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ABSTRACT

Graph, as a potent data structure, models complex relational data that are ubiquitous
in real-world applications like social networks and recommendation systems. In
the past few years, message passing-based Graph Neural Networks (GNNs) have
emerged as standard tools for direct learning from graph data. However, such
direct integration during training also introduces challenges, including scalability
issues with large-scale graphs and oversmoothing problems with increased model
parameter sizes via additional layers. This study offers a bird’s-eye view of high-
level paradigms for learning from graph data, categorizing techniques into three
distinct classes: (1) using graph structure during preprocessing, (2) using graph
structure during training, and (3) using graph structure at test-time inference.
Through this overview, we aim to illuminate diverse approaches and advantages
inherent in learning from graph data across these fundamental paradigms.

1 INTRODUCTION AND BACKGROUND

Graph machine learning (GML) methods mainly refer to data-driven techniques that learn from
the omnipresent graph-structured data. From shallow graph embedding methods (Perozzi et al.,
2014; Grover & Leskovec, 2016; Wang et al., 2016; Cai et al., 2018), to message passing-based
GNNs (Kipf & Welling, 2016; Hamilton et al., 2017; Veličković et al., 2017; Wu et al., 2020), and
more recently, graph transformers (Min et al., 2022; Kong et al., 2023; Dwivedi et al., 2023), these
methods essentially learn representations from graph data for downstream tasks.

With their capability to directly model graph structure via neighborhood aggregation during training,
message passing-based GNNs and graph transformers achieve state-of-the-art performances across
many graph-related tasks. However, such design on explicitly using graph structure to define
model architecture not only brings benefits on performances but also introduces unique challenges.
Firstly, using graph structure during both forward and backward passes in training is known to
be expensive compared with non-graph models (Han et al., 2022). Furthermore, when the graph
size exceeds the capacity of a single GPU’s memory, mini-batching becomes necessary to make
training feasible. Although neighbor sampling (Hamilton et al., 2017) can effectively alleviate
the neighbor explosion issue, this graph-based sampling differs from existing batching solutions
developed for tabular machine learning in other domains, such as CV and NLP. Consequently, special
frameworks involving significant engineering efforts, such as GraphStorm (Zhang et al., 2023) and
TF-GNN (Ferludin et al., 2022), have been developed for industrial-scale usage of GNNs.

Additionally, in other machine learning domains, following the neural scaling law (Kaplan et al.,
2020), increasing the number of parameters by stacking more layers and increasing the hidden
dimension size generally yields better performance (Cheng et al., 2016; OpenAI, 2023; Touvron
et al., 2023). However, with the neighborhood aggregation design, it is not intuitive to scale up
GNNs and graph transformers in terms of parameter sizes by adding more layers. When GNNs
are deep, oversmoothing becomes an inevitable issue (Zhao & Akoglu, 2019; Zhao et al., 2021),
which is essentially caused by the heavy overlap of k-hop computational subgraphs for different
nodes when k becomes large, making node representations less separable in the latent space. It’s also
worth mentioning that even for Graph Transformers, the optimal numbers of Transformer layers and
attention heads are usually relatively small numbers (Chen et al., 2022; Kong et al., 2023).

Despite the aforementioned drawbacks, message passing-based GML methods continue to receive
significant attention from the community and achieve state-of-the-art performance across graph tasks
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and applications. Nevertheless, not all GML techniques follow the same learning paradigm, and the
graph structure’s usage in other steps of the learning process is gradually gaining more attention,
especially with the recent success of large language models (LLMs). Despite there are already several
existing surveys on GML, in this short article, we aim to provide a brief overview and highlight the
less-explored GML paradigms with their advantages and draw the community’s attention to them.

2 THREE GRAPH MACHINE LEARNING PARADIGMS

We begin by defining the most common learning paradigm that involves utilizing graph structures
during training. Specifically, any method that necessitates the use of graph structures during back-
propagation is categorized as using graphs during training, which inherently encompasses all
GNNs and the majority of graph transformers (e.g., GOAT (Kong et al., 2023)). Note that this also
includes methods that does not have learnable parameters in the message-passing components, such
as APPNP (Gasteiger et al., 2018) and LightGCN (He et al., 2020). Despite not having learnable
parameters in message passing, these methods still require the graph structure for the model training.

With the above definition of using graphs during training, the definitions of the other two paradigms
naturally emerge as using graphs during preprocessing (prior to model training) and using graphs at
test-time inference (after model training), respectively. We elaborate on these below.

Using graphs during preprocessing. The concept of using graphs during preprocessing can be
traced back to the beginning of shallow graph embedding, exemplified by DeepWalk (Perozzi et al.,
2014), which essentially transforms the graph structure into random walk sequences and then learns
node embeddings via Word2Vec (Mikolov et al., 2013). Methods falling under this paradigm convert
the graph structure into other tabular formats that can be consumed by models (e.g., MLP, Language
Models) that were not explicitly designed for GML (Wu et al., 2019; Dwivedi et al., 2023). For
instance, SIGN (Frasca et al., 2020) uses local graph operators to preprocess the graph data and a
MLP as the model, achieving significant scalability improvements over GNNs without sacrificing
performances. Additionally, LLaGA (Chen et al., 2024) uses structure-aware graph translation and
alignment tuning to encode graph data into tokens that LLMs can directly consume, hence benefiting
LLMs’ strong generalization and zero-shot capabilities. In short, methods in this category typically
turn the graph data into tabular-formatted data, hence the graph structure is no-longer necessary for
training and inference, as the transformed data already contains all the needed information. Therefore,
this category of methods allows flexibility in using other ML models that are not specifically designed
for graph data, and benefiting from their advantages such as scalability and zero-shot capability.

Using graphs in test-time inferencing. The strategy of using graph structure only during test-
time inferencing has historical roots, with the classic Label Propagation graph algorithm (Zhu &
Ghahramani, 2002). Label propagation assumes that any connected node pairs are more likely to
have the same label and hence iteratively propagates node labels along the edges. More recently,
researchers found this philosophy can be generalized to modern GML techniques via applying
neighborhood aggregation only at test-time (Bojchevski et al., 2020). For instance, Yang et al. (2022)
proposed PMLP, which is trained as an MLP but used as a GNN at test-time only. Similarly, Ju et al.
(2024) proposed TAG-CF that applies a single layer of parameter-less neighborhood aggregation
at test-time on top of traditional two-tower collaborative filtering models, resulting with significant
performance improvements. By training none message passing models and only apply message
passing once at test time, these methods essentially only add minimal computational overhead that’s
equivalent to one forward pass of a message passing-based GNN. Therefore, methods belonging to
this category usually can achieve substantial efficiency improvements over GNN-based methods,
while also achieving non-marginal performance improvements over the non-graph methods.

3 CONCLUSION

This paper provides bird’s-eye view of GML paradigms in term of where to make use of the graph
structure information. By categorizing methods in to these three distinct classes, we highlight the
challenges of the most commonly used message passing-based methods, and most importantly
the advantages of the less-explored two: using graphs during preprocessing offers versatility in
integrating advanced ML techniques, while using graphs solely at test-time inference demonstrates
efficiency gains over training-centric methods. This thousand-feet view aims to draw more attention
from researchers and practitioners in this evolving landscape of GML paradigms, fostering a deeper
understanding and encouraging further exploration in this dynamic field.
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