
Published as a conference paper at ICLR 2025

A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 ALGORITHM OF ADVPAINT

Algorithm 1 ADVPAINT

1: Input: Clean image x, perturbation δ, mask set M , extracted feature ϕ, optimization steps N ,
step size α, perturbation budget η, total of L layers in U-Net, timestep T

2: Output: Adversarial example x′

3: Initialize δ ∼ U(−η, η)
4: x′ ← x+ δ
5: for mask in M do
6: m← mask
7: x0 ← x⊗m
8: x′

0 ← x′ ⊗m
9: for i = 0 to N − 1 at timestep T do ▷ Optimization is performed at timestep T only

10: for l = 1 to L do
11: (qls, k

l
s, v

l
s)← (Ql

s(ϕ(x)),K
l
s(ϕ(x)), V

l
s (ϕ(x)))

12: (q′s
l, k′s

l, v′s
l)← (Ql

s(ϕ(x
′
i)),K

l
s(ϕ(x

′
i)), V

l
s (ϕ(x

′
i)))

13: qlc, q
′
c
l ← Ql

c(ϕ(x)), Q
l
c(ϕ(x

′
i))

14: end for
15: Lattn ←

∑
l

(∥∥q′sl − qls
∥∥2 + ∥∥k′sl − kls

∥∥2 + ∥∥v′sl − vls
∥∥2)+∑

l

(∥∥q′cl − qlc
∥∥2)

16: δ ← δ + α · sign(∇x′
i
Lattn)

17: δ ← clip(δ,−η, η)
18: x′

i+1 ← x0 + δ
19: end for
20: x′ ← x′

N−1
21: end for

Algorithm 1 describes the perturbation generation process of ADVPAINT. Note that we optimize
our perturbation only at timestep T , as considering additional timesteps significantly increase com-
putational costs.

A.1.2 PRIOR ADVERSARIAL METHODS

For all prior works used as our baselines (Salman et al., 2023; Liang et al., 2023; Liang & Wu,
2023; Xu et al., 2024; Xue et al., 2024), we follow their official implementations to optimize their
perturbations. The only adjustment we made is to set the noise level by adjusting the hyperparameter
η to 0.06, ensuring that all methods operate under the same noise constraints. We note that all these
baselines use PGD for optimizing their perturbations.

Several methods require setting a target latent for optimizing perturbations. For Photoguard (Salman
et al., 2023), we use the zero vector as the target latent, which is their default setting. For Mist (Liang
& Wu, 2023) and SDST (Xue et al., 2024), we use the target image of Mist for both implementations.

A.1.3 THREAT MODEL

In this work, we evaluate our adversarial perturbations across a range of tasks, including inpainting,
image-to-image, and text-to-image generation.

Inpainting task: We use the Stable Diffusion inpainting pipeline4 provided by Diffusers
(runwayml/stable-diffusion-inpainting). The default settings of the model are applied (inference
step T=50, guidance scale=7.5, strength=1.0, etc.).

4https://huggingface.co/docs/diffusers/api/pipelines/stable diffusion/inpaint

15

Published as a conference paper at ICLR 2025

𝑥 𝛿

൅

𝓔

𝓔

𝑧௢௠

𝑥௠𝑚

𝑧଴ c

Downsample

𝑚′

𝑧்
Forward

𝑧்ିଵ

: element-wise multiplication : concatenationc

Denoiser U-Net

×2

×2

×3

×3

×3

Cross-Attention
Block

Residual
Block

Layer 𝑙

Self-Attention
Block

𝒒𝒔𝒍 𝒌𝒔𝒍 𝒗𝒔𝒍 𝒒𝒄𝒍 𝑘௖௟ 𝑣௖௟

𝑧௢௠

𝑚′

c

𝑡 ൌ 𝑇 െ 1
1
0

24.09.27

Prompt
𝑡 ൌ 𝑇

𝑥: clean image 𝛿: perturbation 𝑚: mask 𝑚′: downsampled mask

×2

Figure 6: The architecture of the LDM denoiser specifically modified for inpainting tasks. The input
image x and the masked image xm share the same encoder ε. The latent zm0 and the resized mask
m′ are fed into the model at every timestep. Here, c denotes from cross-attention and s stands for
self-attention. We optimize the perturbation δ by targeting the bolded components in each block of
each layer l.

Image-to-image task: For image-to-image translation, we use the Stable Diffusion image-to-image
pipeline5 provided by Diffusers (runwayml/stable-diffusion-v1-5). Specifically, we follow the de-
fault settings of the pipeline, where inference steps = 50, strength = 0.8, and guidance scale = 7.5.

Text-to-image task: We implement text-to-image generation using the Textual Inversion (Gal et al.,
2022) model, following the official implementation and settings from the paper. Specifically, we set
the inference steps to 50 and the guidance scale to 7.5. For the input images, where 3 to 5 images
are required, we utilized the official dataset of DreamBooth (Ruiz et al., 2022). For both tasks, we
used images of 512×512 size and randomly crafted the conditional prompts.

