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A DATASET DETAIL

In this study, we use 25 public datasets mostly from the OpenML (Vanschoren et al., 2014) library,
including the frequently used datasets in previous studies (Yoon et al., 2020; Ucar et al., 2021; Gor-
ishniy et al., 2021; 2022). Each dataset has exactly one train-validation-test split, so all algorithms
use the same splits as the previous studies (Gorishniy et al., 2021; 2022; Rubachev et al., 2022). We
summarize the main properties of datasets in Table 5. For each dataset, we use a predefined batch
size depending on the number of training samples: 64 when the number of training samples is less
than 1000, 128 when the number of training samples is larger than 1000 and less than 5000, 256
when the number of training samples is larger than 5000 and less than 10000, 512 when the number
of training samples is larger than 10000 and less than 50000, and 1024 when the number of training
samples is larger than 50000.

We regard the feature as categorical when the number of unique values in the training dataset is
less than 20 (5 for AL, MNIST, p-MNIST, MI). The categorical variables are fed into the feature
tokenizer for FT-Transformer while MLP has no additional operation for them. For MNIST and
p-MNIST datasets, we ignore the features that have only one possible value throughout the training
dataset.

Table 5: Dataset summary.

Abbr. Name # Train # Validation # Test # Num # Cat Task type Batch size

CH Churn Modeling 1 6400 1600 2000 4 6 Binclass 256
HI Higgs Small (Baldi et al., 2014) 62751 15688 19610 24 4 Binclass 1024
AD Adult (Kohavi et al., 1996) 26048 6513 16281 2 12 Binclass 512
BM Bank Marketing (Moro et al., 2011) 28934 7234 9043 7 9 Binclass 512
PH Philippine (Guyon et al., 2019) 3732 933 1167 308 0 Binclass 128
OS Online Shoppers (Sakar et al., 2019) 7891 1973 2466 8 9 Binclass 256
CS German Credit dataset 2 640 160 200 20 0 Binclass 64
PO Phoneme 3458 865 1081 5 0 Binclass 128
CO Covertype (Blackard & Dean, 1999) 371847 92962 116203 44 7 Multiclass 1024
OT Otto Group Products 3 39601 9901 12376 80 13 Multiclass 512
GE Gesture Phase 6318 1580 1975 32 0 Multiclass 256
VO Volkert 4 Guyon et al. (2019) 37318 9330 11662 147 33 Multiclass 512
WQ Wine Quality (Cortez et al., 2009) 4157 1040 1300 11 0 Multiclass 128
AL ALOI (Geusebroek et al., 2005) 69120 17280 21600 124 4 Multiclass 1024
HE Helena (Guyon et al., 2019) 62752 15688 19610 27 0 Multiclass 512
MNIST Handwritten Digit Images 50000 10000 10000 627 90 Multiclass 512
p-MNIST Permuted MNIST 50000 10000 10000 627 90 Multiclass 512
CA California Housing (Pace & Barry, 1997) 13209 3303 4128 8 0 Regression 512
HO House 16H 5 14581 3646 4557 16 0 Regression 512
FI FIFA 12273 3069 3836 28 0 Regression 512
MI MSLR-WEB10K(Fold 1) (Qin & Liu, 2013) 723412 235259 241521 131 5 Regression 1024
KI Forward kinetics of an 8 link robot arm 6 5242 1311 1639 8 0 Regression 256
CPU Computer Activity Databases 7 5242 1311 1639 8 0 Regression 256
DIA Diamonds 34521 8631 10788 9 0 Regression 512
EL Electricity 8 24623 6156 7695 7 0 Regression 512

B IMPLEMENTATION DETAILS

We use the optimization strategy for SSL as follows. We do not tune any hyperparameter and the
same configuration is applied to all cases.

• Optimizer: AdamW (Loshchilov & Hutter, 2017)

• Learning rate: 1e-4

1https://www.kaggle.com/datasets/shrutimechlearn/churn-modelling
2https://archive.ics.uci.edu/dataset/144/statlog+german+credit+data
3https://www.kaggle.com/c/otto-group-product-classification-challenge/

data
4https://automl.chalearn.org/data
5http://www.ncc.up.pt/˜ltorgo/Regression/DataSets.html
6http://www.ncc.up.pt/˜ltorgo/Regression/DataSets.html
7http://www.ncc.up.pt/˜ltorgo/Regression/DataSets.html
8https://github.com/LeoGrin/tabular-benchmark
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• Weight decay: 1e-5
• Epochs: 1000
• Learning rate scheduler: Cosine annealing scheduler (Loshchilov & Hutter, 2016; Goyal

et al., 2017)

For the hyperparameters related to SSL, we tried pm ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and
T ∈ {2, 5, 10, 20, 50, 100}. When we combine the transformation function and binning methods,
to reduce the hyperparameter space, we tried pm ∈ {0.1, 0.2, 0.3} and T ∈ {2, 10} for MLPs,
and pm ∈ {0.1, 0.2} and T ∈ {2, 10} for FT-Transformers. After SSL, we evaluate the pre-trained
representations with the linear head. The linear head is trained with different random seeds 10 times,
and the average performance is reported.

