[29] Yongcheng Jing, Yiding Yang, Xinchao Wang, Mingli Song, and Dacheng Tao. Amalgamating
knowledge from heterogeneous graph neural networks. In CVPR, 2021.

[30] Yongcheng Jing, Yiding Yang, Xinchao Wang, Mingli Song, and Dacheng Tao. Meta-aggregator:
Learning to aggregate for 1-bit graph neural networks. In ICCV, 2021.

[31] Yongcheng Jing, Chongbin Yuan, Li Ju, Yiding Yang, Xinchao Wang, and Dacheng Tao. Deep
graph reprogramming. In CVPR, 2023.

13

[32] Chaitanya K Joshi, Fayao Liu, Xu Xun, Jie Lin, and Chuan-Sheng Foo. On representation
knowledge distillation for graph neural networks. arXiv preprint arXiv:2111.04964, 2021.

[33] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin 7idek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. Nature, 2021.

[34] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Kathryn Tunya-
suvunakool, Olaf Ronneberger, Russ Bates, Augustin Zidek, Alex Bridgland, et al. Alphafold 2.
CASP, 2020.

[35] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[36] Guohao Li, Matthias Miiller, Guocheng Qian, Itzel C Delgadillo, Abdulellah Abualshour, Ali
Thabet, and Bernard Ghanem. Deepgcns: Making gens go as deep as cnns. TPAMI, 2021.

[37] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gens go as deep
as cnns? In ICCV, 2019.

[38] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In AAAI, 2018.

[39] Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. Adaptive graph convolutional neural
networks. In AAAI 2018.

[40] Weishi Li, Yong Peng, Miao Zhang, Liang Ding, Han Hu, and Li Shen. Deep model fusion: A
survey. arXiv preprint arXiv:2309.15698, 2023.

[41] Chang Liu, Chenfei Lou, Runzhong Wang, Alan Yuhan Xi, Li Shen, and Junchi Yan. Deep
neural network fusion via graph matching with applications to model ensemble and federated
learning. In ICML, 2022.

[42] Haibo Liu, Di Zhang, Liang Wang, and Xin Song. Multi-teacher local semantic distillation
from graph neural networks. In ADMA, 2023.

[43] Xin Liu, Mingyu Yan, Lei Deng, Guoqi Li, Xiaochun Ye, Dongrui Fan, Shirui Pan, and Yuan
Xie. Survey on graph neural network acceleration: An algorithmic perspective. In IJCAI, 2022.

[44] Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, and Wenwu Zhu. Disentangled graph convolu-
tional networks. In ICML, 2019.

[45] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. JMLR, 2008.

[46] Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. In
NeurlPS, 2022.

[47] Hoang NT and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass
filters. arXiv preprint arXiv:1905.09550, 2019.

[48] Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. arXiv preprint arXiv:1511.06342, 2015.

[49] Yijian Qin, Ziwei Zhang, Xin Wang, Zeyang Zhang, and Wenwu Zhu. Nas-bench-graph:
Benchmarking graph neural architecture search. In NeurIPS Datasets and Benchmarks, 2022.

[50] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

[51] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In /CLR, 2020.

[52] T Konstantin Rusch, Michael Bronstein, and Siddhartha Mishra. A survey on oversmoothing in
graph neural networks. SAM Research Report, 2023.

14

[53] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv
preprint arXiv:1606.04671, 2016.

[54] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superglue:
Learning feature matching with graph neural networks. In CVPR, 2020.

[55] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In ESWC, 2018.

[56] Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. In NeurIPS, 2020.

[57] George Stoica, Daniel Bolya, Jakob Brandt Bjorner, Pratik Ramesh, Taylor Hearn, and Judy
Hoffman. Zipit! merging models from different tasks without training. In ICLR, 2024.

[58] Xiu Su, Shan You, Fei Wang, Chen Qian, Changshui Zhang, and Chang Xu. Bcnet: Searching
for network width with bilaterally coupled network. In CVPR, 2021.

