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APPENDIX

A AE GENERATION ALGORITHM

The function (6) is used to estimate the gradient from the Natural evolution strategy (NES) Ilyas et al.
(2018). The detailed method for zeroth-order AE generation in VFL is presented in Algorithm 2. In
step 6, we use antithetic sampling to generate noise for efficiency.

∇ηt
i
L(ηt

i , Ct) ≈ 1

σn

n∑
j=1

δjL
(
ηt
i + σδj , Ct

)
, (6)

Algorithm 2 Zeroth-order AE generation in VFL
1: Input: Batch [Bt], adversarial embedding ht

i,a, benign embedding ht
i,b, i ∈ [Bt], corruption

pattern Ct, learning rate lr, the sample size of the Gaussion noise n, the perturbation budget β,
query budget Q, and the embedding range [lbi, ubi], i ∈ [Bt].

2: Initialization: ηt
i,m = 0,m ∈ [M ] , ηt

i = [ηt
i,a1

, . . . ,ηt
i,aC

], counter s = 0.
3: for i ∈ [Bt] do
4: for q ∈ [Qn ] do
5: Clamp the perturbation to ∥ηt

i∥∞ ≤ β(ubi − lbi).
6: Make a query to the server with adversarial embedding h̃t

i,a = ht
i,a + ηt

i
7: if the attack is not successful then
8: Initiate n

2 noise vectors δv ∼ N (0, I), v ∈ {1, .., n
2 }, another n

2 noise vectors are
δu = −δv, u ∈ {n

2 , ..., n}.
9: Clamp the perturbation to ∥ηt

i + δj∥∞ ≤ β(ubi − lbi), where j ∈ [n].
10: Make n queries to the server and estimate the gradient Ĝ through function (6).
11: Update the perturbation ηt

i = ηt
i − lr ∗ Ĝ.

12: else
13: Break the loop, store ηt

i and s = s+ 1.
14: end if
15: end for
16: end for
17: Clamp ∥ηt

i∥∞ ≤ β(ubi − lbi), i ∈ [Bt], return ηt
i and the attack success rate s

Bt .

B PROOFS IN SECTION REGRET ANALYSIS

In this section, we provide detailed proofs of lemmas and the theorem in Section 6 Regret Analysis
of our paper. We initiate the proof procedure by establishing the definitions for two key events and
three supporting facts, intended to streamline the proof process.
Fact 1 (Hoeffding’s inequality). Let X1, . . . , Xn be independent i.i.d. random variables bounded
in [a, b], then for any δ > 0, we have

Pr

(∣∣∣∣∑n
i=1 Xi

n
− E(Xi)

∣∣∣∣ ≥ δ

)
≤ 2 exp

(
−2nδ2

(b− a)2

)
.

Fact 2 (Abramowitz And Stegun 1964). For a Gaussian distributed random variable Z with mean
m and variance σ2, for any z,

1

4
√
π
· e−7z2/2 < Pr(|Z −m| > zσ) ≤ 1

2
e−z2/2

Fact 3 (Concentration Bounds). Let X1, . . . , Xn be 0-1-valued random variables. Suppose that
there are 0 ⩽ δi ⩽ 1, for 1 ⩽ i ⩽ n, such that, for every set S ⊆ [n],Pr [∧i∈SXi = 1] ⩽

∏
i∈S δi.

Let δ = (1/n)
∑n

i=1 δi. Then, for any γ such that δ ⩽ γ ⩽ 1, we have Pr [
∑n

i=1 Xi ⩾ γn] ⩽
e−nD(γ∥δ), where D(a∥b) is the cross entropy of a and b.
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Definition 3 (Events E1(t) and E2(t)). E1(t) is the event that the optimal arm 1 satisfies n1(t) <
(t−1)
N ,∀t ∈ [T − t0]. E2(t) is the event that the optimal arm 1 is not identified in the empirical

competitive set Et at round t, t > t0.

Based on the above facts and the definition, we then provide the following lemmas.

Lemma 3. Let γ = N−1
N , and δ = (N − 1)( 12 exp(−∆2

min/16) + 2 exp(−∆2
min/4) −

1
2 exp(−5∆2

min/16)+exp
(
− (t0−1)∆2

min

2N

)
+exp(−∆2

min)). The probability of event E1(t) is upper

bounded by Pr(n1(t) <
t−1
N ) ≤ exp (−tD(γ∥δ)).

