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We organize the supplementary materials as follows:

e Appendix A: the proofs for Theorem 1.

e Appendix B: the pseudo-code of the proposed method.
e Appendix C: more details of experimental settings.

e Appendix D: more empirical results on vanilla long-tailed recognition, test-agnostic long-tailed
recognition, skill-diverse expert learning, and test-time self-supervised aggregation.

e Appendix E: more ablation studies on expert learning and the proposed inverse softmax loss.
e Appendix F: more ablation studies on test-time self-supervised aggregation.
e Appendix G: more discussion on model complexity.

e Appendix H: discussion on potential limitations.

A Proofs for Theorem 1

Proof. We first recall several key notations and define some new notations. The random variables of

model predictions and ground-truth labels are defined as Y ~ p(jj) and Y ~ p(y), respectively. The
number of classes is denoted by C. Moreover, we further denote the test sample set of the class k by
Z}, in which the total number of samples in this class is denoted by | Z|. Let ¢, = Za z ] ZyGZk Yy

represent the hard mean of all predictions of samples from the class &, and let = indicate equality up
to a multiplicative and/or additive constant.

As shown in Eq. (4), the optlmlzatlon objective of our test-time self-supervised aggregation method
is to maximize S = Z J=1 y] y] , where n; denotes the number of test samples. For convenience, we
simplify the first data view to be the original data, so the objective function becomes Z?;l gjg}}
Maximizing such an objective is equivalent to minimizing Z;“Zl —Qj@}. Here, we assume the data
augmentations are strong enough to generate representative data views that can simulate the test data

from the same class. In this sense, the new data view can be regarded as an independent sample from
. . . A~ A~ 1 A 2
the same class. Following this, we analyze our method by connecting —;-¢/; to Zu] ez, N9i—ckll®,
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which is similar to the tightness term in the center loss [l 81:
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where we use the property of the normalized predictions, i.e., [|§;]|* = [|§}||* = 1, and the definition

of the class hard mean ¢, = 75 > ;c 7, ¥-

By summing over all classes k, we obtain:

Nt nt

N A1 C . 2
E —Yi'y; = E 195 —cy,
j=1 j=1

Based on this equation, following [1, 21], we can interpret Z;.”:l —g)j-g; as a conditional cross-

entropy between Y and another random variable Y, whose conditional distribution given Y is a
standard Gaussian centered around cy:Y |Y ~N (¢, i):

Z ;0 EH(Y; YY) = HY V) 4D (Y][V]Y).

Hence, we know that Z jt:1 —gjgj is an upper bound on the conditional entropy of predictions Y
given labels Y:

C
where the symbol > represents “larger than" up to a multiplicative and/or an additive constant.
Moreover, when Y|Y ~A (c,,i), the bound is tight. As a result, minimizing >t —g;-9; is

equivalent to minimizing H(Y'|Y):
> =iy o< H(Y|Y).
j=1
Meanwhile, the mutual information between predictions Y and labels Y can be represented by:
I(Y;Y) = H(Y) - H(Y|Y).
Combining the above two equations, we have:
> 0505 o ~I(V:Y) + H(Y).
j=1
Since S = Y7, §;-9;, We obtain:
SxI(Y;Y)—H(Y),

which concludes the proof for Theorem 1. O



B Pseudo-code

This appendix provides the pseudo-code' of SADE, which consists of skill-diverse expert learning and
test-time self-supervised aggregation. Here, the skill-diverse expert learning strategy is summarized
in Algorithm 1. For simplicity, we depict the pseudo-code based on batch size 1, but we conduct
batch gradient descent in practice.

Algorithm 1 Skill-diverse Expert Learning

Require: Epochs T'; Hyper-parameters A for Lin.,

Initialize: Network backbone fo; Experts E1, E>, E3
1: fore=1,...,7 do

2 for x € Ds do // batch sampling in practice

3 Obtain logits v based on fy and F1;

4: Obtain logits v2 based on fg and Es;

S: Obtain logits v3 based on fy and Fs;

6.

7

8

Compute loss L. with v, for Expert F1; // Eq. (1)
Compute loss Lpq; With vo for Expert Eo; // Eq. (2)
Compute loss L;n, With vs for Expert F3; // Eq. (3)

0 %0

Train the model with Lce + Lpar + Lino.
10: end for
11: end for

Output: The trained model { fp, E1, F2, E3}

After training the multiple skill-diverse experts with Algorithm 1, the final prediction of the multi-
expert model for vanilla long-tailed recognition is the arithmetic mean of the prediction logits of
these experts, followed by a softmax function.

When it comes to test-agnostic long-tailed recognition, we need to aggregate these skill-diverse
experts to handle the unknown test class distribution based on Algorithm 2. Here, to avoid the learned
weights of some weak experts becoming zero, we give a stopping condition in Algorithm 2: if the
weight for one expert is less than 0.05, we stop test-time training. Retaining a small amount of weight
for each expert is sufficient to ensure the effect of ensemble learning.

Algorithm 2 Test-time Self-supervised Aggregation

Require: Epochs T”; The trained backbone fy; The trained experts E1, Ea, E3
Initialize: Expert aggregation weights w // uniform initialization
1: fore=1,...,7" do

2: for x € D; do // batch sampling in practice
3: Draw two data augmentation functions ¢t~7, t'~T;
4: Generate data views ¢ =t(x), 2=t (x);
5: Obtain logits vi,v5,v3 for the view z';
6: Obtain logits vf,v%,v% for the view z2;
7: Normalize expert weights w via softmax function;
8: Conduct predictions §*,3* based on j=ww;
9: Compute prediction stability S; // Eq. (4)
10: Maximize S to update w;
11: end for
12: If w; < 0.05 for any w; € w, then stop training.
13: end for

Output: Expert aggregation weights w

Note that, in test-agnostic long-tailed recognition, each model is only trained once on long-tailed
training data and then directly evaluated on multiple test sets. Our test-time self-supervised strategy
adapts the trained multi-expert model using only unlabeled test data during testing.

!The source code is provided at ht tps://github.com/Vanint /SADE-AgnosticLT.


https://github.com/Vanint/SADE-AgnosticLT

C More Experimental Settings

In this appendix, we provide more details on experimental settings.

C.1 Benchmark Datasets

We use four benchmark datasets [22] (i.e., ImageNet-LT [12], CIFAR100-LT [2], Places-LT [12],
and iNaturalist 2018 [15]) to simulate real-world long-tailed class distributions. These datasets
suffer from severe class imbalance [10, 24].Their data statistics are summarized in Table 1, where
CIFAR100-LT has three variants with different imbalance ratios. The imbalance ratio is defined as
max nj/minn;, where n; denotes the data number of class j.

Table 1: Statistics of datasets.

Dataset # classes  # training data  # test data imbalance ratio
ImageNet-LT [12] 1,000 115,846 50,000 256
CIFAR100-LT [2] 100 50,000 10,000 {10,50,100}
Places-LT [12] 365 62,500 36,500 996
iNaturalist 2018 [15] 8,142 437,513 24,426 500

C.2 Construction of Test-agnostic Long-tailed Datasets

Following LADE [8], we construct three kinds of test class distributions, i.e., the uniform distribution,
forward long-tailed distributions and backward long-tailed distributions. In the backward ones, the
long-tailed class order is flipped. Here, the forward and backward long-tailed test distributions
contain multiple different imbalance ratios, i.e., p € {2,5,10,25,50}. Note that LADE [8] only
constructed multiple distribution-agnostic test datasets for ImageNet-LT; while in this study, we use
the same way to construct distribution-agnostic test datasets for the remaining benchmark datasets,
i.e., CIFAR100-LT, Places-LT and iNaturalist 2018, as illustrated below.

Considering the long-tailed training classes are sorted in a decreasing order, the various test datasets
are constructed as follows: (1) Forward long-tailed distribution: the number of the j-th class is
n; = N - pU~=D/C where N indicates the sample number per class in the original uniform test
dataset and C' is the number of classes. (2) Backward long-tailed distribution: the number of the j-th
classisn; = N - pl€=9)/C In the backward long-tailed distributions, the order of the long tail on
classes is flipped, so the distribution shift between training and test data is large, especially when the
imbalance ratio gets higher.

