
Appendix of the paper “Exploiting Opponents under Utility Constraints in
Sequential Games”

The appendix is structured as follows:

• Appendix A provides the proofs omitted from Section 4.1, describing the method adopted
for the construction of the confidence region Yt−1 for the human strategy y∗.

• Appendix B provides the proofs omitted from Section 4.2, describing the method adopted
for the construction of the utility-constrained strategy set X t starting from Yt−1.

• Appendix C gives the proof omitted from Section 5 for the regret bound of COX-UCB.
• Appendix D provides some additional experimental results.

A Proofs omitted from Section 4.1

Lemma 2. Let p ∈ ∆|A| and a1, . . . , at ∈ A be t actions sampled independently according to p.
Then, for any 0 < δ ≤ 3 exp (−4|A|/5), it holds:
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Proof. Notice that, given the result in Lemma 1, it is sufficient to show that, for every ε > 0, it holds∑
a∈A
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In the following, we prove by contradiction that, if
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By summing Equation (4) and Equation (5), we obtain
∑
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∣∣∣pt[a]−p[a]
∣∣∣ > ε, which is the desired

contradiction that proves the result.

Lemma 3. Let J ∈ J be a player j’s infoset. Then, for any 0 < δ ≤ 3 exp(−4|A(J)|/5) it holds:

P

 ⋂
a∈A(J)

{∣∣∣yt[σj(J)a]− y∗[σj(J)a]
∣∣∣ ≤ 5

2ρ̄t−j(J)

√
ln (3/δ)

t

} ≥ 1− δ.

Proof. Since ntJ follows a multinomial distribution, using Lemma 1 provides us with an high-
probability confidence region for the components of y∗ corresponding to the sequences terminating
with an action at infoset J . Formally, since pt in Lemma 1 plays the same role as 1

tn
t
J , we get:
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Let us recall that E[N t(J, a)] = t ρ̄t−j(J)y∗[σj(J)a]. Thus, dividing by t ρ̄t−j(J) the argument of
the probability in the left hand side of the above equation, we get:
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Following the same line of reasoning of the proof of Lemma 2, we conclude that:
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where we define the event E� :=

{∣∣∣N t(J, a�)− E [N t(J, a�)]
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. The statement

follows from the fact that, for two generic events E and E′, it holds P(E ∩ E′) ≤ P(E).

Theorem 1. For every player j’s infoset J ∈ J , let δJ ∈ (0, 1) be such that the condition in Lemma 3
is satisfied and

∑
J∈J δJ < 1. Then, P (y∗ ∈ Yt) ≥ 1− δ, where δ :=

∑
J∈J δJ and
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Proof. For each infoset J ∈ J , let us apply Lemma 3 with δ = δJ ≤ 3 exp(−4|A(J)|/5). The
lemma states that for each J ∈ J , the event

EJ :=
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holds with probability at least 1− δJ . By applying a union bound, we have that:
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Finally, choosing the errors δJ such that

∑
J∈J δJ < 1 proves the result.

B Proofs omitted from Section 4.2

Theorem 2. Let t ∈ [T ] and δ ∈ (0, 1). Given α ∈ R and β ∈ R, it holds:

X t = X ∩
{

(x,u,ω) : u,ω ≥ 0, b>u ≤ β, A>u ≥ U>j x, −b>ω ≥ α, −A>ω ≤ U>j x
}
.

Proof. The proof follows the reasoning outlined in Section 4.2. First, we notice that x ∈ X belongs
to the utility-constrained strategy set X t at iteration t ∈ [T ] if and only if

max
y∈Yt−1

x>U jy ≤ β ∧ min
y∈Yt−1

x>U jy ≥ α.

By first considering the max problem, we can write it as the linear program in Problem (3) in the
main paper. Then, its dual problem reads as follows:

min
u≥0

b>u s.t. (9a)

A>u ≥ U>j x, (9b)

14



where u ∈ R(|J |+1)×2|Σj | is a vector of dual variables, while:

A :=

 I |Σj |
−I |Σj |
F j
−F j

 and b :=

 yt−1 + εt−1

−yt−1 + εt−1

f j
−f j

 ,
with In being the n × n identity matrix. By strong duality, the optimal dual objective equates
the optimal primal objective, and, thus, given any player i’s strategy x ∈ X , the condition
maxy∈Yt−1 x>U jy ≤ β holds if there exists a dual feasible solution u that satisfies the addi-
tional constraint that b>u ≤ β. Following an analogous reasoning for miny∈Yt−1 x>U jy, and
letting ω ∈ R(|J |+1)×2|Σj | be a vector of variables of the dual problem corresponding to its linear
programming formulation (similar to Problem (3)), the result follows.