Proof. Let Xτ = 0 denote the optimal arm 1 is pulled at τ round, and Xτ = 1 denotes that the best
arm is not pulled. Considering the probability Pr(n1(t) <

t−1
N , t > t0), we assume that each arm is

pulled at least two times after the warm-up round t0. Therefore, we can transform the probability
Pr(n1(t) <

t
N , t > t0) into Pr(

∑t
τ=t0+1 Xτ > (N−1)

N t+ 2N+1
N ) ≤ Pr(

∑t
τ=t0+1 Xτ > (N−1)

N t).

In our algorithm, for every set S ⊆ [t− t0], Pr (∧τ∈SXτ = 1) =
∏

τ∈S Pr (Xτ = 1|Fτ ), where Fτ

is the history of pulling the optimal arm 1 until round τ . We first analyze the upper bound of the
probability Pr (Xτ = 1|Fτ ), when τ ∈ [t− t0].

From our algorithm, we can derive that Pr (Xτ = 1|Fτ ) ≤
∑

ℓ∈[N ]\1 Pr (θ1(τ) < θℓ(τ)|Fτ )

+
∑

ℓ∈[N ]\1 Pr
(
φ̂1(τ) < µ̂ℓ(τ), nℓ(t) ≥ (τ−1)

N

)
, where ℓ is a sub-optimal arm. We then analyze

the bound of probablity Pr (Xτ = 1|Fτ ) as follows:

∑
ℓ∈[N ]\1

Pr (θ1(τ) < θℓ(τ)|Fτ ) +
∑

ℓ∈[N ]\1

Pr

(
φ̂1(τ) < µ̂ℓ(τ), nℓ(τ) ≥

(τ − 1)

N

)

≤
∑

ℓ∈[N ]\1

Pr

((
θ1(τ) < µ1 −

∆ℓ

2

)⋃(
θℓ(τ) > µ1 −

∆ℓ

2

))

+
∑

ℓ∈[N ]\1

Pr

((
φ̂1(τ) < µ1 −

∆min

2

)⋃(
µ̂ℓ(τ) > µ1 −

∆min

2

)
, nℓ(τ) ≥

(τ − 1)

N

)
(a)

≤
∑

ℓ∈[N ]\1

Pr

(
θ1(τ) < µ1 −

∆ℓ

2

)
+

∑
ℓ∈[N ]\1

Pr

(
θℓ(τ) > µℓ +

∆ℓ

2

)

+
∑

ℓ∈[N ]\1

Pr

(
φ̂1(τ) <

∑T
t=1 E[rmax

1 (t)]

T
− ∆min

2

)

+
∑

ℓ∈[N ]\1

Pr

(
µ̂ℓ(τ) > µℓ +

∆min

2
, nℓ(τ) ≥

(τ − 1)

N

)
(b)

≤ (N − 1)((
1

2
exp(−∆2

min/16) + 2 exp(−∆2
min/4)

− 1

2
exp(−5∆2

min/16) + exp

(
− (t0 − 1)∆2

min

2N

)
+ exp(−∆2

min)),

(7)

where we have (a) from the union bound. For inequality (b), our objective is to delineate the
upper bounds of to derive the upper bound of Pr

(
θ1(τ) < µ1 − ∆ℓ

2

)
and Pr

(
θℓ(τ) > µℓ +

∆ℓ

2

)
.

To achieve this, we invert our approach to discuss the lower bounds of Pr
(
θ1(τ) ≥ µ1 − ∆ℓ

2

)
and

Pr
(
θℓ(τ) ≤ µℓ +

∆ℓ

2

)
. We first focus on the probability Pr

(
θ1(τ) ≥ µ1 − ∆ℓ

2

)
:
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Pr

(
θ1(τ) ≥ µ1 −

∆ℓ

2

)
≥ Pr

(
θ1(τ) ≥ µ̂1(τ)−

∆ℓ

4
≥ µ1 −

∆ℓ

2

)
= Pr

(
θ1(τ) ≥ µ̂1(τ)−

∆ℓ

4

)
Pr

(
µ̂1(τ)−

∆ℓ

4
≥ µ1 −

∆ℓ

2

)
(c)