For ImageNet-LT, CIFAR100-LT and Places-LT, since there are enough test samples per class, we
follow the setting in LADE [8] and construct the imbalance ratio set by p € {2, 5, 10,25, 50}. For
iNaturalist 2018, since each class only contains three test samples, we adjust the imbalance ratio set
to p € {2,3}. Note that when we set p = 3, there are some classes in iNaturalist 2018 containing no
test sample. All these constructed distribution-agnostic long-tailed datasets will be publicly available
along with our code.

C.3 More Implementation Details of Our Method

We implement our method in PyTorch. Following [8, 17], we use ResNeXt-50 for ImageNet-LT,
ResNet-32 for CIFAR100-LT, ResNet-152 for Places-LT and ResNet-50 for iNaturalist 2018 as
backbones, respectively. Moreover, we adopt the cosine classifier for prediction on all datasets.

Although we have depicted the skill-diverse multi-expert framework in Section 4.1, we give more
details about it here. Without loss of generality, we take ResNet [7] as an example to illustrate the
multi-expert model. Since the shallow layers extract more general features and deeper layers extract
more task-specific features [20], the three-expert model uses the first two stages of ResNet as the
expert-shared backbone, while the later stages of ResNet and the fully-connected layer constitute
independent components of each expert. To be more specific, the number of convolutional filters
in each expert is reduced by 1/4, since by sharing the backbone and using fewer filters in each
expert [17, 26], the computational complexity of the model is reduced compared to the model with
independent experts. The final prediction is the arithmetic mean of the prediction logits of these
experts, followed by a softmax function.



In the training phase, the data augmentations are the same as previous long-tailed studies [8, 11]. If
not specified, we use the SGD optimizer with the momentum of 0.9 and set the initial learning rate as
0.1 with linear decay. More specifically, for ImageNet-LT, we train models for 180 epochs with batch
size 64 and a learning rate of 0.025 (cosine decay). For CIFAR100-LT, the training epoch is 200 and
the batch size is 128. For Places-LT, following [12], we use ImageNet pre-trained ResNet-152 as the
backbone, while the batch size is set to 128 and the training epoch is 30. Besides, the learning rate is
0.01 for the classifier and 0.001 for all other layers. For iNaturalist 2018, we set the training epoch to
200, the batch size to 512 and the learning rate to 0.2. In our inverse softmax loss, we set A=2 for
ImageNet-LT and CIFAR100-LT, and A=1 for the remaining datasets.

In the test-time training, we use the same augmentations as MoCo v2 [3] to generate different data
views, i.e., random resized crop, color jitter, gray scale, Gaussian blur and horizontal flip. If not
specified, we train the aggregation weights for 5 epochs with the batch size 128, where we adopt the
same optimizer and learning rate as the training phase.

More detailed statistics of network architectures and hyper-parameters are reported in Table 2. Based
on these hyper-parameters, we conduct experiments on 1 TITAN RTX 2080 GPU for CIFAR100-LT,
4 GPUs for iNaturalist18, and 2 GPUs for ImageNet-LT and Places-LT, respectively.

Table 2: Statistics of the used network architectures and hyper-parameters in our study.

Items | ImageNet-LT | CIFARIOOLT | Places-LT [ iNarutalist 2018
Network Architectures
network backbone ResNeXt-50 | ResNet-32 | ResNet-152 | ResNet-50
classifier cosine classifier
Training Phase
epochs 180 200 30 200
batch size 64 128 128 512
learning rate (Ir) 0.025 0.1 0.01 0.2
Ir schedule cosine decay linear decay
A in inverse softmax loss 2 1
weight decay factor 5x107T [ 5x10°17 4x100T T 2x10°7
momentum factor 0.9
optimizer SGD optimizer with nesterov
Test-time Training
epochs 5
batch size 128
learning rate (Ir) 0.025 \ 0.1 \ 0.01 \ 0.1

C.4 Discussions on Evaluation Metric

As mentioned in Section 5.1, we follow LADE [8] and use micro accuracy to evaluate model
performance on test-agnostic long-tailed recognition. In this appendix, we explain why micro
accuracy is a better metric than macro accuracy when the test dataset exhibits a non-uniform class
distribution. For instance, in the test scenario with a backward long-tailed class distribution, the tail
classes are more frequently encountered than the head classes, and thus should have larger weights
in evaluation. However, simply using macro accuracy treats all the categories equally and cannot
differentiate classes of different frequencies.

For example, one may train a recognition model for autonomous cars based on the training data
collected from city areas, where pedestrians are majority classes and stone obstacles are minority
classes. Assume the model accuracy is 60% on pedestrians and 40% on stones. If deploying the
model to city areas, where pedestrians/stones are assumed to have 500/50 test data, then the macro
accuracy is 50% and the micro accuracy is 300X00450x0-458%  In contrast, when deploying the
model to mountain areas, the pedestrians become the minority, while stones become the majority.
Assuming the test data numbers are changed to 50/500 on pedestrians/stones, the micro accuracy is
adjusted to 20XE:5500x0:449% but the macro accuracy is still 50%. In this case, macro accuracy
is less informative than micro accuracy for measuring model performance. Therefore, micro accuracy

is a better metric to evaluate the performance of test-agnostic long-tailed recognition.



D More Empirical Results

D.1 More Results on Vanilla Long-tailed Recognition

Accuracy on class subsets In the main paper, we have provided the average performance over
all classes on the uniform test class distribution. In this appendix, we further report the accuracy
regarding various class subsets (c.f. Table 3), making the results more complete.

Table 3: Top-1 accuracy of long-tailed recognition methods on the uniform test distribution.

Method ImageNet-LT CIFAR100-LT(IR10) CIFAR100-LT(IR50)
Many Med. Few All Many Med. Few All Many Med. Few All
Softmax 68.1 415 140 48.0 66.0 427 - 59.1 66.8 374 155 456
Causal [14] 64.1 458 272 503 633 499 - 59.4 629 449 262 488
Balanced Softmax [9]  64.1 482 334 523 634 557 - 61.0 62.1 456 367 509
MiSLAS [25] 62.0 49.1 328 514 649  56.6 - 62.5 61.8 489 339 515
LADE [§8] 64.4 4777 343 523 63.8  56.0 - 61.6 60.2 462 356 50.1
RIDE [17] 68.0 529 351 563 65.7 533 - 61.8 66.6 462 303 51.7
SADE (ours) 66.5 57.0 435 588 658 588 - 63.6 615 502 450 539
Method CIFAR100-LT(IR100) Places-LT iNaturalist 2018
Many Med. Few All Many Med. Few All Many Med. Few All
Softmax 68.6 41.1 96 414 46.2 275 127 314 747 663 60.0 64.7
Causal [14] 64.1 468 199 450 238 357 398 322 71.0 66.7 59.7 644
Balanced Softmax [9]  59.5 454 30.7 46.1 426 398 327 394 709 707 704 70.6
MiSLAS [25] 604 49.6 266 468 416 393 275 376 717 715 69.7 707
LADE [§] 587 458 298 456 426 394 323 392 689 687 702 693
RIDE [17] 67.4 495 2377 48.0 431 410 33.0 403 715 700 716 718
SADE (ours) 654 493 293 49.8 404 432 36.8 409 745 725 73.0 729

Results on stonger data augmentations Inspired by PaCo [5], we further evaluate SADE training
with stronger data augmentation (i.e., RandAugment [4]) for 400 epochs. The results in Table 4
further demonstrate the state-of-the-art performance of SADE.

Table 4: Accuracy of long-tailed methods with stronger augmentations, where the test class distribu-
tion is uniform. Here, * denotes training with RandAugment [4] for 400 epochs. The baseline results
are directly copied from the work [5].

Methods ImageNet-LT CIFAR100-LT(IR10) CIFAR100-LT(IR50) CIFAR100-LT(IR100) Places-LT  iNaturalist 2018

PaCo* [5] 58.2 64.2 56.0 52.0 412 73.2
SADE* (ours) 61.2 65.3 57.3 522 41.3 74.5

Results on more neural architectures In addition to using the common practice of backbones as
previous long-tailed studies [8, 17], we further evaluate SADE on more neural architectures. The
results in Table 5 demonstrate that SADE is able to train different network backbones well.

Table 5: Accuracy of SADE with various network architectures. Here, * denotes training with
RandAugment [4] for 400 epochs.