A.1.4 GENERATING PROMPTS FOR OPTIMIZATION AND INPAINTING

In the process of generating adversarial perturbations using ADVPAINT, our target inpainting model
requires a prompt input as an external condition. For simplicity, we manually set the prompt as a
basic {noun} format (e.g.“A gorilla” for gorilla images, “A dog” for dog images).

In the inference phase, as described in 5.1, we generated 50 random prompts using ChatGPT (Ope-
nAI, 2024). For foreground inpainting, the prompts followed the format of {noun} (e.g.“An orange”,
“A tiger”). For background inpainting, we generated prompts in the format of {preposition, location}
(e.g.“at the riverside.”, “at a wooden fence.”), inserting the prompts used in the perturbation-
generation step at the beginning of each generated prompt (e.g.“A gorilla at the riverside.”, “A dog
at a wooden fence.”). We followed the prompt setup from Yu et al. (2023b) for fair comparisons.

A.2 U-NET DENOISER MODIFIED FOR INPAINTING

A.2.1 PRELIMINARY: ATTENTION BLOCKS IN LDMS

Rombach et al. (2022) proposed an LDM that leverages self- and cross-attention blocks. The self-
attention blocks play a crucial role in generating high-dimensional images by capturing long-range
dependencies between spatial regions of input images. Meanwhile, the cross-attention blocks are
designed to align the latent image representation with external inputs, such as prompts, during the
denoising process, ensuring that the generated image reflects the desired conditioning (Hertz et al.,
2022; Tumanyan et al., 2022; Liu et al., 2024).

5https://huggingface.co/docs/diffusers/api/pipelines/stable diffusion/img2img

16

Published as a conference paper at ICLR 2025

Foreground Inpainting Background Inpainting
HD-Painter mseg mbb mseg mbb

FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑
Photoguard 153.46 0.8552 0.5632 132.63 0.8962 0.5446 93.46 0.5978 0.3064 127.90 0.3246 0.4400

AdvDM 155.44 0.6180 0.4807 134.54 0.7032 0.4707 75.85 0.7278 0.2538 109.28 0.4738 0.3617
SDST 146.85 0.8568 0.4462 128.88 0.9038 0.4456 87.64 0.6042 0.2896 127.85 0.3366 0.4120

ADVPAINT 178.71 0.5350 0.5770 156.51 0.6276 0.5754 164.10 0.3310 0.3998 264.79 0.1748 0.5232

Table 4: Quantitative comparison for HD-Painter (Manukyan et al., 2023).

Foreground Inpainting Background Inpainting
DreamShaper mseg mbb mseg mbb

FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑
Photugard 188.08 0.7422 0.5878 157.90 0.8544 0.5792 103.74 0.6112 0.3361 131.61 0.3074 0.4840
AdvDM 183.74 0.5114 0.5080 152.55 0.6540 0.5001 84.99 0.7102 0.2846 115.41 0.4340 0.3992
SDST 179.80 0.7792 0.4682 151.38 0.8656 0.4725 98.67 0.5954 0.3149 132.79 0.2978 0.4446

ADVPAINT 230.53 0.3856 0.6042 186.27 0.5196 0.6092 177.68 0.3160 0.4317 266.85 0.1622 0.5561

Table 5: Quantitative comparison for DreamShaper (DreamShaper, 2024).

Foreground Inpainting Background Inpainting
SD-2-Inp. mseg mbb mseg mbb

FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑
Photoguard 239.73 0.5102 0.6226 199.21 0.7000 0.6071 110.33 0.4570 0.3798 126.74 0.1712 0.5094

AdvDM 249.57 0.1902 0.5393 199.22 0.3636 0.5246 89.66 0.5942 0.3027 114.39 0.2610 0.4197
SDST 231.96 0.5324 0.5001 201.65 0.6756 0.4996 106.61 0.4718 0.3569 130.00 0.1892 0.4710

ADVPAINT 325.14 0.0926 0.6452 264.72 0.2160 0.6443 198.32 0.2210 0.4633 267.91 0.0842 0.5756

Table 6: Quantitative comparison for Stable-Diffusion-2-Inpainting model.

A.2.2 ARCHITECTURE OF INPAINTING LDM

We demonstrate the architecture of inpainting LDM in Figure 6. This model takes three inputs: the
original image x, the mask m, and the masked image xm = x⊗m, where⊗ represents element-wise
multiplication. The shared encoder E produces two latent vectors, z0 and zm0 .

The denoiser U-Net consists of 16 layers, each comprising a sequence of residual, self-attention, and
cross-attention blocks, along with skip connections. As in the default LDM, the denoiser predicts
the noise added to the latent and denoises the latent zt at each timestep t. The resulting denoised
latent zt−1 is then concatenated with zm0 and m′ for the next denoising step. Note that After the
denoising for inference steps T , the denoised latent z′0 is then inserted to the same decoder D of
default LDM to generate the inpainted image.

A.3 TRANSFERABILITY OF ADVPAINT

A.3.1 VARIANTS OF INPAINTING MODELS

We conducted extensive experiments on multiple inpainting model variants: HD-Painter (Manukyan
et al., 2023), DreamShaper (DreamShaper, 2024), and the Stable Diffusion v2 inpainting model (Sta-
bility AI, n.d.). For all the variants, we follow the default settings of the official code and we also
follow the default settings in the paper, only replacing the inpainting model to one of the variants.