≥
(
1− 1

4
exp(−n1(τ)∆

2
ℓ/32)

)(
1− exp(−n1(τ)∆

2
ℓ/8)

)
= 1− 1

4
exp(−n1(τ)∆

2
ℓ/32)− exp(−n1(τ)∆

2
ℓ/8) +

1

4
exp(−5n1(τ)∆

2
ℓ/32),

(8)
where the inequality (c) is from Fact 1 and 2. Similarly, we can derive

Pr

(
θℓ(τ) ≤ µℓ +

∆ℓ

2

)
≥ 1−1

4
exp(−nℓ(τ)∆

2
ℓ/32)−exp(−n1(τ)∆

2
ℓ/8)+

1

4
exp(−5nℓ(τ)∆

2
ℓ/32).

Then we can derive (b) using Fact 1 and we have ensured each arm is pulled at least 2 times during
the warm-up round t0.

For every S ⊆ [t − t0], we have an upper bound value δmax for Pr (Xτ = 1|Fτ ): δmax =

(N − 1)( 12 exp(−∆2
min/16) + 2 exp(−∆2

min/4) − 1
2 exp(−5∆2

min/16) + exp
(
− (t0−1)∆2

min

2N

)
+

exp(−∆2
min)). Let δ = 1

t−t0

∑t
τ=t0+1 δmax = δmax and γ = (N−1)

N , we can derive the following
bound from Fact 3:

Pr(n1(t) <
t− 1

N
) = Pr(

t∑
τ=0

Xτ > t
(N − 1)

N
) ≤ exp (−tD(γ∥δ)) . (9)

Lemma 4. After the warm-up round t0, for any sub-optimal arm k ̸= 1,∆k = µ1 − µk ≥ 0, the
following inequality holds,

T∑
t=t0+1

Pr

(
k = kemp(t), n1(t) ≥

(t− 1)

N

)
≤ 4N

∆2
k

Proof. We bound the probability by :

=

T∑
t=t0+1

Pr

(
k = kemp(t), n1(t) ≥

(t− 1)

N

)
(d)
=

T∑
t=t0+1

Pr

(
k = kemp(t), n1(t) ≥

(t− 1)

N
,nk(t) ≥

(t− 1)

N

)

≤
T∑

t=t0+1

Pr

(
µ̂k(t) ≥ µ̂1(t), nk(t) ≥

(t− 1)

N
,n1(t) ≥

(t− 1)

N

)

≤
T∑

t=t0+1

Pr

((
(µ̂1(t) ≤ µ1 −

∆k

2
)
⋃

(µ̂k(t) ≥ µ1 −
∆k

2
)

)
, nk(t) ≥

(t− 1)

N
,n1(t) ≥

(t− 1)

N

)

=

T∑
t=t0+1

Pr

((
(µ̂1(t) ≤ µ1 −

∆k

2
)
⋃

(µ̂k(t) ≥ µk +
∆k

2
)

)
, nk(t) ≥

(t− 1)

N
,n1(t) ≥

(t− 1)

N

)
(e)

≤
T∑

t=t0+1

Pr

(
µ̂1(t)− µ1 ≤ −∆k

2
, n1(t) ≥

(t− 1)

N

)
+

T∑
t=t0+1

Pr

(
µ̂k(t)− µk ≥ ∆k

2
, nk(t) ≥

(t− 1)

N

)
(f)

≤
T∑

t=t0+1

2 exp

(
−(t− 1)∆2

k

2N

)
(g)

≤ 4N

∆2
k

,

(10)
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Here, (d) holds because of the truth that the empirical best arm is kemp(t) selected from the set
St = {k ∈ [N ] : nk(t) ≥ (t−1)

N }. Inequality (e) follows the union bound. We have (f) from the

truth that µ̂k(t) =
∑t

τ=1 rk(τ)1(k(τ)=k)

nk(t)
,∀k ∈ [N ] and Fact 1. The last inequality (g) uses the fact

that ∆2
k

2N > 0 and the geometric series.

Proof of Lemma 1. Now, we prove Lemma 1 in the main paper.