ImageNet-LT iNaturalist 2018
Backbone Methods Many Med. Few All Backbone Methods Many Med. Few All
SADE 665 570 435 588 SADE 745 725 730 729
ResNeXt-50 GADE* 673 604 464 612  RoSNetS0 guppe 755 737 750 745
SADE 668 575 431 59.1 SADE 762 643 651 748
ResNeXt-101  gupE+ 681 605 455 614  ReSNeUIS2 gquppe 783 770 767 770

SADE 672 574 435 593

ResNeXt152 gApE* 686 612 470 621




Results on more datasets We also conduct experiments on CIFAR10-LT with imbalance ratios of
10 and 100. Promising results in Table 6 further demonstrate the effectiveness and superiority of our
proposed method.

Table 6: Accuracy on CIFAR10-LT, where the test class distribution is uniform. Most results are
directly copied from the work [25].

Imbalance Ratio Softmax BBN MiSLAS RIDE SADE (ours)

10 86.4 88.4 90.0 89.7 90.8
100 70.4 79.9 82.1 81.6 83.8




D.2 More Results on Test-agnostic Long-tailed Recognition

In the main paper, we have provided the overall performance on four benchmark datasets with various
test class distributions. In this appendix, we further verify the effectiveness of our method on more
dataset settings (i.e., CIFAR100-IR10 and CIFAR100-IR50), as shown in Table 7.

Table 7: Top-1 accuracy over all classes on various unknown test class distributions. “Prior" indicates
that the test class distribution is used as prior knowledge. “Uni." denotes the uniform distribution.
“IR" indicates the imbalance ratio. “BS" denotes the balanced softmax [9].

(a) ImageNet-LT

(b) CIFAR100-LT (IR10)

Method  Prior Forward-LT Uni. Backward-LT Forward-LT Uni. Backward-LT

50 25 10 5 2 1 2 5 10 25 50 50 25 10 5 2 1 2 5 10 25 50
Softmax X 66.1 638 603 566 52.0 48.0 439 38.6 349 309 276 720 69.6 664 650 61.2 59.1 563 535 505 487 465
BS X 632 619 595 572 544 523 50.0 47.0 450 423 408 659 649 641 634 618 61.0 60.0 582 575 562 55.1
MiSLAS X 61.6 604 580 563 537 514 492 46.1 440 415 395 67.0 66.1 655 644 632 62.5 61.2 604 593 585 577
LADE X 634 62.1 599 574 546 523 49.9 468 449 427 407 67.5 658 658 644 62.7 61.6 60.5 588 583 574 577
LADE v/ 658 638 606 575 545 523 504 488 48.6 490 492 712 693 67.1 646 624 61.6 604 614 61.5 627 64.8
RIDE X 676 663 640 617 589 56.3 540 510 487 462 440 67.1 653 63.6 621 60.9 61.8 584 568 553 549 534
SADE X 694 674 654 63.0 60.6 58.8 57.1 555 545 537 531 712 694 67.6 663 64.4 63.6 629 624 617 621 63.0

(c) CIFAR100-LT (IR50) (d) CIFAR100-LT (IR100)

Method  Prior Forward-LT Uni. Backward-LT Forward-LT Uni. Backward-LT

50 25 10 5 2 1 2 5 10 25 50 50 25 10 5 2 1 2 5 10 25 50
Softmax X 648 627 585 550 499 45.6 409 362 321 266 246 633 620 562 525 464 41.4 365 305 258 217 175
BS X 61.6 602 584 559 537 50.9 485 457 439 425 406 57.8 555 542 520 487 46.1 436 408 384 363 337
MiSLAS X 60.1 589 57.7 562 537 515 48.7 465 443 418 402 58.8 572 552 530 49.6 46.8 436 40.1 377 339 321
LADE X 613 602 569 543 523 50.1 478 457 440 418 405 56.0 555 528 510 480 45.6 432 400 383 355 340
LADE v 659 62.1 588 560 523 50.1 483 455 465 468 478 626 602 556 527 482 45.6 43.8 41.1 415 407 416
RIDE X 622 610 588 564 529 51.7 47.1 440 414 387 371 630 599 570 536 494 48.0 425 381 354 316 292
SADE X 672 645 612 58.6 554 53.9 51.9 509 510 517 528 659 625 583 548 511 49.8 46.2 447 439 425 424

(e) Places-LT (f) iNaturalist 2018

Method  Prior Forward-LT Uni. Backward-LT Forward-LT Uni. Backward-LT

50 25 10 5 2 1 2 5 10 25 50 3 2 1 2 3
Softmax X 45.6 427 402 380 341 314 284 254 234 208 194 65.4 65.5 64.7 64.0 63.4
BS X 427 417 413 41.0 400 39.4 385 378 371 362 356 70.3 70.5 70.6 70.6 70.8
MiSLAS X 409 397 395 39.6 388 383 373 367 358 347 344 70.8 70.8 70.7 70.7 70.2
LADE X 428 415 412 408 398 39.2 38.1 37.6 369 360 357 68.4 69.0 69.3 69.6 69.5
LADE v 463 442 422 412 397 394 392 399 409 424 430 X 69.1 69.3 70.2 X
RIDE X 431 418 416 420 410 40.3 39.6 387 382 370 369 71.5 71.9 71.8 71.9 71.8
SADE X 46.4 449 433 426 413 40.9 40.6 41.1 414 420 416 72.3 72.5 72.9 73.5 73.3

Furthermore, we plot the results of all methods under these benchmark datasets with various test
class distributions in Figure 1. To be specific, Softmax only performs well on highly-imbalanced
forward long-tailed class distributions. Existing long-tailed baselines outperform Softmax, but they
cannot handle backward test class distributions well. In contrast, our method consistently outperforms
baselines on all benchmark datasets, particularly on the backward long-tailed test distributions with a
relatively large imbalance ratio.
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Figure 1: Performance visualizations on various unknown test class distributions, where “F" indi-
cates the forward long-tailed distributions as training data, “B" indicates the backward long-tailed
distributions to the training data, and “U" denotes the uniform distribution.



D.3 More Results on Skill-diverse Expert Learning

This appendix further evaluates the skill-diverse expert learning strategy on CIFAR100-LT, Places-LT
and iNaturalist 2018 datasets. We report the results in Table 8, from which we draw the following
observations. RIDE [17] is one of the state-of-the-art ensemble-based long-tailed methods, which tries
to learn diverse distribution-aware experts by maximizing the divergence among expert predictions.
However, such a method cannot learn sufficiently diverse experts. As shown in Table 8, the three
experts in RIDE perform very similarly on various groups of classes under all benchmark datasets,
and each expert has similar overall performance on each dataset. Such results demonstrate that simply
maximizing the KL divergence of different experts’ predictions is not sufficient to learn visibly
diverse distribution-aware experts.

In contrast, our proposed method learns the skill-diverse experts by directly training each expert
with their customized expertise-guided objective functions, respectively. To be specific, the forward
expert E; seeks to learn the long-tailed training distribution, so we directly train it with the cross-
entropy loss. For the uniform expert F>, we use the balanced softmax loss to simulate the uniform
test distribution. For the backward expert E3, we design a novel inverse softmax loss to train the
expert, so that it simulates the inversely long-tailed class distribution. Table 8 shows that the three
experts trained by our method are visibly diverse and skilled in handling different class distributions.
Specifically, the forward expert is skilled in many-shot classes, the uniform expert is more balanced
with higher overall performance, and the backward expert is good at few-shot classes. Because of
such a novel design that enhances expert diversity, our method achieves more promising ensemble
performance compared to RIDE.

Table 8: Performance of each expert on the uniform test distribution. Here, the training imbalance
ratio of CIFAR100-LT is 100. The results show that our proposed method learns more skill-diverse
experts, leading to better performance of ensemble aggregation.