In Table 4, 5, and 6, we evaluate ADVPAINT against these variants using FID, precision, and
LPIPS metrics and compared it with other baseline protection methods. Even when the architec-
ture differed significantly (e.g., HD-Painter) or when fine-tuning changed the model parameters
(e.g., DreamShaper, SD-2-inpainting), ADVPAINT consistently outperform earlier protection meth-
ods across all metrics. Qualitative results are depicted in Figure 7, 8, and 9.

17

Published as a conference paper at ICLR 2025

A.3.2 IMAGE-TO-IMAGE AND TEXT-TO-IMAGE TASKS

We demonstrate the transferability of ADVPAINT to image-to-image and text-to-image tasks in Fig-
ure 10 and 11. While prior methods targeting these tasks effectively protect images from manipula-
tions, our approach also delivers competitive safeguarding results.

A.3.3 DIT-BASED GENERATION MODELS

DiT (Peebles & Xie, 2022) suggests a new paradigm in text-to-image generation tasks by applying
vision transformers to Latent Diffusion Models, which decreases model complexity and increases
generation quality. we evaluated the robustness of ADVPAINT against an adversary using the inpaint-
ing model of Flux (Labs, n.d.) and Stable Diffusion 3 (SD3) (Esser et al., 2024), and text-to-image
model Pixart-δ (Chen et al., 2024) which leverages a diffusion transformer. Unlike Pixart-δ, we
note that models like DiT and Pixart-α (Chen et al., 2023) are designed for generating images solely
from text prompts using diffusion transformer architectures, which make them unsuitable for our
tasks that require accepting input images.

Flux provides an inpainting module based on multi-modal and parallel diffusion transformer blocks.
We utilized the “black-forest-labs/FLUX.1-schnell” checkpoint and the image size was set to
512x512 to match our settings.

As shown in Figure 12, ADVPAINT effectively disrupts the inpainting process by causing misalign-
ment between generated regions and unmasked areas. For example, it generates cartoon-style cows
in (a) and adds a new rabbit in (b), while also producing noisy patterns in the unmasked areas of the
images.

SDS is a text-to-image model built on the architecture of a Multi-modal DiT (MMDiT) and includes
an inpainting pipeline, making it suitable for our experiments. We followed the official implemen-
tation, modifying only the image size to 512x512 to match our experimental settings.

As shown in the updated Figure 25, our results demonstrate the protective capabilities of AdvPaint
against DiT-based inpainting tasks. Notably, we observed misalignment between generated images
and unmasked regions. For instance, parts of a cat, lion, and watermelon are not fully generated
and appear hidden behind the unmasked region in (a). In (b), which involves background inpainting
tasks, the backgrounds are cartoonized, often disregarding pre-existing objects and generating new
ones. This protective effect, which disrupts the semantic connection with unmasked objects, is also
evident in the results for Flux.

Chen et al. have proposed Pixart-δ which incorporates DreamBooth (Ruiz et al., 2022) into DiT.
We chose this work for the adversary’s generative model since it supports feeding an input image
along with a command prompt for performing generation.

As shown in Figure 13 (a), AdvPaint-generated perturbations consistently undermine the generation
ability of Pixart-δ. Furthermore, AdvPaint also renders noise patterns that degrade the image quality
on the resulting output images of the diffusion model, which aligns with the behavior of previous
methods (i.e. Photoguard, AdvDM, SDST).

ADVPAINT also effectively disrupts the original DreamBooth (Ruiz et al., 2022), as shown in Fig-
ure 13 (b). However, our findings indicate that ADVPAINT and the previous methods are less effec-
tive against Pixart-δ that leverages DiT, as shown in Figure 13 (a). Additionally, compared to the
results of LDM-based inpainting models in Figure 1, current methods are less effective when ap-
plied to DiTs. Discernible objects are generated in the foreground inpainting tasks and new objects
according to the prompts are not always generated. We believe this ineffectiveness stems from the
distinct characteristic of DiT, which processes patchified latent representations. ADVPAINT and our
baselines are specifically designed to target LDMs, which utilize the entire latent representation as
input, allowing perturbations to be optimized over the complete latent space. Thus, when latents are
patchified in DiTs, perturbations may become less effective at disrupting the model’s processing,
thereby diminishing their protective capability. This discrepancy necessitates further research to de-
velop protection methods specifically tailored to safeguard images against the adversary misusing
DiT-based models. For instance, optimizing perturbations at the patch level rather than across the
entire latent representation could prove more effective in countering the unique paradigm of image
generation in DiT-based models.