For other state-of-the-art models, we directly reference the reported performance in the papers to
reduce the ambiguity from the random seeds or the tuning details.

B.1 MLP

For MLPs, we set the architecture when the validation performance is best under the supervised
setup with the encoder network fe after the grid search on the depth (1, 2, 3, 4, 5) and the width
(128, 256, 512, 1024). The representation size is determined as identical to the width of MLPs. The
following decoder network fd is defined as symmetric with fe.

For supervised learning, we use the same configuration of SSL summarized above, except that the
learning rate is 0.001 and the number of epochs is 100. We summarize the best setups for all datasets
as follows.

Table 6: MLP architectures.

Depth Datasets Width Datasets

1 CH, HI, AD, BM, OS, FI, CS 128 CH, HI, AD, BM, OS, FI, MI, CA
2 MI, CPU, HE, OT, AL 256 CS, HE, KI, PH, HO
3 CA, KI, MNIST, EL 512 CPU, WQ, p-MNIST, DIA
4 WQ, p-MNIST, PH, HO, CO, GE, VO, PO 1024 CO, GE, VO, PO, MNIST, EL, OT, AL
5 DIA

B.2 FT-TRANSFORMER

We do not conduct any hyperparameter tuning for FT-Transformer, and we use the default setup
defined in Gorishniy et al. (2021) with the number of blocks as 3. For three large-scale datasets,
such as MI, MNIST, and p-MNIST, we set the number of blocks as 1 because of the computational
budget. For the representation size, we adopt the value found in MLP cases. For fd, we use the MLP
network whose architecture is the same as Table 6.

B.3 LINEAR EVALUATION AND FINE-TUNING

For linear evaluation, we use the same optimization configuration for SSL except for the learning
rate of 0.01 for 100 epochs. For fine-tuning, we use the same setups of the supervised cases.

C FULL RESULTS

Here, we present the comprehensive results from our manuscript, accompanied by standard devia-
tions derived from 10 repetitions of the experiment.
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Table 8: Full results of Table 2. We repeat the evaluation 10 times and the average and the standard
deviations are provided.

(a) Binary classification

Method CH HI AD BM PH OS CS PO

MLP(Init.) 0.796±0.003 0.622±0.004 0.820±0.002 0.892±0.001 0.683±0.011 0.873±0.002 0.726±0.016 0.771±0.007
MLP(Supervised) 0.836±0.003 0.713±0.002 0.849±0.001 0.902±0.001 0.724±0.009 0.895±0.002 0.666±0.026 0.894±0.005
MLP(Ours) 0.823±0.000 0.687±0.000 0.846±0.000 0.901±0.000 0.736±0.001 0.896±0.000 0.738±0.000 0.865±0.000
MLP(Ours+FT) 0.841±0.002 0.716±0.001 0.854±0.001 0.905±0.001 0.738±0.009 0.895±0.002 0.686±0.006 0.892±0.004

FTT(Init.) 0.818±0.004 0.636±0.007 0.828±0.004 0.890±0.002 0.694±0.008 0.866±0.003 0.698±0.022 0.851±0.006
FTT(Supervised) 0.824±0.005 0.701±0.003 0.837±0.003 0.903±0.002 0.724±0.018 0.884±0.002 0.676±0.028 0.895±0.006
FTT(Ours) 0.836±0.000 0.670±0.000 0.853±0.000 0.899±0.000 0.725±0.000 0.887±0.000 0.725±0.000 0.867±0.001
FTT(Ours+FT) 0.835±0.004 0.700±0.002 0.839±0.002 0.903±0.003 0.734±0.004 0.882±0.004 0.688±0.022 0.898±0.007

