
Direct then Diffuse: Incremental Unsupervised Skill
Discovery for State Covering and Goal Reaching

Anonymous Author(s)
Affiliation
Address
email

Abstract

Learning meaningful behaviors in the absence of a task-specific reward function1

is a challenging problem in reinforcement learning. A desirable unsupervised2

objective is to learn a set of diverse skills that provide a thorough coverage of3

the state space while being directed, i.e., reliably reaching distinct regions of the4

environment. At test time, an agent could then leverage these skills to solve sparse5

reward problems by performing efficient exploration and finding an effective goal-6

directed policy with little-to-no additional learning. Unfortunately, it is challenging7

to learn skills with such properties, as diffusing (e.g., stochastic policies performing8

good coverage) skills are not reliable in targeting specific states, whereas directed9

(e.g., goal-based policies) skills provide limited coverage. In this paper, inspired10

by the mutual information framework, we propose a novel algorithm designed11

to maximize coverage while ensuring a constraint on the directedness of each12

skill. In particular, we design skills with a decoupled policy structure, with a first13

part trained to be directed and a second diffusing part that ensures local coverage.14

Furthermore, we leverage the directedness constraint to adaptively add or remove15

skills as well as incrementally compose them along a tree that is grown to achieve a16

thorough coverage of the environment. We illustrate how our learned skills enables17

to efficiently solve sparse-reward downstream tasks in navigation and continuous18

control environments, where it compares favorably with existing baselines.19

1 Introduction20

Deep reinforcement learning (RL) algorithms have been shown to effectively solve a wide variety of21

complex problems [e.g., 30, 6, 39, 16, 2, 36]. However, they are often designed to solve one single22

task at a time and they need to restart the learning process from scratch for any new problem, even23

when it is defined on the very same environment (e.g., navigating to different locations in the same24

apartment). Recently, unsupervised RL (URL) has been proposed as an approach to address this25

limitation. In URL, the agent first interacts with the environment without any extrinsic reward signal.26

Afterward, the agent leverages the experience accumulated during the unsupervised learning phase to27

efficiently solve a variety of downstream tasks defined on the same environment.28

In this paper, we consider the URL setting where the agent starts from an initial state s0 and it resets29

to it every time the policy terminates. We focus on sparse-reward downstream tasks, which require30

effective exploration (i.e., via a thorough coverage of the state space) to find the goal as well as31

learning a policy reliably reaching the goal (i.e., a directed policy).32

We build on the insight that mutual information (MI) effectively formalizes the dual objective of33

learning skills that both cover and navigate the environment efficiently [e.g., 15]. Specifically, given34

the state variable S and some variables Z on which the skill policies are conditioned, MI is defined as35

I(S;Z) = H(S)︸ ︷︷ ︸
coverage

− H(S|Z)︸ ︷︷ ︸
directedness

= H(Z)−H(Z|S), (1)

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

Figure 1: Overview of UPSIDE. The black dot corresponds to the initial state s0. (A) A set of random skills
is initialized, each skill being composed of a directed part (illustrated as a black arrow) and a diffusing part
(red arrows), which induces a local coverage (colored circles). (B) The policies associated to the directed part
of each skill are then updated to maximize the discriminability of the states reached by their diffusing part
(Sect. 3.1). (C) The least discriminable skills are iteratively removed while the policies of the remaining skills are
re-optimized. This is executed until the discriminability of each skill satisfies a given constraint (see Sect. 3.2).
In this example three skills are kept. (D) One of these learned skill is then used as basis to add new skills, which
are then optimized following the same procedure. For the “red” and “purple” skills, UPSIDE is not able to find
sub-skills of sufficient quality and thus they are not expanded any further. (E) At the end of the process, UPSIDE
has created a tree of directed skills covering the state space (Sect. 3.3). These covering skills can then be used to
solve downstream tasks. Moreover, the discriminator learned together with the skills can be used to select the
skill to reach any specific goal region, where the directed parts get close to the goal, while the diffusing part
provides the local coverage to attain the goal. The complete algorithm is detailed in Sect. 3.4 and Appendix.

where I denotes the MI andH is the entropy function. The first expression, known as the forward36

form of MI, explicitly balances the two sought-after properties of coverage — captured by the entropy37

over the state spaceH(S) — and directedness, i.e., the ability to reach specific states S depending38

on Z — captured by the negative conditional entropy −H(S|Z). The second expression of (1), often39

easier to optimize and referred to as the reverse form, stipulates that the skills should be sampled as40

diversely as possible while being discriminable.41

Maximizing (1) has been shown to be a powerful approach for encouraging exploration in RL42

[20, 32] and for unsupervised skill discovery [e.g., 15, 12, 1, 38, 10]. Nonetheless, learning skills43

that maximize the MI is a challenging optimization problem. Several approximations have been44

proposed to simplify the problem at the cost of possibly deviating from the original objective of45

coverage and directedness (see Sect. 4 for a review of related work). In this paper, we propose46