18

Published as a conference paper at ICLR 2025

(a) FG Inpainting (b) BG Inpainting
mseg mbb mseg mbb

Optim. Methods FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑
Photoguard 161.44 0.0874 0.6415 129.99 0.2158 0.6171 144.21 0.5230 0.4063 153.63 0.2280 0.5317

AdvDM 160.54 0.0658 0.5167 127.36 0.1266 0.5122 118.13 0.6228 0.3168 131.58 0.2720 0.4311
SDST 148.57 0.1340 0.4930 120.55 0.2456 0.4882 139.86 0.5112 0.3810 152.73 0.2280 0.4892

ADVPAINT 331.27 0.0036 0.6706 275.48 0.0264 0.6697 291.12 0.3490 0.4948 355.94 0.1152 0.6014

Table 7: Quantitative comparison with a diverse set of prompts that are likely candidates for fore-
ground and background inpainting tasks. We set prompts as (a) {noun} that describes the mask-
covered object and (b) {preposition, location}.

Foreground Inpainting Background Inpainting
IMPRESS mseg mbb mseg mbb

FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑ PSNR
Photugard 182.62 0.6510 0.5564 151.05 0.7990 0.5522 106.54 0.4954 0.4333 118.30 0.2158 0.5361 28.5925
AdvDM 209.21 0.3764 0.5387 165.99 0.5708 0.5336 84.63 0.6132 0.3351 103.76 0.2734 0.4429 29.1283
SDST 199.28 0.6252 0.5307 164.13 0.7432 0.5271 104.75 0.4852 0.4124 121.10 0.2130 0.5090 28.8105

ADVPAINT 299.07 0.1614 0.6667 237.05 0.3300 0.6623 161.24 0.3230 0.4730 214.38 0.1360 0.5756 28.6303

Table 8: Quantitative evaluation of inpainting results after applying IMPRESS (Cao et al., 2023).

A.4 DIFFERENT PROMPTS FOR VARIOUS INPAINTING TASKS

In real-world scenarios, the exact prompts used by adversaries to maliciously modify images remain
unknown. To simulate and analyze potential attack vectors, we conduct experiments using a diverse
set of prompts that are likely candidates for foreground and background inpainting tasks.

Please note that below experiments were conducted under the same default settings (i.e. using the
Stable Diffusion Inpainting model with a total of 100 images and 50 prompts per image), ensuring
a fair and consistent comparison.

A.4.1 FOREGROUND INPAINTING

In the experiments throughout the paper, prompts follow the format of {noun} for foreground in-
painting tasks. Here, we evaluate the robustness of ADVPAINT using a different kind of prompt: a
prompt that describes the mask-covered object itself. For example, we used the prompt “A man” for
an input image describing a male and performed an inpainting task to generate another male image.

As demonstrated in Table 7 (a), ADVPAINT successfully disrupted the adversary’s inpainting task,
resulting in the generation of an image with no discernible object. This is because the perturbation
optimized to disrupt the attention mechanism successfully redirects the attention to other unmasked
areas as explained in Section 5.2 and Figure 3. We demonstrate the qualitative examples in Figure 14.

A.4.2 BACKGROUND INPAINTING

For background tasks throughout the paper, prompts follow the format of simple noun that describes
the object in the image added to preposition, location. Here, we experiment with prompts where the
noun describing the object is omitted and evaluate their effectiveness in undermining the adversary’s
background inpainting task. Specifically, we assumed the adversary might adjust the prompt to
exclude the object (e.g., using ”rocky slope” instead of ”A monkey on a rocky slope”) to mitigate
artifacts. In all cases, ADVPAINT outperformed all baselines, as demonstrated in the Table 7 (b).
Qualitative results are depicted in Figure 15.

A.5 ROBUSTNESS OF ADVPAINT AGAINST PURIFICATION METHODS

We conducted experiments under the same settings as outlined in the paper (i.e. 100 images, 50
prompts per image, segmentation and bounding box masks, etc.) to evaluate the robustness of ADV-
PAINT against the recent purification techniques, including IMPRESS (Cao et al., 2023) and Honig
et al. (2024). Please note that among the four suggested methods in Honig et al. (2024), we eval-

19

Published as a conference paper at ICLR 2025

Foreground Inpainting Background Inpainting
Gaussian mseg mbb mseg mbb

FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑ PSNR
Photoguard 185.20 0.6808 0.8665 156.79 0.7814 0.8382 127.17 0.4322 0.6111 136.26 0.1958 0.7659 20.1484

AdvDM 181.57 0.6730 0.8343 152.97 0.7864 0.8094 120.80 0.4460 0.5896 128.89 0.2084 0.7387 20.2824
SDST 185.04 0.6810 0.8507 154.38 0.7838 0.8228 123.37 0.4332 0.6006 135.07 0.2104 0.7546 20.2358

ADVPAINT 187.48 0.6682 0.8697 157.74 0.7804 0.8411 128.94 0.4056 0.6125 139.56 0.1820 0.7618 20.2410

Table 9: Quantitative evaluation of inpainting results after applying Gaussian Noise.