(b) Multiclass classification

Method CO OT GE VO WQ AL HE MNIST p-MNIST

MLP(Init.) 0.729±0.003 0.766±0.001 0.467±0.007 0.547±0.004 0.540±0.011 0.897±0.002 0.311±0.002 0.896±0.002 0.731±0.010
MLP(Supervised) 0.968±0.000 0.810±0.002 0.659±0.007 0.694±0.002 0.623±0.006 0.960±0.001 0.378±0.002 0.983±0.001 0.978±0.001
MLP(Ours) 0.814±0.000 0.794±0.000 0.580±0.000 0.655±0.000 0.592±0.001 0.949±0.000 0.365±0.000 0.981±0.000 0.971±0.000
MLP(Ours+FT) 0.969±0.000 0.814±0.002 0.675±0.009 0.724±0.002 0.630±0.006 0.963±0.001 0.385±0.002 0.986±0.000 0.982±0.001

FTT(Init.) 0.730±0.002 0.705±0.008 0.509±0.007 0.544±0.005 0.569±0.007 0.762±0.009 0.311±0.004 0.550±0.025 0.480±0.022
FTT(Supervised) 0.970±0.000 0.794±0.004 0.664±0.008 0.704±0.005 0.617±0.008 0.960±0.001 0.338±0.003 0.966±0.002 0.960±0.002
FTT(Ours) 0.762±0.000 0.780±0.000 0.554±0.000 0.614±0.000 0.562±0.001 0.930±0.001 0.364±0.000 0.931±0.000 0.883±0.000
FTT(Ours+FT) 0.971±0.000 0.793±0.002 0.698±0.006 0.720±0.003 0.623±0.006 0.961±0.001 0.342±0.001 0.978±0.001 0.966±0.001

(c) Regression

Method CA HO FI MI KI CPU DIA EL

MLP(Init.) 0.854±0.039 4.700±0.055 14241.610±241.419 0.781±0.002 0.192±0.003 5.564±0.205 1291.373±46.713 0.400±0.001
MLP(Supervised) 0.513±0.002 3.146±0.036 10086.080± 65.915 0.754±0.000 0.071±0.001 2.793±0.013 562.153± 2.598 0.354±0.001
MLP(Ours) 0.619±0.000 3.703±0.000 13038.762± 1.618 0.767±0.000 0.158±0.000 3.156±0.002 870.283± 0.093 0.368±0.000
MLP(Ours+FT) 0.502±0.002 3.026±0.037 9963.609± 23.173 0.753±0.000 0.071±0.001 2.801±0.016 550.717± 3.171 0.350±0.001

FTT(Init.) 0.690±0.021 4.107±0.039 16128.694±383.004 0.791±0.004 0.181±0.004 5.205±0.324 1021.200±30.271 0.394±0.002
FTT(Supervised) 0.487±0.007 3.319±0.067 10206.127±347.223 0.752±0.000 0.072±0.001 2.780±0.049 540.904± 3.627 0.350±0.001
FTT(Ours) 0.549±0.000 3.570±0.000 14557.626± 1.390 0.770±0.000 0.153±0.000 3.645±0.000 865.654± 0.005 0.371±0.000
FTT(Ours+FT) 0.477±0.002 3.173±0.024 9936.115±226.549 0.752±0.001 0.072±0.001 2.792±0.038 542.962± 3.207 0.343±0.001
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D ADDITIONAL RESULTS FOR DISCUSSION

D.1 COMPARING THE BINNING METHOD BETWEEN THE QUANTILES AND THE EQUAL-WIDTH

We found that the grouping is critical for implementing the binning task successfully. Instead of
quantile-based binning in our method, we also can manipulate equal-width binning. Here, we ex-
periment with which method can be more beneficial for binning between the quantile and fixed size.
We test the same candidates for the number of bins for equal-width binning, and we compare the
test performance when the validation performance is the best with the quantile-based ones.

Binclass Multiclass Regression
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Figure 5: Relative performance when we change the binning method to the equal-width from the
quantiles. When the values are positive, the quantile-based binning is better than the equal-width
binning. When the values are negative, vice versa. In particular, for regression tasks, the quantile-
based binning is much better than the equal-width binning.

The results are described in Figure 5. Among 25 datasets, equal-width binning showed better perfor-
mance for three datasets (PH, HE, MNIST) to the extent of 0.6% at the maximum, and two binning
methods showed comparable performance for two datasets (OT, AL). For the other 20 datasets,
quantile-based binning showed better performance. In particular, for regression tasks, we found
that the performance degrades 27% as the maximum when we change the binning method from
quantile to fixed size. Finally, we conclude that quantile-based binning consistently results in good
representations across various datasets.