Proof. During t0 warm-up rounds, the maximum pulling times of a non-competitive arm knc are
bound in t0. We then analyze the expected number of times pulling knc after round t0.

T∑
t=t0+1

Pr(k(t) = knc)

=

T∑
t=t0+1

Pr(k(t) = knc, n1(t) ≥
(t− 1)

N
) +

T∑
t=t0+1

Pr(k(t) = knc, n1(t) <
(t− 1)

N
)

(h)

≤
T∑

t=t0+1

Pr(k(t) = knc, knc = kemp(t), n1(t) ≥
(t− 1)

N
)

+

T∑
t=t0+1

Pr

(
k(t) = knc, knc ∈ St \ kemp(t), n1(t) ≥

(t− 1)

N

)
+

T∑
t=t0+1

Pr(n1(t) <
(t− 1)

N
)

(i)

≤
T∑

t=t0+1

Pr

(
µ̂1(t) ≤ φ̂knc(t), k(t) = knc, n1(t) ≥

(t− 1)

N

)
+

4N

∆2
knc

+

T∑
t=t0+1

exp (−tD(γ∥δ))

≤
T∑

t=t0+1

Pr

((
(µ̂1(t) ≤ µ1 +

∆̃knc,1

2
)
⋃

(φ̂knc(t) ≥ µ1 +
∆̃knc,1

2
)

)
, k(t) = knc, n1(t) ≥

(t− 1)

N

)

+

T∑
t=t0+1

exp (−tD(γ∥δ)) + 4N

∆2
knc

(j)

≤
T∑

t=t0+1

Pr

(
µ̂1(t) ≤ µ1 +

∆̃knc,1

2
n1(t) ≥

(t− 1)

N

)

+

T∑
t=t0+1

Pr

(
φ̂knc(t) ≥

∑T
t=1 E[rmax

knc (t)]

T
− ∆̃knc,1

2
, k(t) = knc

)
+

T∑
t=t0+1

exp (−tD(γ∥δ)) + 4N

∆2
knc

(k)

≤
T∑

t=t0+1

exp

(
−(t− 1)∆̃2

knc,1

2N

)
+

T∑
j=1

Pr

(
φ̂knc(τj)−

∑T
t=1 E[rmax

knc (t)]

T
≥ −∆̃knc,1

2

)

+

T∑
t=t0+1

exp (−tD(γ∥δ)) + 4N

∆2
knc

(l)

≤
T∑

t=t0+1

exp

(
−(t− 1)∆̃2

knc,1

2N

)
+

T∑
j=1

exp

(
−
j∆̃2

knc,1

2

)
+

T∑
t=t0+1

exp (−tD(γ∥δ)) + 4N

∆2
knc

(m)

≤ 2N

∆̃2
knc,1

+
2

∆̃2
knc,1

+
1

D(γ∥δ)
+

4N

∆2
knc

= O(1),

(11)
Here, both (h) and (j) are derived using the union bound. We have (i) from the Lemma 4 and
Lemma 3. The inequality (k) is obtained from Fact 1, wherein j in (k) explicitly denotes the round
index when arm ksub is pulled. Inequality (l) stems from Fact 1. We have (m) because of the truth

that
∆̃2

knc,1

2N ≥ 0,
∆̃2

knc,1

2 ≥ 0, and D(γ∥δ) ≥ 0. We also use geometric series in (m).
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We provide another Lemma to facilitate the proof of Lemma 2 in the main paper.

Lemma 5. The following inequality holds,

Pr (E2(t)) ≤ 4(N − 1)t exp

(
− (t− 1)∆2

min

2N

)
+

(N − 1)

D(γ∥δ)
,

where ∆min = mink ∆k.

Proof.