Foreground Inpainting Background Inpainting
Upscaling mseg mbb mseg mbb

FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑ PSNR
Photoguard 136.96 0.8042 0.2476 111.39 0.8820 0.2562 60.49 0.8086 0.2639 62.65 0.5630 0.2842 30.2422

AdvDM 137.97 0.8078 0.3112 115.98 0.8844 0.3164 63.14 0.7886 0.2895 65.65 0.5428 0.3339 29.5016
Mist 136.57 0.8008 0.2474 112.77 0.8922 0.2576 61.18 0.7932 0.2632 64.92 0.5442 0.2823 30.0934

ADVPAINT 137.24 0.8132 0.2784 115.43 0.8844 0.2851 65.18 0.7782 0.2840 66.61 0.5376 0.3068 29.8244

Table 10: Quantitative evaluation of inpainting results after applying Upscaling method.

Foreground Inpainting Background Inpainting
JPEG mseg mbb mseg mbb

FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑ PSNR
Photugard 178.67 0.7146 0.3830 144.72 0.8366 0.3790 101.84 0.5662 0.3736 117.19 0.2880 0.3969 29.6323
AdvDM 183.50 0.6800 0.4400 150.11 0.8126 0.4318 106.74 0.5394 0.3782 120.36 0.2614 0.4134 29.4626
SDST 179.31 0.7214 0.3956 145.99 0.8284 0.3914 104.13 0.5564 0.3783 118.56 0.2710 0.4003 29.5710

ADVPAINT 183.44 0.6894 0.4126 149.74 0.8110 0.4080 108.70 0.5150 0.3837 124.74 0.2712 0.4084 29.6232

Table 11: Quantitative evaluation of inpainting results after applying JPEG compression.

PSNR

Photoguard 31.6608
AdvDM 32.5213
SDST 32.4273

ADVPAINT 32.3779

Table 12: PSNR comparison of ADVPAINT and baseline methods where they are equally set with
η = 0.06.

uated the two methods for which official code is available in the current time of writing this pa-
per—Gaussian noise addition and upscaling—while the others could not be tested due to the lack
of accessible implementations. For the purification methods, we follow the Pytorch implementation
for JPEG compression with quality 15 and official codes for other methods where Gaussian noise
strength is set to 0.05.

In Table 8, ADVPAINT retains its protective ability even against IMPRESS, outperforming baseline
methods in terms of FID, Precision, and LPIPS. Since IMPRESS uses LPIPS loss to ensure the
purified image remains visually close to the perturbed image, we believe this objective inadvertently
preserves a part of the adversarial perturbation. Qualitative results are depicted in Figure 16.

We observed that both ADVPAINT and the previous methods lose their ability to protect images
when subjected to Gaussian noise addition, upscaling (Honig et al., 2024), and JPEG compression.
In Table 9, 10, and 11, the FID, Precision, and LPIPS scores indicate significant degradation in
protection under these conditions.

However, as depicted in the Figure 17 (a) and (c) regarding Gaussian noise addition and JPEG
compression, the inpainted results are noisy and blurry (e.g. noisy backgrounds for (a) “sunflower”
and (c) “bicycle” images) compared to images generated from non-protected input. This raises
concerns about their visual quality. It calls into question the practicality of noise-erasing methods,
as the generated images often fail to meet acceptable quality standards.

20

Published as a conference paper at ICLR 2025

Foreground Inpainting Background Inpainting
Noise Level η mseg mbb mseg mbb

FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑ PSNR
0.04 319.54 0.1298 0.6056 268.58 0.2578 0.6138 170.37 0.3040 0.4603 247.31 0.1090 0.5602 35.2832

ADVPAINT (0.06) 347.88 0.0570 0.6731 289.63 0.1536 0.6762 219.07 0.2148 0.5064 303.90 0.0936 0.6105 32.3779
0.08 368.37 0.0320 0.7446 311.58 0.0992 0.7447 250.44 0.1630 0.5506 330.50 0.0782 0.6575 29.9798
0.1 376.69 0.0226 0.7846 326.70 0.0642 0.7829 266.12 0.1432 0.5780 340.51 0.0818 0.6831 28.3171

Table 13: Quantitative evaluation of inpainting results for η = 0.04, 0.06, 0.08, 0.1. Results of
ADVPAINT are in bolded letters.

Foreground Inpainting Background Inpainting
Iter. Steps mseg mbb mseg mbb

FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑
50 336.39 0.0826 0.6575 284.00 0.1872 0.6650 197.29 0.2736 0.4894 274.99 0.1122 0.5942

100 343.72 0.0728 0.6720 287.60 0.1744 0.6781 207.59 0.2308 0.5087 296.83 0.0894 0.6082
150 339.79 0.0794 0.6598 285.29 0.1898 0.6654 204.49 0.2672 0.4958 293.95 0.1178 0.5974

ADVPAINT (250) 347.88 0.0570 0.6731 289.63 0.1536 0.6762 219.07 0.2148 0.5064 303.90 0.0936 0.6105

Table 14: Quantitative evaluation of inpainting results for iteration steps = 50, 100, 150, 250. Re-
sults of ADVPAINT are in bolded letters.

Additionally, we observed a critical drawback in existing purification methods: they tend to degrade
the quality of the purified image itself. As shown in Table 12, ADVPAINT and baseline methods
in our experiments leveraged PGD with η = 0.06, ensuring adversarial examples retained a PSNR
around 32 dB. On the other hand, after purification (e.g., via upscaling), we observed a PSNR
drop of approximately 2.5 dB for ADVPAINT, with similar reductions observed for other methods.
This decline highlights a significant trade-off between the purification effectiveness and input image
quality. Qualitative results after these purification methods are depicted in Figure 17.