UPSIDE (UnsuPervised Skills that dIrect then DiffusE) to learn skills that can be effectively used to47

solve goal-based downstream tasks. Our solution builds on the following components (see Fig. 1 for48

an illustration of UPSIDE):49

• Skill structure. In order to balance coverage and directedness, we design skills composed of two50

parts: 1) a directed part that is trained to reach a distinct region of the environment, and 2) a51

diffusing part that covers the states around the region attained by the first part.52

• Optimization. We further strengthen the coverage and directedness properties of the skills by53

turning the MI objective into a constrained optimization problem designed to maximize coverage54

under the constraint that each skill achieves a minimum level of discriminability. This in turn55

enables UPSIDE to adaptively add skills to improve coverage, when all the initial skills meet the56

constraint, or remove those that violate the constraint to guarantee that each skill is directed and57

reaches a distinct region of the environment.58

• Tree structure. When the agent starts from a fixed initial state, the skills’ length is a crucial59

parameter, where short skills do not allow for proper coverage, and long skills are difficult to train.60

In UPSIDE we consider short skills to make the optimization easier, while composing them along a61

tree structure that ensures an adaptive and deep coverage of the environment.62

We study how our learned skill structure enables to both perform efficient exploration and learn63

effective goal-reaching policies in a variety of navigation and continuous control environments64

(including MuJoCo’s reacher) and we compare its performance to relevant baselines.65

2

2 Setting66

We consider the URL setting where the agent interacts with a Markov decision process (MDP) M67

with state space S, action space A, dynamics p(s′|s, a), and no reward. The agent starts each68

episode from a designated initial state s0 ∈ S. Upon termination of the chosen policy, the agent is69

then reset to s0. This setting is particularly challenging from an exploration point of view since the70

agent cannot rely on the initial distribution to cover the state space.71

We recall the MI-based unsupervised skill discovery approach [see e.g., 15]. Denote by Z some72

(latent) variables on which the skills of length T are conditioned. There are three optimization73

variables: (i) the support of the skills denoted by |Z| (we consider it to be discrete so |Z| is the74

number of skills), (ii) the policy π(z) associated to skill z, and (iii) the sampling rule ρ (i.e., ρ(z)75

is the probability of sampling skill z at the beginning of the episode). Let the variable ST be the76

random (final) state induced by sampling a skill z from ρ and executing the associated policy π(z)77

from s0 for an episode. We denote by pπ(z)(sT) the distribution over (final) states induced by78

executing the policy of skill z, by p(z|sT) the probability of z being the skill to induce state sT , and79

let p(sT) =
∑
z∈Z ρ(z)pπ(z)(sT). Then maximizing the MI between Z and ST can be written as80

max
|Z|, ρ, π

I(ST ;Z) = H(ST)−H(ST |Z) = −
∑
sT

p(sT) log p(sT) +
∑
z∈Z

ρ(z)EsT
[
log pπ(z)(sT)

]
= H(Z)−H(Z|ST) = −

∑
z∈Z

ρ(z) log ρ(z) +
∑
z∈Z

ρ(z)EsT [log p(z|sT)] , (1)

where in the expectations sT ∼ pπ(z)(sT). As discussed in Sect. 1, learning the optimal |Z|, ρ, and π81

is a challenging problem [see e.g., 15, 12, 10].82

3 Algorithm Structure83

UPSIDE is based on three main components: a) the skill learning corresponding to stage A and B of84

Fig. 1 and described in Sect. 3.1, b) a constrained optimization problem used to optimize the number85

of skills (stage C and Sect. 3.2) and c) a tree-building procedure (stage D and Sect. 3.3). Together,86

these components allow UPSIDE to discover skills that combine coverage and directedness.87

3.1 Skill Structure and Optimization88

As shown in e.g., [12, 38, 46], the level of stochasticity of each skill (e.g., induced via a regularization89

on the entropy over the actions) plays a key role in trading off coverage and directedness. In fact,90

while randomness promotes broader coverage, it may compromise the directedness of the skills.91

In fact, a highly stochastic skill tends to induce a distribution pπ(z)(sT) over final states with high92

entropy (thus decreasing−H(ST |Z)), which prevents the skill to be reusable in solving sparse-reward93

downstream tasks where the objective is to reliably reach a specific goal state of the environment.94

Determining how much stochasticity to inject to adequately balance both objectives and optimize (1)95

is a difficult problem.196

We propose to design skills with a decoupled policy structure:97

• A directed part (of length T) with low stochasticity and trained to
reach a specific region of the environment. It is responsible for
increasing the −H(S|Z) term in (1).

• A diffusing part (of length H) with high stochasticity to promote
local coverage of the states around the region reached by the directed
part. It is responsible for increasing theH(S) term in (1).

Figure 2: Directed and diffus-
ing parts of the skill.

98

Similar to prior work [e.g., 15, 12], the policy associated to the directed part of skill z is trained to max-99

imize an intrinsic reward rz(s) ≈ p(z|s),2 where p(z|s) measures the “discriminability” of the skill z100

given the state s. More formally, π(z) maximizes the cumulative reward Eπ(z)
[∑T+H

t=T+1 rz(st)
]

101

over the states traversed by the policy during the diffusing part. In practice, we also add a small102

entropy regularization H(π(·|z, st)) to the directed policy in order to ensure a minimum level of103

1In RL, stochasticity is injected at “train time” to boost exploration or improve robustness, while the policy
executed at “test time” is deterministic. Here we refer to stochasticity introduced to better optimize (1).

