
A Appendix

This is the appendix for "Semialgebraic Representation of Monotone Deep Equilibrium Models and
Applications to Certification".

A.1 Proof of Lemma 1

Definition 1 (Clarke’s generalized Jacobian) [10] Let f : Rn → Rm be a locally Lipschitz vector-
valued function, denote by Ωf any zero measure set such that f is differentiable outside Ωf . For
x /∈ Ωf , denote by Jf (x) the Jacobian matrix of f evaluated at x. For any x ∈ Rn, the generalized
Jacobian, or Clarke Jacobian, of f evaluated at x, denoted by J Cf (x), is defined as the convex hull of
all m× n matrices obtained as the limit of a sequence of the form Jf (xi) with xi → x and xi /∈ Ωf .
Symbolically, one has

J Cf (x) := conv{limJf (xi) : xi → x, xi /∈ Ωf}.

In order to estimate the Lipschitz constant LqF,S , we need the following lemma:

Lemma 3 Let F : Rp0 → RK ,x 7→ Cz(x) be the fully-connected monDEQ. Its Lipschitz constant
is upper bounded by the supremum of the operator norm of its generalized Jacobian, i.e., define

L̄qF,S := sup
t,x∈Rp0 ,v,w∈RK ,J∈JC

z (x)

{tTJTCTv : ‖t‖q ≤ 1, wTv ≤ 1, ‖w‖q ≤ 1, x ∈ S} , (6)

then LqF,S ≤ L̄
q
F,S .

Proof : Since z(x) = ReLU(Wz(x) + Ux + u) by definition of monDEQ, z(x) is Lipschitz
according to [34, Theorem 1]. Furthermore, z(x) is semialgebraic by the semialgebraicity of ReLU
in (1). Therefore, the Clarke Jacobian of z is conservative. Indeed by [10, Proposition 2.6.2], the
Clarke Jacobian is included in the product of subgradients of its coordinates which is a conservative
field by [7, Lemma 3, Theorems 2 and 3]. Since F = C ◦ z, the mapping CJ Cz : x ⇒ CJ,
where J ∈ J Cz , is conservative for F by [7, Lemma 5]. So it satisfies an integration formula along
segments. Let x1,x2 ∈ E , and let γ : [0, 1] → Rp0 be a parametrization of the segment defined
by γ(t) = x1 + t(x2 − x1) (which is absolutely continuous). For almost all t ∈ [0, 1], we have
d
dtF (γ(t)) = CJγ′(t) = CJ(x2 − x1) for all J ∈ J Cz (γ(t)).

LetM = supx∈S,J∈JC
z (x) |||CJ|||q be the supremum of the operator norm |||CJ|||q for all J ∈ J Cz (x)

and all x ∈ S. We prove that M < +∞. Indeed, z(x) is Lipschitz, hence there exists N > 0 such
that |||J|||q < N for all J ∈ J Cz (x) and all x ∈ S. The value M is thus upper bounded by |||C|||qN .

Therefore, for almost all t ∈ [0, 1], ‖ d
dtF (γ(t))‖q ≤M‖x2 − x1‖q , and by integration,

‖F (x2)− F (x1)‖q =

∥∥∥∥∫ 1

0

d
dt
F (γ(t))dt

∥∥∥∥
q

≤
∫ 1

0

∥∥∥∥ d
dt
F (γ(t))

∥∥∥∥
q

dt ≤M‖x2 − x1‖q , (7)

which proves that LqF,S ≤ M . Let us show that M = L̄qF,S . Fix x ∈ Rp0 and J ∈ J Cz (x). By the
definition of operator norm,

|||CJ|||q =
∣∣∣∣∣∣(CJ)T

∣∣∣∣∣∣∗
q

= max
v∈RK

{‖JTCTv‖∗q : ‖v‖∗q ≤ 1}

= max
t∈Rp0 ,v∈RK

{tTJTCTv : ‖t‖q ≤ 1, ‖v‖∗q ≤ 1}

= max
t∈Rp0 ,v,w∈RK

{tTJTCTv : ‖t‖q ≤ 1, wTv ≤ 1, ‖w‖q ≤ 1} , (8)

where ‖ · ‖∗q denotes the dual norm of ‖ · ‖q defined by ‖v‖∗q := supw∈RK{wTv : ‖w‖q ≤ 1} for
all v ∈ RK , and the first equality is due to the fact that the operator norm of matrix CJ induced by
norm ‖ · ‖q is equal to the operator norm of its transpose (CJ)T induced by the dual norm ‖ · ‖∗q .