A.6 ABLATION STUDY OF NOISE LEVELS AND ITERATION STEPS

A.6.1 ANALYSIS OF NOISE LEVELS

In Table 13, we conducted an experiment with different values of η, ranging from 0.04 to 0.1.
While the PSNR values of adversarial examples increase as η increases, we observed consistent
improvements across all evaluation metrics, including FID, precision, and LPIPS. For ADVPAINT,
we set η to 0.06, as it effectively balances protection against inpainting tasks with the quality of the
protected image, achieving a PSNR of approximately 32 dB.

A.6.2 ANALYSIS OF ITERATION STEPS

In Table 14, we experimented with varying iteration steps. We evaluated iteration steps ranging from
50 to 150. Due to memory limitations, we set the default iteration steps to 250 in ADVPAINT, as
higher iterations result in memory overload. The results show that while there may not be significant
improvement for iteration steps around 100 and 150, optimizing for 250 steps consistently outper-
forms lower iteration counts, validating our choice of 250 steps as the default setting for ADVPAINT.

Foreground Inpainting Background Inpainting
mseg mbb mseg mbb

Optim. Methods FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑ FID ↑ Prec ↓ LPIPS ↑
LDM + Lattn 258.63 0.3276 0.6221 209.34 0.5202 0.6057 103.89 0.5610 0.3872 135.07 0.2274 0.5010
ADVPAINT 347.88 0.0570 0.6731 289.63 0.1536 0.6762 219.07 0.2148 0.5064 303.90 0.0936 0.6105

Table 15: Quantitative comparison with optimization applied to the default LDM using the same
objective as ADVPAINT. LDM refers to the model used in our baseline models (e.g. Photoguard,
AdvDM, CAAT, etc.).

21

Published as a conference paper at ICLR 2025

A.7 ADDITIONAL QUANTITATIVE RESULTS

In Table 15, we conduct a simple experiment to evaluate the impact of replacing the objective func-
tions in our baseline models. Specifically, we use the same Latent Diffusion Model (LDM) as the
baselines but substitute their objective functions—replacing Eq. 2 (e.g., AdvDM, CAAT) and Eq. 4
(e.g., Photoguard) with our proposed attention loss (Eq. 8). Since attention blocks are also present in
this default LDM, our attention loss is directly applicable. After optimizing perturbations targeting
the LDM, we generate inpainted results using the Stable Diffusion inpainting model.

The results indicate that, while optimized with our proposed objective, the perturbations fail to pro-
vide effective protection against inpainting tasks, under-performing compared to ADVPAINT. Fur-
thermore, compared to rows 2–6 in Table 1 (i.e., baseline models), replacing the objective function
with our attention loss does not result in a significant improvement in performance.

We attribute this to the lack of direct targeting of inpainting models, which limits their ability to
counter inpainting-specific attacks. This highlights a key limitation of current protection methods
that rely on the default LDM for inpainting tasks and underscores the critical importance of designing
defensive methods specifically tailored for such tasks.

A.8 ADDITIONAL QUALITATIVE RESULTS

A.8.1 SINGLE- AND MULTI-OBJECT IMAGES

We present additional qualitative results for inpainting tasks of single-object images, comparing
our method with prior protection approaches in Figure 18, demonstrating the effectiveness of AD-
VPAINT in protecting against both foreground and background inpainting with diverse masks in
Figure 19. These results confirm the robustness of our method across various masks and prompts.

For the optimization process of multi-object images, we first position ourselves as content own-
ers and select the objects that may be at risk of malicious inpainting modifications. Then, ADV-
PAINT performs PGD optimization for each object using enlarged bounding box masks generated
by Grounded SAM. After optimizing each object, the leftover background regions, where objects
potentially at risk do not exist, are also optimized. In Figure 20, we clarify the masks used to
optimize multi-object images, aiding comprehension. After securing each object, we conducted
experiments with a variety of mask types, including single-object masks, masks for other objects,
combined-object masks, and their inverted versions. Figure 21 demonstrates the robustness of ADV-
PAINT for multi-object images. For example, since ADVPAINT optimizes each object individually,
it ensures protection for each object, resulting in inpainted images that lack discernible objects in
the foreground. Furthermore, ADVPAINT is robust to masks that encompass all objects, as shown by
the absence of ”two cameras” replacing ”two dogs” in inpainted images. Additionally, the method
effectively secures background regions when inverted masks are used for inpainting tasks. These re-
sults substantiate the effectiveness of ADVPAINT ’s per-object protection method, even for complex
multi-object scenarios.