Pr (E2(t))
(n)

≤
∑

ℓ∈[N ]\1

Pr

(
φ̂1(t) < µ̂ℓ(t), n1(t) ≥

(t− 1)

N
,nℓ(t) ≥

(t− 1)

N

)

+
∑

ℓ∈[N ]\1

Pr

(
φ̂1(t) < µ̂ℓ(t), n1(t) <

(t− 1)

N
,nℓ(t) ≥

(t− 1)

N

)

+
∑

ℓ∈[N ]\1

Pr

(
µ̂1(t) < µ̂ℓ(t), n1(t) ≥

(t− 1)

N
,nℓ(t) ≥

(t− 1)

N

)

≤
∑

ℓ∈[N ]\1

Pr(

(
(φ̂1(t) < µ1 −

∆min

2
)
⋃

(µ̂ℓ(t) > µ1 −
∆min

2
)

)
,

n1(t) ≥
(t− 1)

N
,nℓ(t) ≥

(t− 1)

N
)

+
∑

ℓ∈[N ]\1

Pr(

(
(µ̂1(t) < µ1 −

∆min

2
)
⋃

(µ̂ℓ(t) > µ1 −
∆min

2
)

)
,

n1(t) ≥
(t− 1)

N
,nℓ(t) ≥

(t− 1)

N
) +

∑
ℓ∈[N ]\1

Pr

(
n1(t) <

(t− 1)

N

)
(o)

≤
∑

ℓ∈[N ]\1

Pr

(
(φ̂1(t) <

∑T
t=1 E[rmax

1 (t)]

T
− ∆min

2
, n1(t) ≥

(t− 1)

N

)

+
∑

ℓ∈[N ]\1

Pr

(
(µ̂1(t) < µ1 −

∆min

2
, n1(t) ≥

(t− 1)

N

)

+ 2
∑

ℓ∈[N ]\1

Pr

(
µ̂ℓ(t) > µℓ +

∆min

2
, nℓ(t) ≥

(t− 1)

N

)
+ (N − 1) exp (−tD(γ∥δ))

(p)

≤ 4(N − 1) exp

(
− (t− 1)∆2

min

2N

)
+ (N − 1) exp (−tD(γ∥δ)) ,

(12)
Inequality (n), using union bound, arises from the observation that when arm 1 is absent from the
empirical competitive set Et at round t, it is either not selected as the empirical best arm kemp(t) or its
φ̂1(t) is less than the estimated mean of the empirical best arm µ̂kemp(t)(t). The validity of inequality

(n) relies on the fact that
∑T

t=1 E[rmax
1 (t)]

T ≥ µ1 and Lemma 3. We establish the final inequality (p) by
leveraging Fact 1.

Proof of Lemma 2. Now, we present proof details of Lemma 2 in the main paper.

Proof. We split the analysis of
∑T

t=1 Pr(k(t) = ksub) into three parts: the pulls in the warm round;
the pulls when the event E2(t) happens after the warm round; the pulls when the complementary of
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E2(t) happens. We summarize it as follows:

T∑
t=1

Pr
(
k(t) = ksub

)
=

t0∑
t=1

Pr
(
k(t) = ksub

)
+

T∑
t=t0+1

Pr
(
k(t) = ksub, E2(t)

)
+

T∑
t=t0+1

Pr
(
k(t) = ksub, Ec

2(t)
)

≤
T∑

t=1

Pr
(
k(t) = ksub

)
+

T∑
t=t0+1

Pr (E2(t))

(13)

When event E2(t) does not happen, the analysis of the upper bound of pulling the competitive but
sub-optimal arm aligns to plain TS. We apply the result from Agrawal and Goyal (2012), which
bounds the number of times a sub-optimal arm k ̸= 1 is pulled within O(log(T )). In Lemma 5, when
E2(t) happens, we derive the following bound:

T∑
t=t0+1

Pr(E2(t)) ≤
T∑

t=t0+1

(
4(N − 1) exp

(
− (t− 1)∆2

min

2N

)
+ (N − 1) exp (−tD(γ∥δ))

)
≤ 8N(N − 1)

∆2
min

+
1

D(γ∥δ)
= O(1).

(14)
The proof is completed.

Proof the Theorem 1.

Proof. We revisit the definition of expected regret, given by:

E[R(T )] = E

[
T∑

t=1

(µ1 − µk(t))

]
= E

[
N∑

k=1

nk(T )∆k

]
.

Considering D competitive arms and (N −D) non-competitive arms, the regret of E-TS in T rounds
is bounded by:

E[R(T )] =
∑

knc∈[N−D]

E[nknc(T )]∆knc +
∑

ksub∈[D]

E[nksub(T )]∆ksub

(1)

≤
∑

knc∈[N−D]

∆kncO(1) +
∑

ksub∈[D]

∆ksubO(log(T ))

≤ (N −D)O(1) +DO(log(T )),

(15)

where the inequality (1) is from Lemma 2 and Lemma 1. Thus the proof is finalized.