15

Indeed, by definition of operator norm and dual norm, we have

|||CJ|||q = sup
x∈Rp0

{‖CJx‖q : ‖x‖q ≤ 1} = sup
x∈Rp0 ,y∈Rp

{yTCJx : ‖x‖q ≤ 1, ‖y‖∗q ≤ 1}

= sup
x∈Rp0 ,y∈Rp

{xT (CJ)Ty : ‖x‖q ≤ 1, ‖y‖∗q ≤ 1} = sup
y∈Rp

{‖(CJ)Ty‖∗q : ‖y‖∗q ≤ 1}

=
∣∣∣∣∣∣(CJ)T

∣∣∣∣∣∣∗
q
.

The quantity L̄qF,S is just the maximization of Equation (8) for all x ∈ Rp0 and all J ∈ J Cz (x) and
therefore equals M . �

The function z is semialgebraic, and therefore, there exists a closed zero measure set Ωz such that
z is continuously differentiable on the complement of Ωz. For any x 6∈ Ωz, since z is C1 at x, we
have J Cz (x) = {Jz(x)} by definition of the Clarke Jacobian. Fix x 6∈ Ωz arbitrary. According to
the Corollary of Theorem 2.6.6, on page 75 of [10], we have

J Cz (x) ⊆ conv{J CReLU(Wz(x) + Ux + u) · J CWz(x)+Ux+u(x)}

= conv{J CReLU(Wz(x) + Ux + u) · (W · Jz(x) + U)}
= J CReLU(Wz(x) + Ux + u) · (W · Jz(x) + U), (9)

where the first inclusion is from the cited Corollary, the first equality is because z is C1 at x so that
the chain rule applies, and the last one is because the Clarke Jacobian is convex.

Fix any any x̄ ∈ Rp0 , then by definition J Cz (x̄) = conv{limJz(xi) : xi → x̄, i→ +∞,xi /∈ Ωz}.
Let {xi}i∈N be a sequence not in Ωz converging to x̄, for each xi /∈ Ωz, we have by (9) that Jz(xi) ∈
J CReLU(Wz(xi)+Uxi+u) · (W ·Jz(xi)+U), i.e., there exists Yi ∈ J CReLU(Wz(xi)+Uxi+u)
such that Jz(xi) = Yi(W · Jz(xi) + U). By [10, proposition 2.6.2 (b)], J CReLU has closed graph.
Therefore, by continuity of z, up to a subsequence, Yi → Y ∈ J CReLU(Wz(x̄) + Ux̄ + u) for
i→ +∞, which means

J Cz (x̄) ⊆ {J : Y ∈ J CReLU(Wz(x̄) + Ux̄ + u), J = Y(WJ + U)} , (10)

for all x̄ ∈ Rp0 . Let Y ∈ J CReLU(Wz + Ux + u), since we have coordinate-wise applications
of ReLU, we have that Y = diag(s) with s ∈ ∂ReLU(Wz + Ux + u). By equation (10), the
right-hand side of equation (6) is upper bounded by

max
t,x∈Rp0 ,s,z∈Rp,v,w∈RK ,J∈Rp×p0

{tTJTCTv : ‖t‖q ≤ 1, wTv ≤ 1, ‖w‖q ≤ 1, x ∈ S,

s ∈ ∂ReLU(Wz + Ux + u), z = ReLU(Wz + Ux + u),

J = diag(s) · (W · J + U)} . (LipMON-a)