[59] Xiu Su, Shan You, Jiyang Xie, Fei Wang, Chen Qian, Changshui Zhang, and Chang Xu.
Searching for network width with bilaterally coupled network. TPAMI, 2022.

[60] Xiu Su, Shan You, Jiyang Xie, Mingkai Zheng, Fei Wang, Chen Qian, Changshui Zhang,
Xiaogang Wang, and Chang Xu. Vitas: Vision transformer architecture search. In ECCV, 2022.

[61] Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In /CLR, 2018.

[62] Can Wang, Zhe Wang, Defang Chen, Sheng Zhou, Yan Feng, and Chun Chen. Online adversarial
distillation for graph neural networks. arXiv preprint arXiv:2112.13966, 2021.

[63] Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng Zhang, Xing Xie,
and Minyi Guo. Graphgan: Graph representation learning with generative adversarial nets. In
AAAI 2018.

[64] Junfu Wang, Yunhong Wang, Zhen Yang, Liang Yang, and Yuanfang Guo. Bi-gcn: Binary
graph convolutional network. arXiv preprint arXiv:2010.07565, 2020.

[65] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul
Kanakia. Microsoft academic graph: When experts are not enough. 9SS, 2020.

[66] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M.
Solomon. Dynamic graph cnn for learning on point clouds. TOG, 2019.

[67] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In ICML, 2022.

[68] Zhengin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine
learning. Chemical science, 2018.

[69] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. TNNLS, 2020.

[70] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

[71] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. In
ICML, 2018.

[72] Zhengqi Xu, Ke Yuan, Huiqiong Wang, Yong Wang, Mingli Song, and Jie Song. Training-free
pretrained model merging. In CVPR, 2024.

15

[73] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph convolutional networks for
skeleton-based action recognition. In AAAI, 2018.

[74] Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng
Tao. Model merging in 1lms, mllms, and beyond: Methods, theories, applications and opportu-
nities. arXiv preprint arXiv:2408.07666, 2024.

[75] Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng
Tao. Adamerging: Adaptive model merging for multi-task learning. In /CLR, 2024.

[76] Yiding Yang, Jiayan Qiu, Mingli Song, Dacheng Tao, and Xinchao Wang. Distilling knowledge
from graph convolutional networks. In CVPR, 2020.

[77] Jingwen Ye, Zunlei Feng, and Xinchao Wang. Flocking birds of a feather together: Dual-step
gan distillation via realer-fake samples. In VCIP, 2022.

[78] Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch. arXiv preprint arXiv:2311.03099,
2023.

[79] Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving
the performance of convolutional neural networks via attention transfer. arXiv preprint
arXiv:1612.03928, 2016.

[80] Shichang Zhang, Atefeh Sohrabizadeh, Cheng Wan, Zijie Huang, Ziniu Hu, Yewen Wang, Jason
Cong, and Yizhou Sun. A survey on graph neural network acceleration: Algorithms, systems,
and customized hardware. arXiv preprint arXiv:2306.14052, 2023.

[81] Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In /CLR, 2020.

[82] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng
Li, and Maosong Sun. Graph neural networks: A review of methods and applications. arXiv
preprint arXiv:1812.08434, 2018.

[83] Sheng Zhou, Yucheng Wang, Defang Chen, Jiawei Chen, Xin Wang, Can Wang, and Jiajun Bu.
Distilling holistic knowledge with graph neural networks. In ICCV, 2021.

[84] Xiatian Zhu, Shaogang Gong, et al. Knowledge distillation by on-the-fly native ensemble. In
NeurlPS, 2018.

16

	Extended Related Work
	Graph Neural Networks (GNNs)
	Model Reuse
	Efficient Learning on Graphs
	Over-smoothing Alleviation
	Model Merging (Model Fusion)

	Model-specific Formulas of Equation 2
	Dataset Statistics and Descriptions
	Sensitivity Analysis
	Additional Results and Implementation Details
	Multi-model Grama
	Proofs
	Proof of Lemma 4.1
	Proof of Lemma 5.1
	Proof of Proposition 5.1

	Extended Limitation Discussion
	Broader Impacts