RIDE [17]
Model ImageNet-LT CIFAR100-LT Places-LT iNaturalist 2018
Many Med. Few All Many Med. Few All Many Med. Few All Many Med. Few All
Expert £y 643 490 319 526 635 448 203 440 413 408 332 40.1 66.6 67.1 665 66.8

Expert B, 647 494 312 528 63.1 447 202 438 43.0 409 33,6 403 66.1 67.1 666 66.8
Expert B3 643 489 318 525 639 451 205 443 428 41.0 335 402 653 673 665 66.7

Ensemble 68.0 529 351 563 674 495 237 48.0 432 411 335 403 715 720 716 718

SADE (ours)
Model ImageNet-LT CIFAR100-LT Places-LT iNaturalist 2018
Many Med. Few All Many Med. Few All Many Med. Few All Many Med. Few All

Expert £y  68.8 437 172 498 67.6 363 68 384 47.6 27.1 103 312 76.0 67.1 593 66.0
Expert B, 655 505 333 539 61.2 447 235 442 426 423 323 405 69.2 707 698 70.2
Expert B3 434 486 539 473 140 276 412 258 226 372 456 33.6 556 615 721 65.1

Ensemble  67.0 56.7 426 58.8 61.6 505 339 494 404 432 368 409 744 725 731 729
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D.4 More Results on Test-time Self-supervised Aggregation

This appendix provides more results to examine the effectiveness of our test-time self-supervised
aggregation strategy. We report results in Table 9, from which we draw several observations.

First of all, our method is able to learn suitable expert aggregation weights for test-agnostic class
distributions, without relying on the true test class distribution. For the forward long-tailed test
distribution, where the test data number of many-shot classes is more than that of medium-shot
and few-shot classes, our method learns a higher weight for the forward expert £; who is skilled
in many-shot classes, and learns relatively low weights for the expert E5 and expert E3 who are
good at medium-shot and few-shot classes. Meanwhile, for the uniform test class distribution where
all classes have the same number of test samples, our test-time expert aggregation strategy learns
relatively balanced weights for the three experts. For example, on the uniform ImageNet-LT test data,
the learned weights by our strategy are 0.33, 0.33 and 0.34 for the three experts, respectively. In
addition, for the backward long-tailed test distributions, our method learns a higher weight for the
backward expert E5 and a relatively low weight for the forward expert E;. Note that when the class
imbalance ratio becomes larger, our method is able to learn more diverse expert weights adaptively
for fitting the actual test class distributions.

Such results not only demonstrate the effectiveness of our proposed strategy, but also verify the
theoretical analysis that our method can simulate the unknown test class distribution. To our best
knowledge, such an ability is quite promising, since it is difficult to know the true test class distribu-
tions in real-world application. Therefore, our method opens the opportunity for tackling unknown
class distribution shifts at test time, and can serve as a better candidate to handle real-world long-tailed
learning applications.

Table 9: The learned aggregation weights by our test-time self-supervised aggregation strategy on
different test class distributions of ImageNet-LT, CIFAR100-LT, Places-LT and iNaturalist 2018.
The results show that our self-supervised strategy is able to learn suitable expert weights for various
unknown test class distributions.

Test Dist ImageNet-LT CIFAR100-LT(IR10) CIFAR100-LT(IR50)
El (w1) E2(ws2) E3 (ws) El (w1) E2(ws2) E3(ws) El (w1) E2(ws2) E3(ws)
Forward-LT-50 0.52 0.35 0.13 0.53 0.38 0.09 0.55 0.38 0.07
Forward-LT-25 0.50 0.35 0.15 0.52 0.37 0.11 0.54 0.38 0.08
Forward-LT-10 0.46 0.36 0.18 0.47 0.36 0.17 0.52 0.37 0.11
Forward-LT-5 0.43 0.34 0.23 0.46 0.34 0.20 0.50 0.36 0.14
Forward-LT-2 0.37 0.35 0.28 0.39 0.37 0.24 0.39 0.38 0.23
Uniform 0.33 0.33 0.34 0.38 0.32 0.3 0.35 0.33 0.33
Backward-LT-2 0.29 0.31 0.40 0.35 0.33 0.31 0.30 0.30 0.40
Backward-LT-5 0.24 0.31 0.45 0.31 0.32 0.37 0.21 0.29 0.50
Backward-LT-10 0.21 0.29 0.50 0.26 0.32 0.42 0.20 0.29 0.51
Backward-LT-25 0.18 0.29 0.53 0.24 0.30 0.46 0.18 0.27 0.55
Backward-LT-50 0.17 0.27 0.56 0.23 0.28 0.49 0.14 0.24 0.62
Test Dist. CIFAR100-LT(IR100) Places-LT iNaturalist 2018
El (w1) E2(ws) E3(w3) El(w1) E2(w2) E3(w3) El(w1) E2(w2) E3(w3)
Forward-LT-50 0.56 0.38 0.06 0.50 0.20 0.20
Forward-LT-25 0.55 0.38 0.07 0.50 0.20 0.20
Forward-LT-10 0.52 0.39 0.09 0.50 0.20 0.20
Forward-LT-5 0.51 0.37 0.12 0.46 0.32 0.22 - - -
Forward-LT-2 0.49 0.35 0.16 0.40 0.34 0.26 0.41 0.34 0.25
Uniform 0.40 0.35 0.24 0.25 0.34 0.41 0.33 0.33 0.34
Backward-LT-2 0.33 0.31 0.36 0.18 0.30 0.52 0.28 0.32 0.40
Backward-LT-5 0.28 0.30 0.42 0.17 0.28 0.55 - - -
Backward-LT-10 0.23 0.28 0.49 0.17 0.27 0.56
Backward-LT-25 0.21 0.26 0.53 0.17 0.27 0.56
Backward-LT-50 0.16 0.28 0.56 0.17 0.27 0.56

Relying on the learned expert weights, our method aggregates the three experts appropriately and
achieves better performance on the dominant test classes, thus obtaining promising performance
gains on various test distributions, as shown in Table 10. Note that the performance gain compared to
existing methods gets larger as the test dataset gets more imbalanced. For example, on CIFAR100-LT
with the imbalance ratio of 50, our test-time self-supervised strategy obtains a 7.7% performance
gain on the Forward-LT-50 distribution and obtains a 9.2% performance gain on the Backward-LT-50
distribution, both of which are non-trivial. Such an observation is also supported by the visualization
result of Figure 2, which plots the results of existing methods on ImageNet-LT with different test
class distributions regarding the three class subsets.
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In addition, since the imbalance degrees of the test datasets are relatively low on iNaturalist 2018, the
simulated test class distributions are thus relatively balanced. As a result, the obtained performance
improvement is not that significant, compared to other datasets. However, if there are more iNaturalist
test samples following highly imbalanced test class distributions in real applications, our method
would obtain more promising results.

Table 10: The performance improvement via test-time self-supervised aggregation on various test
class distributions of ImageNet-LT, CIFAR100-LT, Places-LT and iNaturalist 2018.

ImageNet-LT CIFAR100-LT(IR10)

Test Dist. Ours w/o test-time aggregation Ours w/ test-time aggregation Ours w/o test-time aggregation Ours w/ test-time aggregation

Many Med. Few All Many Med. Few All Many Med. Few All Many Med. Few All
Forward-LT-50 65.6 557 441 655 700 532 331 69.4(+3.9) 663 583 - 66.3 69.0 508 - 71.2 (+4.9)
Forward-LT-25 653 569 435 644 69.5 532 322 674(+3.0) 63.1 608 - 64.5 67.6 522 - 69.4 (+4.9)
Forward-LT-10 66.5 56.8 442 63.6 69.9 543 347 654 (+1.8) 64.1 588 - 64.1 672 542 - 67.6 (+3.5)
Forward-LT-5 659 565 433 620 689 548 358 63.0(+1.0) 627 571 - 62.7 66.9  54/3 - 66.3 (+3.6)
Forward-LT-2 662 565 421  60.0 682 560 40.1 60.6(+0.6) 628 563 - 61.6 66.1  56.6 - 64.4 (+2.8)
Uniform 67.0 567 426 588 66.5 570 435 58.8(+0.0) 655 599 - 63.6 65.8 588 - 63.6 (+0.0)
Backward-LT-2 663 567 431 568 653 57.1 450 57.1(+0.3) 627 569 - 60.2 65.6 595 - 62.9 (+2.7)
Backward-LT-5 66.6 569 430 547 634 564 475 555(+0.8) 628 575 - 59.7 65.1  60.4 - 62.4 (+2.7)
Backward-LT-10 650 57.6 43.1  53.1 609 575 50.1 54.5(+1.4) 63.5 582 - 59.8 625 614 - 61.7 (+1.9)
Backward-LT-25 642 569 434 511 60.5 57.1 50.0 53.7(+2.6) 634 577 - 58.7 619  62.0 - 62.1 (+3.4)
Backward-LT-50  69.1  57.0 429 498 60.7 562 50.7 53.1(+3.3) 620 578 - 58.6 626  62.6 - 63.0 (+3.8)