Discussion on the emptiness of X t in Theorem 2. In some cases, the set X t defined in Theorem 2
could be empty. This happens when the components of the vector εt are large, as it is usually the
case after the first game repetitions. However, since by assumption the problem is feasible for the
true sequence-form strategy y∗, then the set X t will be non-empty after a finite number of iterations.
Hence, as customary in safe exploration problems, we can assume that we have at our disposal
an initial number of plays that allow to have an estimate of y∗ that is good enough (i.e., with a
small norm of εt) so that X t is non-empty. In practice, one does not need to wait that X t is always
non-empty, and can mix the initial pure-exploration phase with the selection strategy implemented
by the algorithm. For instance, this can be achieved by playing a random strategy when X t is
empty, while following the algorithm recommendation when X t is non-empty. In the experimental
evaluation, which is discussed in details in Appendix D, we use the variable N_BLANK_GAMES to tune
this aspect of the algorithm implementation.

C Proofs omitted from Section 5

Before proving Theorem 3, we need to show the following technical lemma.

Lemma 4. Let f(τ) := 2 ln2 τ+ln τ+1√
ln τ(ln τ+1)2

. Then, it holds that:

t∑
τ=1

f(τ) ≥ 2t
√

ln t

ln t+ 1
. (10)

Proof. By noticing that f(τ) is decreasing in τ , we can use the following integral inequality:

t∑
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f(τ) ≥
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∫ τ+1

τ

f(x)dx =
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1
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√

ln t
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which shows the result.

Theorem 3. Let αt := η 2 ln2 t+ln t+1√
ln t (ln t+1)2

for every t ∈ [T ], where η ∈ (0, 1), and let δ ∈ (0, 1). The
COX-UCB algorithm attains the following regret bound with probability at least 1− δ:

RT ≤ 5

2η
KUi C

(
1 + 2

√
T lnT

)
,

where KUi
:= ||U i||∞ and C is a suitably-defined constant.

Proof. First, let us recall that the confidence regions Yt−1 used by the COX-UCB algorithm are built
by applying Theorem 1 with error tolerances δJ ∈ (0, 1), for J ∈ J , such that the conditions in
Theorem 1 are satisfied and δ =

∑
J∈J δJ . In the following, we prove the desired regret bound by

bounding the regret that player i suffers ar each iteration t.

For every t ∈ [T ], we let xt,∗ ∈ argmaxx∗∈X t(x∗)>U iy
∗. Then, at each iteration t, player i incurs

in an instantaneous regret rt, which is formally defined as follows:

rt := (xt,∗)>U iy
∗ − (xt)>U iy

∗.
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Since the COX-UCB algorithm selects strategies xt so that xt ∈ argmaxx∈X̃ t maxy∈Yt−1 x>U iy
(see Algorithm 2), we have that, with probability at least 1− δ, it holds

rt ≤ (xt)>U iỹ
t − (xt)>U iy

∗, (11)

where we let ỹt ∈ argmaxy∈Yt−1(xt)>U iy. By using the definition of the sequence-form utility
matrix U i, we can re-write Equation (11) as follows:

rt ≤ (xt)>U i

(
ỹt − y∗

)
=
∑
z∈Z

xt[σi(z)]U i[σi(z), σj(z)]
(
ỹt[σj(z)]− y∗[σj(z)]

)
.

For every terminal node z ∈ Z, by letting J(z) ∈ J be the (unique w.l.o.g.) infoset such that the
last action of the sequence σj(z) is played at J(z), we can invoke Theorem 1 together with the
Cauchy-Swartz inequality to obtain that, with probability at least 1− δJ(z), the following holds
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t
. (12)

Moreover, since by definition of X̃ t, we have that xt[σi] ≥ αt for all σi ∈ Σi. This gives us the
following lower bound on the probability ρt−j(J(z)):
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where the first inequality follows from Equation (13) and the second one comes from Lemma 4.

Therefore, by combining Equation 12 and Equation (14), we obtain:
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which holds with probability at least 1− δJ(z).

Using Equation (15) and observing that xt[σi(z)] ≤ 1 for all z ∈ Z, we can conclude that, with
probability at least 1− δ, it holds:
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where we let KUi
:= ||U i||∞ and C :=

∑
z∈Z

√
ln(3/δJ(z))

pc(J(z)) . This concludes the proof.
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Theorem 3 gives a sublinear upper bound on the regret of the COX-UCB algorithm. Notice that the
order of the regret is

√
T lnT and that the constant C is linear in the number of terminal nodes Z.