C SUPPLEMENTARY EXPERIMENTS AND EXPERIMENTAL DETAILS

C.1 DATASET AND MODEL STRUCTURE

Table 1 provides essential information about each dataset used in our study. We will introduce more
details regarding the dataset characteristics and the corresponding model structures.

The Credit dataset consists of information regarding default payments, demographic characteristics,
credit data, payment history, and credit card bill statements from clients in Taiwan. The dataset
is partitioned evenly across six clients, each managing a bottom model with a Linear-BatchNorm-
ReLU structure. The server hosts the top model, comprising of two Linear-ReLU-BatchNorm layers
followed by a WeightNorm-Linear-Sigmoid layer.
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The Real-sim dataset is from LIBSVM, which is a library for support vector machines (SVMs).
10 clients equally hold the data features and compute embeddings through a bottom model with 2
Linear-ReLU-BatchNorm layers. The server controls the top model with 3 Linear-ReLU layers.

The FashionMNIST dataset consists of 28 × 28 grayscale images of clothing items. The dataset
is equitably distributed across 7 clients, with each holding a data portion of 28 × 4 dimensions.
On the client side, it holds a Linear-BatchNorm-ReLU bottom model. On the server side, the top
model comprises eight groups of Conv-BatchNorm-ReLU structures, two MaxPool layers, two
Linear-Dropout-ReLU layers, and a final Linear output layer.

The CIFAR-10 dataset contains 60,000 color images of size 32 × 32, representing vehicles and
animals. We divide each image into 4× 32 sub-images and distribute them among 8 clients. Each
client’s bottom model consists of 2 convolutional layers and 1 max-pooling layer. The server’s top
model is built with 6 convolutional layers and 3 linear layers.

The Caltech-7 dataset, a subset of seven classes from the Caltech-101 object recognition collection,
is distributed across six clients. Each client is assigned one unique feature view, encompassing
the Gabor feature, Wavelet moments (WM), CENTRIST feature, Histogram of Oriented Gradients
(HOG) feature, GIST feature, and Local Binary Patterns (LBP) feature, respectively. Every client
maintains a bottom model utilizing a Linear-BatchNorm-ReLU structure. At the server level, the top
model comprises eight Linear-ReLU layers, two Dropout layers, and a final Linear output layer.

The IMDB dataset comprises 50,000 highly polarized movie reviews, each categorized as either
positive or negative. For distributed processing across 6 clients, each review is divided into several
sentences, and an equal number of these sentences are allocated to each client. Each client utilizes a
Bert model without fine-tuning—at the bottom level to obtain an embedding with 512 dimensions.
These embeddings are then input to the server’s top model, which consists of two Linear-ReLU layers
followed by a final Linear output layer.

Table 1: VFL dataset and parameters descriptions.

Task Tabular CV Multi-view NLP
Dataset name Credit Real-sim FashionMNIST CIFAR10 Caltech-7 IMDB

Number of samples 30,000 72,309 70,000 60,000 1474 50,000
Feature size 23 20,958 784 1024 3766 -

Number of classes 2 2 10 10 7 2
Number of clients 7 10 7 8 6 6

Batchsize Bt 32 512 128 32 16 64
Warm-up rounds t0 50 50 80 80 80 40

C.2 EXPERIMENTAL RESULT IN ABLATION STUDY

Additional experiments have been conducted across a variety of datasets under diverse corruption
constraints, as illustrated in Figure 5.

C.3 DYNAMICS OF ARM SELECTION AND EMPIRICAL COMPETITIVE SET IN TS AND E-TS

We investigated the arm selection behavior of TS and E-TS during a targeted attack on FashionM-
NIST, as shown in Figure 6. This study also tracked the variation in the size of E-TS’s empirical
competitive set, depicted in Figure 6. The parameters for this analysis were consistent with those in
the FashionMNIST targeted attack scenario (Figure 1): t0 = 80, C = 2, β = 0.15, Q = 2000 and
the number of arms N =

(
7
2

)
= 21. We list all arms as follow:

[0: (client 1, client 2), 1: (client 1, client 3), 2: (client 1, client 4), 3: (client 1, client 5), 4:(client 1,
client 6), 5: (client 1, client 7), 6: (client 2, client 3), 7: (client 2, client 4), 8: (client 2, client 5), 9:
(client 2, client 6), 10: (client 2, client 7), 11: (client 3, client 4), 12: (client 3, client 5), 13: (client 3,
client 6), 14: (client 3, client 7), 15: (client 4, client 5), 16: (client 4, client 6), 17: (client 4, client 7),
18: (client 5, client 6), 19: (client 5, client 7), 20: (client 6, client 7)].