D.2 BIN INFORMATION IS NOT USABLE UNLESS IT IS PROVIDED AS A PRETEXT TASK

Table 9: Binning regression task performance on various SSL methods. We provide the relative
error with the baseline of the BinRecon case. For all cases, the error is increased by at least 38%.
As a result, the binning indices are achievable from the raw inputs but not usable in the resulting
representations when we do not explicitly provide as the pretext targets.

Masking Masking value Objective(s) Relative error increase (%)

False - BinRecon (Baseline) 0

False - ValueRecon 49.579
True Const. MaskXent 82.922
True Const. ValueRecon 38.444
True Const. MaskXent+ValueRecon 68.344
True Random MaskXent 111.708
True Random ValueRecon 38.135
True Random MaskXent+ValueRecon 60.016

Average 66.285
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E ADDITIONAL RESULTS FOR REBUTTAL

Dear Reviewers,

We appreciate the significance of including the additional results. We aim to incorporate these
experimental results in either the main text or the supplementary materials of the final manuscript.
Due to page limitations, we might need to implement some modifications to include all the necessary
content efficiently. Please refer to this section for an overview of the preliminary results.

Thank you for your attention to these details and for your valuable feedback.

E.1 ADDITIONAL RESULTS WITH OTHER BACKBONE ENCODERS

Our method is model-agnostic, allowing flexibility in choosing backbone encoders. So, we have
expanded our experiments to include the ResNet (Gorishniy et al., 2021) and T2G-Former (Yan
et al., 2023) model, in addition to our initial tests with MLPs and FT-Transformers. We chose the
ResNet due to its distinctly different architectural design compared to MLPs and FT-Transformers,
and T2G-Former due to its superior performance.

We provide the partial results in Table 10 in the same format as Table 2 in the manuscript. All the
cases are repeated ten times, and the average performance is provided. We found that the binning
task is effective with ResNet and T2G-Former backbone as well. These results further validate the
adaptability and effectiveness of our method across diverse DNN architectures.

Table 10: Comparison with supervised baselines. We compare the downstream task performance
under several scenarios: (1) Baseline-1, where the encoder is randomly initialized; (2) Baseline-2,
where the encoder is trained by optimizing the supervised loss; (3) Ours-1, where the encoder is
trained based on the binning task only; and (4) Ours-2, where the encoder is fine-tuned after the
pre-training on binning tasks. (Notation: ↑ corresponds to accuracy, ↓ corresponds to RMSE)

Training method CH ↑ AD ↑ PH ↑ OS ↑ CO ↑ OT ↑ GE ↑ VO ↑ HE ↑ MNIST ↑ CA ↓ HO ↓ FI ↓ EL ↓
Encoder = MLP

Baseline-1 0.796 0.820 0.683 0.873 0.729 0.766 0.467 0.547 0.311 0.896 0.854 4.700 14241.610 0.400
Baseline-2 0.836 0.849 0.724 0.895 0.968 0.810 0.659 0.694 0.378 0.983 0.513 3.146 10086.080 0.354
Ours-1 0.823 0.846 0.736 0.896 0.814 0.794 0.580 0.655 0.365 0.981 0.619 3.703 13038.762 0.368
Ours-2 0.841 0.854 0.738 0.895 0.969 0.814 0.675 0.724 0.385 0.986 0.502 3.026 9963.609 0.350

Encoder = FT-Transformer

Baseline-1 0.818 0.828 0.694 0.866 0.730 0.705 0.509 0.544 0.311 0.550 0.690 4.107 16128.694 0.394
Baseline-2 0.824 0.837 0.724 0.884 0.970 0.794 0.664 0.704 0.338 0.966 0.487 3.319 10206.127 0.350
Ours-1 0.836 0.853 0.725 0.887 0.762 0.780 0.554 0.614 0.364 0.931 0.549 3.570 14557.626 0.371
Ours-2 0.834 0.839 0.734 0.882 0.971 0.793 0.698 0.720 0.342 0.978 0.477 3.173 9936.115 0.343

Encoder = ResNet

Baseline-1 0.792 0.757 0.580 0.839 0.505 0.348 0.396 0.342 0.116 0.234 1.071 5.126 19854.911 0.473
Baseline-2 0.822 0.843 0.714 0.888 0.729 0.740 0.489 0.547 0.228 0.821 0.688 3.931 10591.441 0.409
Ours-1 0.791 0.806 0.716 0.838 0.602 0.576 0.430 0.478 0.175 0.452 1.001 5.045 19276.360 0.455
Ours-2 0.838 0.844 0.715 0.890 0.733 0.743 0.492 0.552 0.239 0.824 0.651 3.929 9843.289 0.408