CIFAR100-LT(IR50) CIFAR100-LT(IR100)

Test Dist. Ours w/o test-time aggregation Ours w/ test-time aggregation Ours w/o test-time aggregation Ours w/ test-time aggregation

Many Med. Few All Many Med. Few All Many Med. Few All Many Med. Few All
Forward-LT-50 597 533 269 595 680 441 194 67.2(+7.7) 60.7 503 324 584 69.9 488 142 659 (+7.5)
Forward-LT-25 59.1  51.8 326 586 673 462 195 64.5(+6.9) 60.6 496 294 570 689 465 151 62.5(+5.5)
Forward-LT-10 59.7 472 361 564 672 457 247 61.2(+4.8) 60.1 486 284 544 683 469 167 583 (+3.9)
Forward-LT-5 59.7 469 369 548 67.0 457 299 58.6(+3.4) 60.3 503 295 531 683 453 194 548(+1.7)
Forward-LT-2 592 484 419 532 63.8 485 393 554(+2.2) 60.6 488 313  50.1 682 476 225 51.1(+1.0)
Uniform 61.0 502 457 538 61.5 502 450 53.9(+0.1) 61.6 505 339 494 654 493 293 49.8(+0.4)
Backward-LT-2 590 482 428 501 575 497 494 519(+1.8) 612 491 308 452 63.1 494 317 462 (+1.0)
Backward-LT-5 60.1 486 418 482 500 493 542 509 (+2.7) 620 489 320 426 562 49.1 382 44.7(+2.1)
Backward-LT-10  58.6 469 426 46.1 493 49.1 546 51.0(+4.9) 60.6 482 31.7 397 521 479 406 439 (+4.2)
Backward-LT-25  55.1 489 412 444 445 46,6 570 51.7(+7.3) 582 479 322 367 487 442 418 425(+5.8)
Backward-LT-50  57.0 488 41.6 43.6 458 46.6 584 528(+9.2) 669 486 304 350 49.0 427 425 424(+7.4)

Places-LT iNaturalist 2018

Test Dist. Ours w/o test-time aggregation Ours w/ test-time aggregation Ours w/o test-time aggregation Ours w/ test-time aggregation

Many Med. Few All Many Med. Few All Many Med. Few All Many Med. Few All
Forward-LT-50 435 425 659 437 46.8 393 305 464 (+2.7) - - - - - - - -
Forward-LT-25 428 421 293 427 463 389 236 449(+2.3) - - - - - - - -
Forward-LT-10 423 419 349 423 454 39.0 27.0 433(+1.0) - - - - - - - -
Forward-LT-5 430 440 331 424 456 406 273 426(+0.2) - - - - - - - -
Forward-LT-2 434 424 326 413 449 412 295 413(+0.0) 739 724 720 724 755 725 707 72.5(+0.1)
Uniform 43.1 424 332 409 404 432 368 409 (+0.0) 744 725 731 729 745 725 73.0 729 (+0.0)
Backward-LT-2 428 419 332 399 37.1 429  40.0 40.6 (+0.7) 76.1 728 72,6 731 749 726 737 73.5(+0.4)
Backward-LT-5 43.1 420 336 39.1 364 427 411 411 (+2.0) - - - - - - - -
Backward-LT-10 435 429 337 389 352 432 413 414 (+2.5) - - - - - - - -
Backward-LT-25 44.6 424 336 378 380 435 411 42.0(+4.2) - - - - - - - -
Backward-LT-50 422 434 333 372 373 435 405 41.6 (+4.7) - - - - - - - -
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Figure 2: Top-1 accuracy of existing long-tailed (LT) methods on ImageNet-LT with various test
class distributions, including uniform, forward and backward long-tailed ones with imbalance ratios
10 and 50, respectively. Here, “F-LT-N" and “B-LT-N indicate the cases where test samples follow
the same long-tailed distribution as training data and inversely long-tailed to the training data, with
the imbalance ratio N, respectively. The results show that existing methods perform very similarly
on various test class distributions in terms of their performance on many-shot, medium-shot
and few-shot classes. In contrast, our proposed method is capable of adaptingbi to various test
class distributions in terms of many-shot, medium-shot and few-shot performance, thus leading
to better overall performance on each test class distribution.
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E Ablation Studies on Skill-diverse Expert Learning

E.1 Discussion on Expert Number

In SADE, we consider three experts, where the “forward" and “backward" experts are necessary since
they span a wide spectrum of possible test class distributions, while the “uniform" expert ensures that
we retain high accuracy on the uniform test class distributions. Nevertheless, our approach can be
straightforwardly extended to more than three experts. For the models with more experts, we adjust
the hyper-parameter \ in Eq. (3) for the new experts and keep the hyper-parameters of the original
three experts unchanged, so that different experts are skilled in different types of class distributions.
Following this, we further evaluate the influence of the expert number on our method based on
ImageNet. To be specific, when there are four experts, we set A = 1 for the new expert; while when
there are five experts, we set A = 0.5 and A = 1 for the two newly-added experts, respectively.
As shown in Table 11, with the increasing number of experts, the ensemble performance of our
method is improved on vanilla long-tailed recognition, e.g., four experts obtain a 1.2% performance
gain compared to three experts on ImageNet-LT. As a result, our method with more experts obtains
consistent performance improvement in test-agnostic long-tailed recognition on various test class
distributions compared to three experts, as shown in Table 12. Even so, only three experts are
sufficient to handle varied test class distributions, and provide a good trade-off between performance
and efficiency.

Table 11: Performance of our method with different numbers of experts on ImageNet-LT with the
uniform test distribution.

Model 4 experts 5 experts
Many-shot Medium-shot Few-shot All classes Many-shot Medium-shot Few-shot All classes

Expert Fq 69.4 44.5 16.5 50.3 69.8 449 17.0 50.7
Expert E» 66.2 51.5 329 54.6 68.8 48.4 239 529
Expert E3 55.7 52.7 46.8 534 66.1 51.4 22.0 54.5
Expert £y 44.1 49.7 55.9 48.4 56.8 52.7 47.7 53.6
Expert E5 - - - - 43.1 59.0 54.8 47.5
Ensemble 66.6 584 46.7 60.0 68.8 58.5 432 60.4

Table 12: Performance of our method with different numbers of experts on various test class
distributions of ImageNet-LT.

ImageNet-LT

Method  Experts Forward Uniform Backward
50 25 10 5 2 1 2 5 10 25 50
3experts 694 674 654 630 60.6 58.8 57.1 555 545 537 531
SADE  4experts 70.1 68.1 663 642 61.6 60.0 58.7 57.6 56.7 56.1 55.6
Sexperts 70.7 689 668 645 62.1 60.4 58.7 572 563 55.6 54.7
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E.2 Hyper-parameters in Inverse Softmax Loss

This appendix evaluates the influence of the hyper-parameter A in the inverse softmax loss for the
backward expert, where we fix all other hyper-parameters and only adjust the value of A\. As shown in
Table 13, with the increase of A, the backward expert simulates more inversely long-tailed distribution
(to the training data), and thus the ensemble performance on few-shot classes is better. Moreover,
when X € {2, 3}, our method achieves a better trade-off between head classes and tail classes, leading
to relatively better overall performance on ImageNet-LT.

Table 13: Influence of the hyper-parameter )\ in the inverse softmax loss on ImageNet-LT with the
uniform test distribution.