Analysis of Figure 6(a) reveals that initially, E-TS selected a suboptimal arm. However, after 140
rounds, it consistently chose arm 5 (representing the pair of client 1 and client 7), indicating a stable
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Figure 5: ASR using different number of corrupted clients.

selection. In contrast, TS continued to explore different arms during this period. Figure 6(b) shows
that the empirical competitive set in E-TS reduced to a single arm within the first 40 rounds. Initially,
the competitive arm selected by E-TS was not optimal. Nevertheless, E-TS effectively narrowed
down its focus to this suboptimal arm, eventually dismissing it as non-competitive and identifying
the best arm for selection.
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(a) The choice of arm in E-TS and TS.
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Figure 6: Dynamics of arm selection and competitive set in E-TS and TS.

C.4 MINIMUM QUERY BUDGET AND CORRUPTION CHANNELS TO ACHIEVE 50% ASR

To explore how the necessary number of queries and corrupted channels vary across different models,
datasets, and systems, we conducted experiments using Credit and Real-sim datasets. We specifically
analyzed the average number of queries q required to attain a 50% ASR under various levels of
client corruption (corruption constraint C). For this analysis, we applied the proposed attack on both
the Credit and Real-sim datasets in a 7-client setting. We varied C from 1 to 7 and recorded the
average queries q needed for attacking over 50% of the samples successfully. In addition to assessing
the impact of different datasets, we investigated the influence of model complexity by attacking
two deeper Real-sim models contrasting it with the standard 3-layer server model. Specifically, the
standard 3-layer model Real-sim(standard) has a Dropout layer after the first layer of the server
model and achieves 96.1% test accuracy. One deeper server model Real-sim(deep) added an extra
three layers to the Real-sim(standard) after the Dropout layer of the server model. Another model
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Real-sim(dropout) structure is the same as Real-sim(deep) except that it added another Dropout
layer before the penultimate layer of the server model. Both Real-sim(deep) and Real-sim(dropout)
have 97% test accuracy. Furthermore, to analyze the system’s effect on q and C, we conducted
experiments on Real-sim in a 10-client scenario, varying C from 1 to 10 and recording q. Throughout
these experiments, we maintained β = 0.8 and t0 = 2N , where N denotes the number of arms. The
results are presented in Figure 7.

1 2 3 4 5 6 7
Number of corrupted clients (C)

100

200

300

400

500

600

700

Av
er

ag
e 

nu
m

be
r o

f q
ue

rie
s (

q)

Average number of queries in different C

Real-sim(standard)
Credit
Real-sim(deep)
Real-sim(dropout)

(a) 7 clients.

1 2 3 4 5 6 7 8 9 10
Number of corrupted clients (C)

200

300

400

500

600

Av
er

ag
e 

nu
m

be
r o

f q
ue

rie
s (

q)

Average number of queries in different C

Real-sim

(b) 10 clients.

Figure 7: Average number of queries in different corruption constraint to achieve 50% ASR.

From Figure 7, we observe that the required average number of queries decreases with a looser (or
higher) corruption constraint C. The comparison of Real-sim and Credit (Figure 7(a)) reveals that
simpler datasets in the same task category (both being tabular datasets) necessitate fewer queries.

Contrary to our initial assumption, a deeper model does not necessarily require more queries. The
results for Real-sim(standard), Real-sim(deep), and Real-sim(norm) from Figure 7(a) suggest that
attacking a Real-sim(deep) requires fewer queries. A deeper model with an extra Dropout layer can
make the model more robust and needs more quires to achieve 50% ASR. The reason for that is
the deeper model will learn a different hidden feature of the sample, thus making the model have
different robustness compared to the shallow one. Dropout can enhance robustness by preventing the
model from becoming overly reliant on any single feature or input node, encouraging the model to
learn more robust and redundant representations.