A.8.2 ALTERNATIVE RESOURCES FOR PROMPT GENERATION AND MASK CREATION

We conducted additional experiments employing alternative resources for prompt generation and
mask creation to evaluate the robustness and generalizability of ADVPAINT ’s protection perfor-
mance. For prompt generation, in addition to ChatGPT, we utilized Claude 3.5 Sonnet to generate
diverse prompts. For mask generation, we replaced Grounded SAM with the zero-shot segmentation
method proposed by Yu et al. (2023a), which employs CLIP (Radford et al., 2021) to create object
masks based on the given prompt. As depicted in Figure 22, ADVPAINT retains its protection per-
formance for inpainting tasks, comparable to its performance when using ChatGPT and Grounded
SAM. However, as shown in Figure 23, we observe that the segmentation results from Yu et al.
(2023a) are generally less accurate compared to those generated by Grounded SAM. This reinforces
our choice of Grounded SAM as the primary segmentation tool, while also validating ADVPAINT ’s
adaptability to alternative segmentation approaches.

22

Published as a conference paper at ICLR 2025

A.8.3 MASKS EXCEEDING OR OVERLAPPING THE OPTIMIZATION BOUNDARY

Since ADVPAINT leverages enlarged bounding box of the object in an image to optimize effective
perturbations, one may be curious about if ADVPAINT is also robust to real-world inpainting scenar-
ios where masks vary in sizes and shapes. In addition to the experiment conducted in Section 5.6, we
conducted additional experiments using masks that exceed or overlap with the optimization bound-
ary. Specifically, we visualized inpainting results where foreground masks were applied to regions
without objects, simulating adversarial scenarios aimed at generating new objects in the background.
As depicted in Figure 24, ADVPAINT remains robust in such diverse inpainting cases that reflect the
potential threat from adversaries.

23

Published as a conference paper at ICLR 2025HD-Painter

Input AdvPaint No Protection Photoguard AdvDM SDST

“An orange”

“A bicycle”

“A monkey at a campsite.”

“A woman on a trail.”

Figure 7: Qualitative inpainting results of HD-Painter (Manukyan et al., 2023).
DreamShaper

Input AdvPaint No Protection Photoguard AdvDM SDST

“A tiger”

“A box”

“A squirrel in a lavender field.”

“A man in a small village.”

Figure 8: Qualitative inpainting results of DreamShaper (DreamShaper, 2024).

24

Published as a conference paper at ICLR 2025

SD-2

Input AdvPaint No Protection Photoguard AdvDM SDST

“A soccer ball.”

“A teapot”

“A sheep at a village square.”

“An elephant in a rain-soaked field.”

Figure 9: Qualitative inpainting results of Stable-Diffusion-2-Inpainting model.

25

Published as a conference paper at ICLR 2025

“Dog under heavy rain and muddy ground, real.”

“An airplane flying under the moon.”

No Protection Photoguard AdvDM Mist CAAT SDSTInput AdvPaint

“A frog playing poker.”

"A rabbit flying a kite."

Figure 10: Comparison in image-to-image translation task. The results are generated via Stable
Diffusion image-to-image pipeline.

No Protection Photoguard AdvDM Mist CAAT SDSTInput AdvPaint

“A ∗ backpack”

“A photo of ∗ boat”

“An oil painting of ∗ ”

Figure 11: Comparison of text-to-image generation. The ∗ in the prompts indicates the representa-
tive prompt corresponding to the input images. The results are generated via Textual Inversion (Gal
et al., 2022).

26

Published as a conference paper at ICLR 2025

R1Q1

Input AdvPaint No Protection Photoguard AdvDM SDST

“A cow”

“A tiger”

“A horse”

“A rabbit at a park.”

“A frog at the riverside.”

“A monkey in a sunflower field.”

(a)

(b)

Figure 12: Qualitative results of ADVPAINT and baseline models applied to Flux (Labs, n.d.). Re-
sults demonstrate the transferability of ADVPAINT to DiT-based inpainting models, causing mis-
alignment between generated regions and unmasked areas in both (a) foreground and (b) background
inpainting tasks. Dark parts in the input image indicate the masked regions.

27

Published as a conference paper at ICLR 2025(a) Pixart +
DB (R1W1)

Input AdvPaint No Protection Photoguard AdvDM SDST

“A sks dog swimming in the ocean.”

“A sks toy in the desert.”

“A sks toy on river.”

Input AdvPaint No Protection Photoguard AdvDM SDST

“A sks dog swimming in the ocean.”

(a)

(b)

(b) DB
(R1W1)

Figure 13: Comparison of text-to-image generation from (a) DiT-based DreamBooth (Chen et al.,
2024) and (b) the original DreamBooth (Ruiz et al., 2022).

Input AdvPaint No Protection

“A dog”

“A cat”

Photoguard AdvDM SDST

“A man”

“A woman”

R1Q3

Figure 14: Qualitative results of foreground inpainting with prompts that describe the mask-covered
object. Dark parts in the input image indicate the masked regions.

28

Published as a conference paper at ICLR 2025

R1Q4

Input AdvPaint No Protection Photoguard AdvDM SDST

“in a grassy field.”

“in the countryside.”

“in a foggy field.”

“on a stone bridge.”

“in a wheat field.”

“on a hill.”

OK

Figure 15: Qualitative results of background inpainting with prompts that follow the format of
{preposition, location}. Dark parts in the input image indicate the masked regions.