A=05

Model

Many-shot classes Medium-shot classes Few-shot classes ~ All long-tailed classes
Forward Expert Ey 69.1 43.6 17.2 49.8
Uniform Expert Eo 66.4 50.9 334 54.5
Backward Expert F3 61.9 51.9 40.3 54.2
Ensemble 71.0 54.6 33.4 58.0
Model A=l

Many-shot classes Medium-shot classes Few-shot classes ~ All long-tailed classes
Forward Expert Ey 69.7 44.0 16.8 50.2
Uniform Expert Eo 65.5 51.1 324 544
Backward Expert F3 56.5 523 47.1 532
Ensemble 77.2 55.7 36.2 58.6
Model r=2

Many-shot classes Medium-shot classes Few-shot classes ~ All long-tailed classes
Forward Expert Ey 68.8 43.7 17.2 49.8
Uniform Expert Eo 65.5 50.5 333 53.9
Backward Expert F3 434 48.6 53.9 473
Ensemble 67.0 56.7 42.6 58.8
Model r=3

Many-shot classes Medium-shot classes Few-shot classes ~ All long-tailed classes
Forward Expert Ey 69.6 43.8 17.4 50.2
Uniform Expert Eo 66.2 50.7 33.1 54.2
Backward Expert F3 434 48.6 539 48.0
Ensemble 67.8 56.8 424 59.1
Model A=A

Many-shot classes Medium-shot classes Few-shot classes ~ All long-tailed classes
Forward Expert E; 69.1 44.1 16.3 49.9
Uniform Expert Eo 65.7 50.8 32.6 54.1
Backward Expert F3 21.9 38.1 58.9 34.7
Ensemble 60.2 57.5 50.4 57.6
Model A=5

Many-shot classes Medium-shot classes  Few-shot classes ~ All long-tailed classes
Forward Expert Ey 69.7 43.7 16.5 50.0
Uniform Expert Eo 65.9 50.9 33.0 54.2
Backward Expert F3 16.0 339 60.6 30.6
Ensemble 56.3 57.5 54.0 56.6
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F Ablation Studies on Test-time Self-supervised Aggregation

F.1 Influences of Training Epoch

As illustrated in Section 5.1, we set the training epoch of our test-time self-supervised aggregation
strategy to 5 on all datasets. Here, we further evaluate the influence of the epoch number, where we
adjust the epoch number from 1 to 100. As shown in Table 14, when the training epoch number is
larger than 5, the learned expert weights by our method are converged on ImageNet-LT, which verifies
that our method is robust enough. The corresponding performance on various test class distributions
is reported in Table 15.

Table 14: The influence of the epoch number on the learned expert weights by test-time self-supervised
aggregation on ImageNet-LT.

Test Dist. Epoch 1 Epoch 5 Epoch 10
El(w1) E2(w2) E3(w3) El(w1) E2(wp) E3(w3) El(w1) E2(w2) E3(w3)
Forward-LT-50 0.44 0.33 0.23 0.52 0.35 0.13 0.52 0.37 0.11
Forward-LT-25 0.43 0.34 0.23 0.50 0.35 0.15 0.50 0.37 0.13
Forward-LT-10 0.43 0.34 0.23 0.46 0.36 0.18 0.46 0.36 0.18
Forward-LT-5 0.41 0.34 0.25 0.43 0.34 0.23 0.43 0.35 0.22
Forward-LT-2 0.37 0.33 0.30 0.37 0.35 0.28 0.38 0.33 0.29
Uniform 0.34 0.31 0.35 0.33 0.33 0.34 0.33 0.32 0.35
Backward-LT-2 0.30 0.32 0.38 0.29 0.31 0.40 0.29 0.32 0.39
Backward-LT-5 0.27 0.29 0.44 0.24 0.31 0.45 0.23 0.31 0.46
Backward-LT-10 0.24 0.29 0.47 0.21 0.29 0.50 0.21 0.30 0.49
Backward-LT-25 0.23 0.29 0.48 0.18 0.29 0.53 0.17 0.3 0.53
Backward-LT-50 0.24 0.29 0.47 0.17 0.27 0.56 0.15 0.28 0.57
Test Dist. Epoch 20 Epoch 50 Epoch 100
El (wy) E2(ws) E3 (w3) El (w1) E2(ws) E3(w3) El (w1) E2(ws2) E3(w3)

Forward-LT-50 0.53 0.38 0.09 0.53 0.38 0.09 0.53 0.38 0.09
Forward-LT-25 0.51 0.37 0.12 0.52 0.37 0.11 0.50 0.38 0.12
Forward-LT-10 0.44 0.36 0.20 0.45 0.37 0.18 0.46 0.36 0.18
Forward-LT-5 0.42 0.35 0.23 0.42 0.35 0.23 0.42 0.35 0.23
Forward-LT-2 0.38 0.33 0.29 0.39 0.33 0.28 0.38 0.32 0.30
Uniform 0.33 0.33 0.34 0.34 0.32 0.34 0.32 0.33 0.35
Backward-LT-2 0.29 0.31 0.40 0.30 0.32 0.38 0.29 0.30 0.41
Backward-LT-5 0.24 0.31 0.45 0.23 0.29 0.48 0.25 0.30 0.45
Backward-LT-10 0.20 0.30 0.50 0.21 0.31 0.48 0.21 0.30 0.49
Backward-LT-25 0.16 0.30 0.54 0.17 0.29 0.54 0.17 0.30 0.53
Backward-LT-50 0.15 0.29 0.56 0.14 0.29 0.57 0.14 0.29 0.57

Table 15: The influence of the epoch number on
aggregation on ImageNet-LT.

the performance of test-time self-supervised

Test Dist. Epoch 1 Epoch 5 Epoch 10

Many Med. Few All Many Med. Few All Many Med. Few All
Forward-LT-50 688 546 375 685 700 532 331 694 70.1 529 324 695
Forward-LT-25 68.6 549 349 669 69.5 532 322 674 69.7 525 325 675
Forward-LT-10 603 553 376 652 699 543 347 654 699 545 350 654
Forward-LT-5 68.4 553 373 63.0 689 548 358 63.0 68.8 549 360 63.0
Forward-LT-2 679 562 40.8 60.6 68.2 560 40.1 60.6 682 56.0 39.7 605
Uniform 66.7 569 43.1 588 66.5 57.0 435 588 66.4 569 434 588
Backward-LT-2 65.6 57.1 447 57.1 653 571 450 57.1 653 57.1 450 57.1
Backward-LT-5 639 57.6 468 555 634 564 475 555 633 574 478 556
Backward-LT-10  62.1  57.6 479 542 60.9 575 50.1 545 61.1 57.6 489 545
Backward-LT-25 624  57.6 485 534 60.5 57.1 500 53.7 60.5 57.1 503 53.8
Backward-LT-50 649 567 478 519 60.7 562 50.7 53.1 60.1 559 512 532
Test Dist. Epoch 20 Epoch 50 Epoch 100

Many Med. Few All Many Med. Few All Many Med. Few All
Forward-LT-50 703 522 324 695 703 522 324 695 70.0 522 324 693
Forward-LT-25 69.8 524 314 675 699 523 314 676 69.7 52,6 326 675
Forward-LT-10 69.6 548 358 653 69.8 546 352 654 69.8 546 350 654
Forward-LT-5 68.7 550 364 63.0 68. 550 364 63.0 68.7 547 367 629
Forward-LT-2 68.1 56.0 399 605 683 559 39.6 605 682 56.0 40.1 60.6
Uniform 66.7 569 432 588 669 56.8 428 588 66.5 56.8 432 587
Backward-LT-2 654 57.1 449 57.1 65.6 57.0 447 57.1 649 570 456 570
Backward-LT-5 634 574 476 555 627 574 483 556 634 575 470 554
Backward-LT-10  60.7 57.5 494 54.6 61.1 576 488 544 60.6 57.6 49.1 545
Backward-LT-25 604  57.1 504 539 604 570 503 538 609 56.8 502 53.7
Backward-LT-50 609  56.1 51.1 532 60.6 559 51.1 532 60.8 56.1 512 532
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F.2 Influences of Batch Size

In previous results, we set the batch size of test-time self-supervised aggregation to 128 on all datasets.
In this appendix, we further evaluate the influence of the batch size on our strategy, where we adjust
the batch size from 64 to 256. As shown in Table 16, with different batch sizes, the learned expert
weights by our method keep nearly the same, which shows that our method is insensitive to the batch
size. The corresponding performance on various test class distributions is reported in Table 17, where
the performance is also nearly the same when using different batch sizes.

Table 16: The influence of the batch size on the learned expert weights by test-time self-supervised
aggregation on ImageNet-LT.