Comparing Figure 7 (a) and (b), we deduce that systems with more clients demand a greater number
of queries to achieve the same ASR at a given C, due to each client possessing fewer features.

In conclusion, to attain a target ASR with the same C, simpler datasets within the same task require
fewer queries. Systems with a higher number of clients necessitate more queries. However, the
influence of the model’s complexity does not simply depend on the scales of model parameters but is
affected more by the Dropout layer.

C.5 DISCUSSION ON THE LARGE EXPLORATION SPACES

We extend the experiments in Figure 4 to larger exploration spaces, i.e. set the corruption constraint
C = 7 and C = 8, which results in

(
16
7

)
= 11, 440,

(
16
8

)
= 12, 870 arms, respectively. However,

constrained by the computation power and limited time in the rebuttal period, we compare E-TS
and plain TS in large exploration spaces through numerical simulation where ASR is substituted
with a sample in Gaussian distribution. For the simulation, we created a list of means starting from
0 up to 0.99, in increments of 0.01, each with a variance of 0.1. This list was extended until it
comprised 11, 440 − 1 and 12, 870 − 1 elements, to which we added the best arm, characterized
by a mean of 1 and a variance of 0.1. This list represents the underlying mean and variance of the
arms. Upon playing an arm, a reward is determined by randomly sampling a value, constrained to the
range [0, 1]. With knowledge of the underlying mean, we plotted the cumulative regret over rounds,
R(t) =

∑t
τ=1(µ1 − µk(τ)), where µ1 is the best arm’s mean, and k(τ) is the arm selected in round

τ . These results are presented in Figure 8.
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Figure 8: Regret in large exploration spaces.

The results from Figure 8 reveal that in large exploration spaces, TS struggles to locate the best arm
within a limited number of rounds. In contrast, E-TS demonstrates more rapid convergence, further
confirming the benefits of utilizing an empirical competitive set in large exploration spaces.

C.6 THE STUDY OF OPTIMAL CHOICE ON THE WARM-UP ROUND t0

To ascertain the ideal number of warm-up rounds t0 for different arm settings, we conducted numerical
experiments with N = 100 and N = 500. For N = 100, we experimented with t0 = 150 (less
than 2N ), t0 = 200, 300, 500 (within [2N, 5N ]), and t0 = 800 (greater than 5N ). Similarly, for
N = 500, the settings were t0 = 750 (less than 2N ), t0 = 1000, 2000, 2500 (within [2N, 5N ]), and
t0 = 4000 (greater than 5N ).

In these experiments, ASR was replaced with Gaussian distribution samples. We initialized 100
arms with means from 0 to 0.99 (in 0.01 increments) and variances of 0.1. The reward for playing
an arm was sampled from its Gaussian distribution. The cumulative regret R(T ) was computed as
R(T ) =

∑T
t=1(µ1 − µk(t)), where µ1 = 0.99 and k(t) is the arm selected at round t, as illustrated

in Figure 9.
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Figure 9: E-TS performance using different warm-up rounds.

Figure 9(a) shows that E-TS converges faster with a smaller t0, but with t0 = 150, it converges to
a sub-optimal arm. Figure 9(b) indicates faster convergence with smaller t0. Both figures suggest
that t0 = 2N achieves the most stable and rapid convergence, while t0 > 5N results in the slowest
convergence rate. Analyzing the pull frequencies of each arm during t0, we find that with t0 < 2N ,
most arms are pulled only once, and some are never explored. Conversely, with t0 ∈ [2N, 5N ], most
arms are pulled at least twice, yielding a more reliable estimation of their prior distributions.
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Thus, we recommend setting t0 to at least N , with the optimal range being [2N, 5N ] in practical
scenarios. This range ensures that each arm is sampled at least twice using TS, enabling a more
accurate initial assessment of each arm’s prior distribution. Such preliminary knowledge is vital for
E-TS to effectively form an empirical competitive set of arms. If t0 is too small, there’s an increased
risk of E-TS prematurely converging on a suboptimal arm due to inadequate initial data, possibly
overlooking the best arm in the empirical competitive set.
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