Notice that in problem (LipMON-a), we have a matrix variable J of size p × p0, i.e., containing
p × p0 many variables, which is too large for any SDP solvers. To reduce the size, we use the
vector-matrix product trick introduced in [46] to reduce the size of the unknown variables. From
equation J = diag(s) · (W ·J+U), we have J = (Ip−diag(s) ·W)−1 ·diag(s) ·U. This inversion
makes sense because of the strong monotonicity of Ip −W and the fact that all entries of s lie in
[0, 1] [46, Proposition 1]. Hence

vTCJ = vTC · (Ip − diag(s) ·W)−1 · diag(s) ·U = rT · diag(s) ·U , (11)

where rT = vTC·(Ip−diag(s)·W)−1, which means r−WT ·diag(s)·r = CTv. Set y = diag(s)·r
and transpose both sides of equation (11), we have JTCTv = UTy with r−WT · y = CTv. We
can then rewrite the objective function of (LipMON-a) as tTUTy, leading to the following equivalent
problem

max
t,x∈Rp0 ,s,z,y,r∈Rp,v,w∈RK

{tTUTy : ‖t‖q ≤ 1, wTv ≤ 1, ‖w‖q ≤ 1, x ∈ S,

s ∈ ∂ReLU(Wz + Ux + u), z = ReLU(Wz + Ux + u),

r−WTy = CTv, y = diag(s) · r} . (LipMON-b)

We have shown that (LipMON-b) is the right hand side of Equation (LipMON) in Lemma 1 and is
an upper bound of the right hand side of Equation (6) in Lemma 3, i.e., L̄qF,S ≤ L̃

q
F,S .

16

A.2 Redundant Constraints of the Lipschitz Model

In order to avoid possible numerical issues of problem (LipMON), and to improve the bounds, we add
some redundant constraints to it. For variables r and y. Note that r = (Ip−WT · diag(s))−1 ·CTv,
hence ‖r‖2 ≤

∣∣∣∣∣∣(Ip −WT · diag(s))−1
∣∣∣∣∣∣

2
·
∣∣∣∣∣∣CT

∣∣∣∣∣∣
2
· ‖v‖2. The operator norm of a matrix induced

by L2 norm is its largest singular value. Hence the operator norm of (Ip −WT · diag(s))−1 is
the smallest singular value of matrix Ip −WT · diag(s), which is smaller or equal than 1 from
the recent work [46]. In summary, we have ‖r‖2 ≤ |||C|||2 · ‖v‖2 and ‖y‖2 ≤ |||C|||2 · ‖v‖2. For
Lipschitz Model w.r.t. L2 norm, we have ‖v‖2 ≤ 1; for Lipschitz Model w.r.t. L∞ norm, we
have ‖v‖∗∞ = ‖v‖1 ≤ 1, thus ‖v‖2 ≤ ‖v‖1 ≤ 1. Therefore, for both L2 and L∞ norm, we can
bound the L2 norm of variables r and y by |||C|||2. Moreover, we multiply the equality constraint
r−WT · y = CTv coordinate-wisely with variables s, z,y, r to produce redundant constraints and
improve the results. This strengthening technique is already included in the software Gloptipoly3
[20]. With all the discussion above, we now write the strengthened version of problem (LipMON-b)
as follows:

max
t,x∈Rp0 ,s,z,y,r∈Rp,v,w∈RK

{tTUTy : ‖t‖q ≤ 1, wTv ≤ 1, ‖w‖q ≤ 1, x ∈ S,

s ∈ ∂ReLU(Wz + Ux + u), z = ReLU(Wz + Ux + u),

r−WTy = CTv, y = diag(s) · r, ‖y‖2 ≤ |||C|||2 · ‖v‖2, ‖r‖2 ≤ |||C|||2 · ‖v‖2,
s(r−WTy) = s(CTv), z(r−WTy) = z(CTv),

y(r−WTy) = y(CTv), r(r−WTy) = r(CTv)} . (LipMON-c)