Test Dist. Batch size 64 Batch size 128 Batch size 256
El (w1) E2(wg) E3 (w3) El (w1) E2(wg) E3 (w3) El (w1) E2(w3) E3 (w3)

Forward-LT-50 0.52 0.37 0.11 0.52 0.35 0.13 0.50 0.33 0.17
Forward-LT-25 0.49 .0.38 0.13 0.50 0.35 0.15 0.48 0.24 0.18
Forward-LT-10 0.46 0.36 0.18 0.46 0.36 0.18 0.45 0.35 0.20
Forward-LT-5 0.44 0.34 0.22 0.43 0.34 0.23 0.43 0.35 0.22
Forward-LT-2 0.37 0.34 0.29 0.37 0.35 0.28 0.38 0.33 0.29
Uniform 0.34 0.32 0.34 0.33 0.33 0.34 0.33 0.32 0.35
Backward-LT-2 0.28 .032 0.40 0.29 0.31 0.40 0.30 0.31 0.39
Backward-LT-5 0.24 0.30 0.46 0.24 0.31 0.45 0.25 0.30 0.45
Backward-LT-10 0.21 0.30 0.49 0.21 0.29 0.50 0.22 0.29 0.49
Backward-LT-25 0.17 0.29 0.54 0.18 0.29 0.53 0.20 0.28 0.52
Backward-LT-50 0.15 0.30 0.55 0.17 0.27 0.56 0.19 0.27 0.54

Table 17: The influence of the batch size on the performance of test-time self-supervised aggregation
on ImageNet-LT.

Batch size 64 Batch size 128 Batch size 256
Many Med. Few All Many Med. Few All Many Med. Few All

Forward-LT-50 70.0 526 338 693 70.0 532 3311 694 69.7 538 346 69.2
Forward-LT-25 69.6 530 333 675 69.5 532 322 674 692 537 328 672
Forward-LT-10 699 543 348 654 699 543 347 654 69.5 550 359 653

Test Dist.

Forward-LT-5 69.0 546 356 63.0 689 548 358 63.0 68.8 549 36.0 63.0
Forward-LT-2 682 56.0 40.0 60.6 682 56.0 40.1 60.6 68.1 56.0 40.1 60.5
Uniform 669 56.6 424 588 66.5 57.0 435 588 66.5 569 433 588
Backward-LT-2 649 570 457 570 653 57.1 450 57.1 655 57.1 448 57.1
Backward-LT-5 63.1 574 473 554 634 564 475 555 634 564 475 555
Backward-LT-10 609 57.7 48.6 544 609 575 50.1 545 613 57.6 487 544
Backward-LT-25 60.8 56.7 50.1 53.6 60.5 57.1 50.0 53.7 61.0 572 49.6 53.6
Backward-LT-50 61.1 56.2 50.8 53.1 60.7 562 50.7 53.1 612 564 50.0 529
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F.3 Influences of Learning Rate

In this appendix, we evaluate the influence of the learning rate on our self-supervised strategy,
where we adjust the learning rate from 0.001 to 0.5. As shown in Table 18, with the increase of the
learning rate, the learned expert weights by our method are sharper and fit the unknown test class
distributions better. For example, when the learning rate is 0.001, the weight for expert F; is 0.36
on the Forward-LT-50 test distribution, while when the learning rate increases to 0.5, the weight
for expert I/; becomes 0.57 on the Forward-LT-50 test distribution. Similar phenomenons are also
observed on backward long-tailed test class distributions.

By observing the corresponding model performance on various test class distributions in Table 19,
we find that when the learning rate is too small (e.g., 0.001), our test-time self-supervised aggregation
strategy is unable to converge, given a fixed training epoch number of 5. In contrast, given the same
training epoch, our method can obtain better performance by reasonably increasing the learning rate.

Table 18: The influence of the learning rate on the learned expert weights by test-time self-supervised
aggregation on ImageNet-LT, where the number of the training epoch is 5.

Test Dist Learning rate 0.001 Learning rate 0.01 Learning rate 0.025
El (w1) E2(ws) E3 (ws) El (w1) E2(ws) E3(ws) El (wy) E2(ws) E3 (ws)
Forward-LT-50 0.36 0.34 0.30 0.49 0.33 0.18 0.52 0.35 0.13
Forward-LT-25 0.36 0.34 0.30 0.48 0.34 0.18 0.50 0.35 0.15
Forward-LT-10 0.36 0.34 0.30 0.45 0.34 0.21 0.46 0.36 0.18
Forward-LT-5 0.36 0.33 0.31 0.43 0.34 0.23 0.43 0.34 0.23
Uniform 0.33 0.33 0.34 0.34 0.33 0.33 0.33 0.33 0.34
Backward-LT-5 0.31 0.32 0.37 0.25 0.31 0.44 0.24 0.31 0.45
Backward-LT-10 0.31 0.32 0.37 0.22 0.29 0.49 0.21 0.29 0.50
Backward-LT-25 0.31 0.32 0.37 0.21 0.28 0.51 0.18 0.29 0.53
Backward-LT-50 0.31 0.32. 0.37 0.20 0.28 0.52 0.17 0.27 0.56
Test Dist. Learning rate 0.05 Learning rate 0.1 Learning rate 0.5
El (w1) E2(wy) E3 (ws) El (w1) E2(wz) E3(w3) El (w1) E2(wz) E3(w3)

Forward-LT-50 0.53 0.36 0.11 0.53 0.37 0.10 0.57 0.34 0.09
Forward-LT-25 0.51 0.36 0.13 0.52 0.36 0.12 0.57 0.34 0.09
Forward-LT-10 0.45 0.37 0.18 0.47 0.36 0.18 0.44 0.36 0.20
Forward-LT-5 0.42 0.35 0.23 0.47 0.36 0.18 0.39 0.36 0.25
Uniform 0.33 0.33 0.34 0.31 0.31 0.38 0.33 0.34 0.33
Backward-LT-5 0.24 0.31 0.45 0.24 0.29 0.47 0.21 0.28 0.51
Backward-LT-10 0.21 0.30 0.49 0.21 0.31 0.48 0.22 0.32 0.46
Backward-LT-25 0.16 0.28 0.56 0.17 0.31 0.52 0.15 0.30 0.55
Backward-LT-50 0.15 0.28 0.57 0.14 0.28 0.58 0.12 0.27 0.61

Table 19: The influence of learning rates on test-time self-supervised aggregation on ImageNet-LT,
under training epoch 5.

Test Dist Learning rate 0.001 Learning rate 0.01 Learning rate 0.025
Many Med. Few All Many Med. Few All Many Med. Few All
Forward-LT-50 673 56.1 441 673 69.5 540 346 69.0 70.0 532 331 694
Forward-LT-25 674 562 403 66.1 69.2 538 332 672 69.5 532 322 674
Forward-LT-10 677 564 419 645 69.6 550 36.1 654 69.9 543 347 654
Forward-LT-5 672 559 408 62.6 68.7 550 362 63.0 689 548 358 63.0
Uniform 669 56.6 427 588 67.0 56.8 427 588 66.5 57.0 435 588
Backward-LT-5 658 575 437 550 639 575 469 555 634 564 475 555
Backward-LT-10 64.6 575 437 53.1 613 576 48.6 544 609 575 50.1 545
Backward-LT-25 66.0 573 44.1 515 61.1 574 493 535 60.5 57.1 500 53.7
Backward-LT-50 682  56.8 43.7 50.0 63.1 565 495 527 60.7 56.2 50.7 53.1
Test Dist. Learning rate 0.05 Learning rate 0.1 Learning rate 0.5
Many Med. Few All Many Med. Few All Many Med. Few All
Forward-LT-50 702 524 324 695 703 523 324 695 703 512 324 695
Forward-LT-25 69.7 525 325 675 699 523 314 67.6 699 51.1 295 675

Forward-LT-10 69.7 547 358 654 69.9 543 348 654 69.5 550 358 653
Forward-LT-5 68.8 549 362 63.0 68.8 548 36.1 63.0 683 553 376 629
Uniform 66.6 569 432 588 65.6 57.1 447 587 67.8 564 409 587
Backward-LT-5 63.6 575 489 554 63.0 574 481 556 61.4 574 492 556
Backward-LT-10  61.1 575 489 544 613 576 48.6 544 62.0 575 479 542
Backward-LT-25 599 568 51.0 539 609 572 499 537 60.2 56.8 508 539
Backward-LT-50  60.1  56.0 512 532 59.6 55.8 513 532 582 556 522 535
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F.4 Results of Prediction Confidence

In our theoretical analysis (i.e., Theorem 1), we find that our test-time self-supervised aggregation
strategy not only simulates the test class distribution, but also makes the model predictions more
confident. In this appendix, we evaluate whether our strategy can really improve the prediction
confidence of models on various unknown test class distributions of ImageNet-LT. To this end,
we compare the prediction confidence of our method without and with test-time self-supervised
aggregation in terms of the hard mean of the highest prediction probability on all test samples.

