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1 Additional Implementation Details
Rooftop Approximation We convert all the vehicle meshes from our vehicle bank to to a set of SDF
volumes, which are then projected into a lower dimensional latent code of length 32 with PCA. Then
for each point cloud P = {p : p ∈ R3} which we wish to fit a mesh to, we optimize the latent code
z∗ such that

z∗ = argmin
z

∑
p∈P

H(p; z)2. (1)

Here H(· ; z) is the SDF volume decoded from z and z∗ minimizes the mean squared distance from
each point in P to the zero-level surface of the SDF. To learn z∗ we initialize with z = 0 and perform
200 steps of gradient updates using Adam with learning rate 0.001. Furthermore, the point cloud
is also transformed to a canonical coordinate frame. While we attempt this approximation for all
point clouds, a good fit is not always achievable since distant or occluded point clouds have a limited
number of points. Thus, if the mean squared distance after fitting is greater than 0.02m2, then we
default to using the top of the bounding box annotation as the roof.

Detection Model For the KITTI dataset we directly adopt the MMF model [1]. The multi-sensor
detector has two separate branches to extract features from images and LiDAR, in which LiDAR
points are voxelized and processed as a BEV image with 2D convolutions while images are processed
with a ResNet backbone [2]. For sensor fusion, each voxel in BEV performs K-nearest neighbour
(KNN) to sample close-by LiDAR points. We follow the orginal implementation and set K=1 in our
fusion modules. We use a slightly different variation of the MMF model for XENITH that is tuned for
more complex scenarios and faster inference. The differences can be summarized as follows:

1. The refinement module is removed as two-stage detection is slow in practice.
2. We modify the LiDAR feature extraction network from residual blocks to a feature pyramid

network [3] style to enable cross-scale fusion of features at different resolutions.
3. The number of image-LiDAR fusion modules is s reduced from 4 to 1, only fusing at a

single feature resolution.

Additional Dataset Details Both datasets were captured with 64 beam LiDARs spinning at 10Hz.
KITTI images are captured at a 370×1224 resolution and XENITH images are captured at a 320×2048
resolution. We filtered out samples from the dataset according to the following criteria:

1. Image is captured during the day, between 9 A.M. and 5 P.M. so that objects have sufficient
lighting.

2. Vehicle sample is within 70m longitudinally from the ego and 40m laterally.
3. After simulation, at least 70% of the pixels of the inserted mesh is visible in the image.

Depth Completion Our depth completion model adopts the architecture introduced in [4] and
we initialize the model with pre-trained weights from COCO. The model takes RGB images
concatenated with a sparse depth image obtained from projecting LiDAR points onto the image
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FN ASR FP ASR ASR AP (clean)

K = 0 23.80% 10.70% 32.60% 83.02
K = 1 43.15% 11.77% 49.76% 84.64
K = 3 25.80% 13.35% 37.36% 84.50
K = 5 36.67% 7.13% 41.54% 84.44
K = 7 59.25% 7.55% 62.05% 84.74

Table 1: We sweep K, the number of LiDAR
points used to query image features for each
BEV voxel. Overall, there is no clear trend
between K and robustness.
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Figure 1: Sweep of λfp, the term which
weights the false positive component of the
loss term. Increasing λfp trade false negative
success for false positives.

plane. For training, we use the official depth labels for KITTI and use aggregated LiDAR depths for
XENITH for supervision. We adopt the training loss and schedule from [5].

2 Additional Experiments
λfp Sweep In our experiments we set λfp = 1, here we vary the weighting coefficient to analyze how
the adversary adapts to focus more on either generating false negatives or false positives. We sweep
λfp and show the results in Figure 1. At λfp = 10, the attack can trade most of the false negative
success for false positives. In our main experiments, we chose to focus more on false negatives as
missed detections is far more problematic.

KNN Following previous implementations of multi-sensor fusion [1], when each BEV voxel perform
K-Nearest Neighbor search to query for LiDAR points, we set K = 1 in our main experiments. Here,
we vary K and conduct our attacks on models that are retrained to use more LiDAR points for each
BEV voxel during fusion. Results are shown in Table 1. Note that K = 0 is the equivalent of a
LiDAR only model. Overall there is no clear trend between this parameter and robustness to our
attack.

Success Rate Visualization To better stand where the attack is strong, we visualize the attack success
rate across location in BEV. The visualization is shown in Figure 2. Host vehicles that are farther
away are much easier to attack than those close by.

Qualitative Examples Additional qualitative examples are shown in Figure 3 for XENITH and
Figure 4 for KITTI. Furthermore, please see our supplementary video supplementary video.mp4 for
video demonstrations.

Figure 2: Visualization of the attack success rate across different locations in bird’s eye view. The
ego vehicle is at (0, 0) with x, y being the longitudinal and lateral directions. Attacks are stronger on
host vehicles that are more distant from the ego.
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Perturbed ImageClean Image Perturbed LiDAR

Figure 3: Additional qualitative examples on XENITH.
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Perturbed ImageClean Image Perturbed LiDAR

Figure 4: Additional qualitative examples on KITTI.
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