A.3 Proof of Lemma 2

The SOS constraint in problem (EllipMON-SOS-d) can be written as

σ0(x, z) = −
(
‖Q(Cz + c) + b‖22 − 1 (=: f1(x, z))

+ σ1(x, z)T gq(x− x0) (=: f2(x, z))

+ τ(x, z)T (z(z−Wz−Ux− u)) (=: f3(x, z))

+ σ2(x, z)T (z−Wz−Ux− u) (=: f4(x, z))

+ σ3(x, z)T z
)

(=: f5(x, z))

= −
(
f1(x, z) + f2(x, z) + f3(x, z) + f4(x, z) + f5(x, z)

)
=: −f(x, z) .

For d = 1, denote by Mi the Gram matrix of polynomial fi(x, z) for i = 1, . . . , 5 and M the Gram
matrix of polynomial f(x, z), with basis [xT , zT , 1]. We have explicitly M =

∑5
i=1 Mi, where Mi

17

has the following form

M1 =

0p0×p0 0p0×p 0p0×1
0p×p0 CTQ2C CTQ2c + CTQb
01×p0 cTQ2C + bTQC cTQ2c + 2bTQc + bTb− 1

 ,

M2 =



 −diag(σ1) 0p0×p diag(σ1) · x0

0p×p0 0p×p 0p×1
xT0 · diag(σ1) 01×p σT1 (ε2 − x2

0)

 , for L∞-norm,

σ1

−Ip0 0p0×p x0

0p×p0 0p×p 0p×1
xT0 01×p ε2 − xT0 x0

 , for L2-norm,

M3 =

 0p0×p0 − 1
2U

Tdiag(τ) 0p0×1
− 1

2diag(τ)U diag(τ)(Ip −W) − 1
2diag(τ) · u

01×p0 − 1
2u

T · diag(τ) 0

 ,
M4 =

 0p0×p0 0p0×p − 1
2U

Tσ3
0p×p0 0p×p

1
2 (Ip −WT)σ3

− 1
2σ

T
3 U

1
2σ

T
3 (Ip −W) −σT3 u

 ,
M5 =

0p0×p0 0p0×p 0p0×1
0p×p0 0p×p

1
2σ2

01×p0
1
2σ

T
2 0

 .
Moreover, in order to improve the quality of the ellipsoid, we can also use the slope restriction
condition of ReLU function as proposed in [22]: (zj − zi)(Wj,:z + Uj,:x + uj −Wi,:z−Ui,:x−
ui)− (zj − zi)2 ≥ 0 for i 6= j. The Gram matrix of the SOS combination of these constraints with
basis [xT , zT , 1] has the form

M6 =

[
U W u

0p×p0 Ip 0p×1
01×p0 01×p 1

]T [
0p0×p0 T 0p0×1

T −2T 0p×1
01×p0 01×p 0

][
U W u

0p×p0 Ip 0p×1
01×p0 01×p 1

]
,

where T =
∑p−1
i=1

∑p
j=i+1 λij(ei − ej)(ei − ej)

T with λij ≥ 0 for all i < j, and {ei}pi=1 ⊆ Rp is
the canonical basis of Rp. Since σ0(x, z) is an SOS polynomial of degree at most 2, we conclude that
−M � 0. According to Lemma 5 in [14], the constraint −M � 0 is equivalent to an SDP constraint
using Schur complements, which finishes the proof of Lemma 2.

A.4 An Adversarial Example

A.5 Licenses of Used Assets

Table 4: Summary of the licenses of used assets
Software License

Julia MIT License
JuMP Mozilla Public License
Matlab Proprietary Software
CVX CVX Standard License

Python Python Software Foundation License
Pytorch Berkeley Software Distribution
Mosek Proprietary Software

Our code CeCILL Free Software License

18

(a) Original example, classified as 7 (b) Adversarial example, classified as 3

Figure 2: An adversarial example of the first test MNIST input found by PGD algorithm for L∞
norm with ε = 0.1.

19