Encoder = T2G-Former

Baseline-1 0.820 0.830 0.702 0.870 0.733 0.716 0.512 0.553 0.317 0.660 0.683 4.071 15991.264 0.393
Baseline-2 0.827 0.844 0.734 0.882 0.966 0.810 0.682 0.719 0.351 0.985 0.492 3.296 10551.509 0.348
Ours-1 0.834 0.853 0.730 0.891 0.764 0.775 0.556 0.617 0.363 0.951 0.570 3.540 15138.672 0.375
Ours-2 0.832 0.847 0.747 0.883 0.968 0.816 0.713 0.728 0.353 0.985 0.479 3.257 10497.660 0.342

E.2 COMPARISON WITH ADDITIONAL SUPERVISED METHODS PRE-TRAINED WITH OTHER
PRETEXT TASKS

We will provide the additional results in Table 2 with the baselines, fine-tuned from the pre-trained
weights on the other pretext tasks listed in Table 1. In this case, the hyperparameters are fixed, and
only the pretraining objectives are different, so we can attribute the performance gain of our method
to changing the pretext task as reconstructing the bin indices instead of the raw values. As shown
in Table 11, the binning loss outperforms the others in most cases. Please note that even in cases
where it did not yield the best performance, the binning loss demonstrated comparable results to the
best-performing methods. Only the binning task consistently performs well among the four pretext
tasks for all datasets.
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Table 11: Comparison with additional supervised methods pre-trained with other pretext tasks. In
this case, the models are pretrained with the pretraining loss denoted in the first column; then they
are fine-tuned in a supervised fashion. All the architecture and optimization-related hyperparameters
are fixed for each dataset.

Pretraining loss CH ↑ AD ↑ PH ↑ PO ↑ CO ↑ OT ↑ GE ↑ VO ↑ HE ↑ MNIST ↑ CA ↓ HO ↓ FI ↓ CPU ↓
Encoder = MLP

MaskXent 0.841 0.851 0.737 0.894 0.970 0.811 0.678 0.720 0.385 0.984 0.499 3.086 10183.670 2.850
ValueRecon 0.837 0.849 0.719 0.890 0.969 0.810 0.669 0.707 0.381 0.984 0.511 3.119 10374.178 2.825
MaskXent+ValueRecon 0.836 0.848 0.726 0.889 0.968 0.809 0.655 0.697 0.382 0.983 0.547 3.361 11842.398 2.871
BinRecon 0.842 0.854 0.738 0.897 0.970 0.814 0.680 0.724 0.386 0.986 0.500 3.026 9963.609 2.791

Encoder = FT-Transformer

MaskXent 0.821 0.838 0.726 0.900 0.970 0.797 0.682 0.690 0.335 0.973 0.479 3.196 10417.374 2.857
ValueRecon 0.821 0.840 0.725 0.894 0.958 0.781 0.646 0.684 0.331 0.979 0.483 3.301 10527.885 2.769
MaskXent+ValueRecon 0.824 0.839 0.735 0.899 0.960 0.785 0.658 0.689 0.331 0.979 0.486 3.257 10708.780 2.762
BinRecon 0.835 0.839 0.736 0.902 0.971 0.794 0.698 0.720 0.342 0.979 0.477 3.173 9936.115 2.753

E.3 VISUALIZATION ANALYSIS

In the manuscript, we provide some discussion based on the experimental results related to the
benefits of binning as a pretext task in Section 6. In summary, we found (1) grouping similar
values is the most critical factor for the successful implementation of binning (Section 6.1), and (2)
bin information is not usable unless it is provided as a pretext task (Section 6.3). To enhance the
interpretability of our analysis, we provide the visualization results.

To show that the binning loss can effectively encourage grouping factor, i.e., to make the similar
values (i.e., in the same bins) closer to each other and separated from other values, we visualize the
representation vectors after SSL with the different pretext task of ValueRecon(Figure 6 Left) and
BinRecon(Figure 6 Reft) in the case of HO dataset. Because the representation vectors are high-
dimensional, we implement PCA for better interpretability. In Figure 6, we denote the samples in
the smallest bin as gray and the samples in the largest bin as orange. As a result, we found that the
representation vectors are grouped only when we utilize the BinRecon loss. (The discussion will be
added in Section 6 with a more detailed explanation.)

Figure 6: Visualization analysis
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