As shown in Table 20, our test-time self-supervised aggregation strategy enables the deep model to
have higher prediction confidence. For example, on the Forward-LT-50 test distribution, our strategy
obtains 0.015 confidence improvement, which is non-trivial since it is an average value for a large
number of samples (more than 10,000 samples). In addition, when the class imbalance ratio becomes
larger, our method is able to obtain more apparent confidence improvement.

Table 20: Comparison of prediction confidence between our method without and with test-time
self-supervised aggregation on ImageNet-LT, in terms of the hard mean of the highest prediction
probability on each sample. The higher the highest prediction, the better the model.

Prediction confidence on ImageNet-LT

Method Forward-LT Uniform Backward-LT

50 25 10 5 2 1 2 5 10 25 50
Ours w/o test-time aggregation  0.694  0.687 0.678 0.665 0.651 0.639 0.627 0.608 0.596 0.583 0.574
Ours w test-time aggregation 0.711 0.704 0.689 0.674 0.654 0.639 0.625 0.609 0.599 0.589 0.583

F.5 Run-time Cost of Test-time Aggregation

One may be interested in the run-time cost of our test-time self-supervised aggregation strategy, so
we further report its running time on Forward-LT-50 and Forward-LT-25 test class distributions for
illustration. As shown in Table 21, our test-time self-supervised aggregation strategy is fast in terms
of per-epoch time. The actual average additional time is only 0.009 seconds per sample at test time on
V100 GPUs. The result is easy to interpret since we freeze the model parameters and only learn the
aggregation weights, which is much more efficient than training the whole model. More importantly,
the goal of this paper is to handle a practical yet challenging test-agnostic long-tailed recognition
task. For solving this challenging problem, we believe it is acceptable to allow models to be trained
more, while the promising results in previous experiments have demonstrated the effectiveness of
our proposed test-time self-supervised learning strategy in handling this problem. In the future, we
will further extend the proposed method for better computational efficiency, e.g., exploring dynamic
network routing.

Table 21: Run-time cost of our test-time self-supervised aggregation strategy on ImageNet-LT,
compared to the run-time cost of model training. Here, we show two test class distributions for
illustration, which have different numbers of test samples.

Test-time weight learning
Forward-LT-50  Forward-LT-25
Per-epoch time 713 s 110s 130s

Dataset Model training
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F.6 Test-time Self-supervised Aggregation on Streaming Test Data

In the previous experiments, we conduct the test-time strategy in an offline manner [13]. However,
as mentioned in Section 4.2, our test-time strategy can also be conducted in an online manner and
does not require access to all the test data in advance. To verify this, we further conduct our test-
time strategy on steaming test data of ImageNet-LT. As shown in Table 22, our test-time strategy
performs well on the streaming test data. Even when the test data come in one by one, our test-time
self-supervised strategy still outperforms the state-of-the-art baseline (i.e., offline Tent [16]) by a

large margin.

Table 22: Results of our test-time self-supervised aggregation strategy on streaming test data of
ImageNet-LT, where all test-time strategies are used on the same skill-diverse multi-expert model.

Backbone Test-time strategy Forward-LT Backward-LT
50 5 5 50
No test-time adaptation 65.5 62.0 547 498
Offline Tent [16] 68.0 62.8 532 457
SADE Offline self-supervised aggregation (ours) 69.4 63.0 55,5 531
Online self-supervised aggregation with batch size 64 69.5 63.6 55.8  53.1
Online self-supervised aggregation with batch size 8  69.8  63.0 554 530
Online self-supervised aggregation with batch size 1 ~ 69.0 62.8 552 528
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G More Discussions on Model Complexity

In this appendix, we discuss the model complexity of our method in terms of the number of parameters,
multiply-accumulate operations (MACs) and top-1 accuracy on test-agnostic long-tailed recognition.
As shown in Table 23, both SADE and RIDE belong to ensemble-based long-tailed learning methods,
so they have more parameters (about 1.5x) and MACs (about 1.4x) than the original backbone model,
where we do not use the efficient expert assignment trick in [17] for both methods. Because of
the ensemble effectiveness of the multi-expert scheme, both methods perform much better than
non-ensemble methods (e.g., Softmax and other long-tailed methods). In addition, since our method
and RIDE use the same multi-expert framework, both methods have the same number of parameters
and MACs. Nevertheless, by using our proposed skill-diverse expert learning and test-time self-
supervised aggregation strategies, our method performs much better than RIDE with no increase in
model parameters and computational costs.

One may concern the multi-expert scheme leads to more model parameters and higher computational
costs than the original backbone. However, note that the main focus of this paper is to solve the
challenging test-agnostic long-tailed recognition, while promising results have shown that our method
addresses this problem well. In this sense, slightly increasing the model complexity is acceptable
for solving this practical yet challenging problem. Moreover, since there have already been many
studies [6, 19] showing effectiveness in improving the efficiency of the multi-expert scheme, we think
the computation increment is not a severe issue and we leave it to the future.

Table 23: Model complexity and performance of different methods in terms of the parameter number,
Multiply—Accumulate Operations (MACs) and top-1 accuracy on test-agnostic long-tailed recognition.
Here, we do not use the efficient expert assignment trick in [17] for RIDE and our method.

ImageNet-LT (ResNeXt-50)

Method Params (M) MACs (G) Forward-LT Uniform Backward-LT

50 25 10 5 2 1 2 5 10 25 50
Softmax 25.03 (1.0x)  4.26 (1.0x) 66.1 638 603 566 520 48.0 439 386 349 309 276
RIDE [17] 38.28 (1.5x)  6.08 (1.4x) 676 663 640 61.7 589 56.3 540 51.0 487 462 440
SADE (ours) 3828 (1.5x)  6.08 (1.4x) 694 674 654 63.0 60.6 58.8 571 555 545 537 531

CIFAR100-LT-IR100 (ResNet-32)

Method Params (M) MACs (G) Forward-LT Uniform Backward-LT

50 25 10 5 2 1 2 5 10 25 50
Softmax 0.46 (1.0x)  0.07 (1.0x) 633 620 562 525 464 414 36.5 305 258 21.7 175
RIDE [17] 0.77 (1.5x)  0.10 (1.4x) 63.0 599 570 53.6 494 48.0 425 381 354 316 292
SADE (ours)  0.77 (1.5x) ~ 0.10 (1.4x) 659 625 583 548 511 49.8 46.2 447 439 425 424

Places-LT (ResNet-152)

Method Params (M) MACs (G) Forward-LT Uniform Backward-LT

50 25 10 5 2 1 2 5 10 25 50
Softmax 60.19 (1.0x)  11.56 (1.0x) 456 427 402 38.0 341 314 284 254 234 208 194
RIDE [17] 88.07 (1.5x)  13.18 (1.1x) 43.1 418 416 420 410 403 39.6 387 382 37.0 369
SADE (ours) 88.07 (1.5x) 13.18 (1.1x) 464 449 433 426 413 40.9 40.6 41.1 414 42.0 416

iNaturalist 2018 (ResNet-50)
Method Params (M) MACs (G) Forward-LT Uniform Backward-LT
3 2 1 2 3

Softmax 25.56 (1.0x)  4.14 (1.0x) 65.4 65.5 64.7 64.0 63.4
RIDE [17] 39.07 (1.5x)  5.80 (1.4x) 71.5 71.9 71.8 71.9 71.8
SADE (ours) 39.07 (1.5x)  5.80 (1.4x) 72.3 72.5 729 735 733

H Potential Limitations

One concern is that this work only focuses on long-tailed classification problems. However, we
believe this is enough for a new challenging task of test-agnostic long-tailed recognition, while how
to extending to object detection and instance segmentation will be explored in the future. Another
potential concern is the model complexity of our method. However, as discussed in Appendix G, the
computation increment is not a very severe issue, while how to further accelerate our method will be
explored in future. In addition, one may also expect to evaluate the proposed method on more test
class distributions. However, as shown in Section 5.3, we have demonstrated the effectiveness of our
method on the uniform class distribution, the forward and backward long-tailed class distributions
with various imbalance ratios, and even partial class distributions. Therefore, we believe the empirical
verification is sufficient for verifying our method, and the extension to more complex test class
distributions is left to the future. Furthermore, extending our proposed method to other image
domains, like medical image tasks [23], will also be an interesting direction.
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