D Additional details on the experimental evaluation

In this section, we provide additional details and results on the experimental evaluation of our COX-
UCB and ψ-COX-UCB algorithms. We test the two algorithms in three different instances of Kuhn
poker with ranks 3, 5 and 7 (denoted respectively as kuhn_3, kuhn_5 and kuhn_7) and in one instance
of Leduc poker with ranks 2 (denoted as leduc_2).

D.1 Experimental setting and hyperparameters

In order to guarantee that the utility-constrained strategy set X t is non-empty at the beginning of the
repeated interaction, we assume to have access to some prior information on the strategy employed
by the human player, so as to reduce the initial uncertainty encoded by the confidence region Yt−1.
This is reasonable in practice, since a new player can always be profiled according to a number of
user classes. In particular, we encode this information as observations collected during a number
N_BLANK_GAMES of games played by the players at the beginning of the repeated interaction, in
which the agent player adopts a purely-explorative strategy.

Furthermore, since the estimation and bounds do not change significantly after a single game, we
compute the solution to the optimization problem required by COX-UCB every UPDATE_EVERY
iterations. Moreover, we set a time limit (TIME_LIMIT) to the Gurobi solver to solve the bilinear
program. This allows us to reduce significantly the time spent to solve bilinear optimization problems.

In all our experiments, the values of the hyperparameters are set to:

• δ = 0.05 and δJ = δ/|J | for all J ∈ J ;
• N_BLANK_GAMES = 1000;
• UPDATE_EVERY = 20;
• TIME_LIMIT = 1s;
• η = 0.05/|Σi|;
• utility constraints lower bound α = −0.3;
• utility constraints upper bound β = 0.3.

We fix the number of iterations after which we stop the execution of our algorithms to 2e5, 4e5, 8e5
and 2e6 for kuhn_3, kuhn_5, kuhn_7 and leduc_2, respectively.

Finally, the infrastructure used to run the experiments is a 32-core UNIX system with 128 GB RAM.

D.2 Detailed experimental results

Figure 2 shows the performances of COX-UCB and ψ-COX-UCB. The values tested for the hyperpa-
rameter ψ are ψ = 0.5, ψ = 0.7 and ψ = 0.9. As a baseline we use a random policy that consists in
randomly selecting a sequence-form strategy from the set X t at every time step t. The first column of
Figure 2 shows the expected utility of the opponent over the iterations of the algorithm. As we can
observe, empirically, the random policy satisfies the utility constraints. This is reasonable, since the
strategies are selected from the interior of the utility-constrained strategy set X t. However, in all the
game instances considered, only COX-UCB and ψ-COX-UCB approach the optimal utility values,
which are shown in Table 1. Looking at the plots of the cumulative regret (second column of Fig-
ure 2), we can observe that COX-UCB and ψ-COX-UCB achieve a significantly lower regret than the
baseline. The experiments on leduc_2 remark the relevance of the convergence rate of the confidence
bound on the opponent’s strategy. In particular, when the strategy space is larger—as it is the case of
leduc_2—, the fact that the confidence bound reduces slowly causes a decrease in the performances,
slowing down the convergence to an optimal strategy. In this scenario, the approximation yielded by
ψ-COX-UCB allows the algorithm to exploit the faster empirical convergence rate of the average
strategy, thus resulting in a lower cumulative regret. Finally, the plots on the third column of Figure 2
allow us to evaluate the upper bound derived for the cumulative regret. In particular, we point out
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that the ratio between the cumulative regret and
√
t ln(t) converges to an horizontal line, meaning

that the bounds that we derived are tight.
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Figure 2: Performances of COX-UCB in Kuhn poker with 3 (top row), 5 (second row) and 7 (third row) ranks
and in Leduc poker with 2 ranks (bottom row). From left to right: player j’s utility, cumulative regret, and
cumulative regret divided by

√
t ln t.

Table 1: Optimal expected utility for the opponent in kuhn_3, kuhn_5, kuhn_7, and leduc_2.
- −maxx∈X? x>U iy

?

kuhn_3 −0.28

kuhn_5 −0.3

kuhn_7 −0.29

leduc_2 −0.3
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Table 2: Average time per iteration for the algorithms COX-UCB, 0.5-COX-UCB, 0.7-COX-UCB and 0.9-COX-
UCB in kuhn_3, kuhn_5, kuhn_7, and leduc_2.

- COX-UCB 0.5-COX-UCB 0.7-COX-UCB 0.9-COX-UCB
kuhn_3 0.011s 0.006s 0.004s 0.003s

kuhn_5 0.011s 0.006s 0.004s 0.004s

kuhn_7 0.012s 0.007s 0.005s 0.005s

leduc_2 0.016s 0.009s 0.007s 0.006s
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