29

Published as a conference paper at ICLR 2025

IMPRESS

Input AdvPaintNo Protection Photoguard AdvDM SDST

“A fish”

“A gorilla at the edge of a forest.”

“A book”

“A hamster on a clover patch.”

AdvPaint

Purified

Figure 16: Qualitative inpainting results after applying IMPRESS (Cao et al., 2023). Dark parts in
the input image indicate the masked regions.

30

Published as a conference paper at ICLR 2025

(a) GN / (b) Upscaling / (c) JPEG

Input AdvPaintNo Protection Photoguard AdvDM SDST

“A sunflower”

“A dog at a windmill.”

“A basket of fruit”

“A red panda on a rocky slope.”

“A bicycle”

“A sheep in a peaceful valley.”

AdvPaint

Purified

(a)

(b)

(c)

Figure 17: Qualitative inpainting results after applying (a) Gaussian Noise, (b) Upscaling (Honig
et al., 2024), and (c) JPEG compression. Dark parts in the input image indicate the masked regions.

31

Published as a conference paper at ICLR 2025

“A cup of coffee”

“A rabbit on a grassy knoll.”

No Protection Photoguard AdvDM Mist CAAT SDSTInput AdvPaint

“A pizza”

“A woman in a wheat field.”

“A woman at a stone wall.”

“A strawberry”

“A cat on a mossy rock.”

“A bottle of wine”

Figure 18: Qualitative results of inpainting tasks using segmentation mask mseg and bounding box
mask mbb, comparing with prior methods.

32

Published as a conference paper at ICLR 2025

No ProtectionInput AdvPaint No Protection AdvPaint

“A tiger”

“A woman in a wheat field.” “A woman in a wildflower field.”

“A book”

No Protection AdvPaint No Protection AdvPaint

“A chair”

“A woman on a clover patch.”

“An orange”

“A woman in a small village.”

“A cow”

“A deer on a mountain.” “A deer in a meadow.”

“A candle” “A bicycle”

“A deer on a misty plain.”

“A horse”

“A deer in a forest clearing.”

“A fish”

“An owl on a hilltop.” “An owl at a lakeside.”

“A bouquet of flowers” “A tree”

“An owl on a rocky outcrop.”

“A pair of shoes”

“An owl in a peaceful valley.”

“A soccer ball”

“A bottle at the riverside.” “A bottle at the edge of a forest.”

“A sunflower” “A glass of water”

“A bottle on a grassy ridge.”

“A pineapple”

“A bottle in a lush garden.”

Figure 19: Qualitative results of our approach on inpainting tasks with masks mseg , mbb, and the
optimization mask m.

33

Published as a conference paper at ICLR 2025

Input Applied Masks

Figure 20: Masks used in optimization process of multi-object images. We utilize enlarged bounding
box generated by Grounded SAM. Dark parts in the input image indicate the masked regions.

AdvPaint AdvPaint

“A watermelon” “A cat”

AdvPaintNo Protection No Protection No Protection

“A dog in a wheat field.” “A dog in a sunflower field.” “Two dogs in a lavender field.”

“Two cameras”

Input

“Two rabbits”

“Two monkeys at a waterfall.”

“A guitar”

“A monkey in a foggy field.”

“A book”

“A monkey on a sandy beach.”

Figure 21: Qualitative results of inpainting tasks for multi-object images.

34

Published as a conference paper at ICLR 2025

R2W2

Input AdvPaint No Protection Photoguard AdvDM SDST

“A jellyfish”

“A mushroom”

“A deer at a cherry blossom grove.”

“A deer in an autumn park.”

“A cactus”

“A peacock”

“A wolf at a volcanic crater.”

“A wolf in a neon cityscape.”

Figure 22: Qualitative results of inpainting tasks with prompts and masks generated from alternative
resources. Dark parts in the input image indicate the masked regions.

35

Published as a conference paper at ICLR 2025

(a) Yu et al. (b) Grounded SAM

Figure 23: Qualitative results of inpainting tasks with prompts and masks generated from alternative
resources. Dark parts in the input image indicate the masked regions.

R3Q2

OK

Input AdvPaint No Protection Photoguard AdvDM SDST

“A pineapple”

“A horse”

“A watermelon”

“A tree”

(a)

(b)

Figure 24: Qualitative inpainting results where (a) masks exceed or (b) overlap with the optimization
boundary (highlighted in red lines). Dark parts in the input image indicate the masked regions.

36

Published as a conference paper at ICLR 2025

R1Q1 – SD3

Input AdvPaint No Protection Photoguard AdvDM SDST

“A watermelon”

“A woman in a wildflower field.”

“A dog at a waterfall.”

“A duck in a wheat field.”

(a)

(b)

“A cat”

“A lion”

Figure 25: Qualitative results of ADVPAINT and baseline models applied to SD3 (Esser et al., 2024).
Results demonstrate the transferability of ADVPAINT to DiT-based inpainting models, causing mis-
alignment between generated regions and unmasked areas in both (a) foreground and (b) background
inpainting tasks. Dark parts in the input image indicate the masked regions.

37