2Although [15, 12] employ rewards in the log domain, we find that using a reward that is a non-linear
transformation into [0, 1] works better in practice, as also observed in [42, 5]. Furthermore, in practice we
replace p(z|s) by the predictions of a learned discriminator qφ(z|s) as explained in Sect. 3.4.

3

exploration and make the learning more robust. For the diffusing part, we rely on a simple random104

walk policy (i.e., a stochastic policy with uniform distribution over actions).105

Intuitively, the diffusing part defines a cluster of states that is used as a goal for the directed part.106

This allows us to “ground” the latent variable representations of the skills Z to specific regions of107

the environment (i.e., the clusters). As a result, maximizing the MI over such skills can be seen as108

learning a set of “cluster-conditioned”, and thus directed, policies.109

3.2 Skill Support and Sampling Rule110

The MI objective (1) crucially depends on the number of skills (|Z|) and the distribution ρ(z).111

Unfortunately, it is been shown [e.g., 10] that solving (1) is particularly challenging. In order to112

simplify the optimization and the associated learning problem, we modify (1) in two ways.113

First, coherently with the skill optimization detailed in Sect. 3.1, the random variable S in the114

conditional entropy is any state reached during the diffusing part of the skill and not just the terminal115

state. More formally, we denote by Sdiff the random variable and its distribution for a specific skill z116

is pπ(z)(sdiff) = 1/H
∑T+H
t=T+1 pπ(z)(st), i.e., the distribution over states obtained by averaging the117

distributions at any of the steps in the diffusing part. Similarly, p(z|sdiff) now denotes the probability118

of z being the skill to traverse sdiff during its diffusing part. As a result, training the skills to maximize119

MI naturally leads the diffusing parts to “push” the directed parts away so as to reach diverse regions120

of the environment. The combination of “global” coverage of the directed parts and “local” coverage121

of the diffusing part ensures that the whole environment is properly visited with |Z| � S skills.3122

Second, we introduce an alternative problem that simplifies the optimization while preserving the123

coverage and directedness properties of MI. This is achieved by introducing a stronger requirement124

on the discriminability. While the conditional entropy term −H(Z|S) in (1) promotes the discrim-125

inability of skills on average, we argue that a more suitable objective is to constrain each skill to126

achieve a minimum level of discriminability. First, we move from the average to the minimum over127

skills by lower bounding the conditional entropy as128

−H(Z|Sdiff) =
∑
z∈Z

ρ(z)Esdiff [log p(z|sdiff)] ≥ min
z∈Z

Esdiff [log p(z|sdiff)] , (2)

which leads to the following optimization (assuming π is fixed for convenience)129

max
|Z|=N,ρ

{
H(Z) + min

z∈[N]
Esdiff [log p(z|sdiff)]

}
, (3)

where with an abuse of notation we use z ∈ [N] to denote all skills in a set Z with cardinality N .130

Since (3) is a lower bound to MI, it tends to promote the same type of covering and directed skills.131

Furthermore, (2) no longer depends on the distribution over skills and the entropy term H(Z) is132

maximized by setting ρ to the uniform distribution over N skills (i.e., maxρH(Z) = log(N)), thus133

simplifying the optimization, which now only depends on N .134

While optimizing (3) promotes a cardinality N such that all skills have good discriminability, a more135

convenient formulation is to explicitly set a minimum level of discriminability for all skills through136

the following constrained optimization problem:137

max
N≥1

log(N) s.t. min
z∈[N]

Esdiff [log p(z|sdiff)] ≥ log η. (4)

where η is a parameter that defines the discriminability threshold. A skill z is said to be η-consolidated138

if it satisfies the constraint. Crucially, let PN := minz∈[N] Esdiff [log p(z|sdiff)], then the sequence139

(PN)N≥1 is non-increasing with P1 = 0 (i.e., the more skills the harder it is to meet the constraint).140

As a result, (4) can be optimized following a simple greedy strategy incrementally adding skills until141

the constraint is violated. The optimalN thus defines the effective number of η-consolidated skills and142

it corresponds to the largest number of skills that is guaranteed to display sufficient discriminability.143

Alternatively, we can interpret (4) as finding the largest number of clusters (i.e., the region reached144

by the directed part of a skill and covered by its associated diffusing part) with a minimum level of145

inter-cluster distance. This effect is qualitatively illustrated in Fig. 1, where the states attained by the146

directed part of the skills attain different regions that are locally covered by their diffusing parts.147

3Notice that (1) is maximized by setting |Z| = |S| (since maxY I(X,Y) = I(X,X) = H(X)), i.e.,
where each skills is a goal-conditioned policy reaching a different state. This implies having as many policies as
states, which makes the learning particularly challenging as the complexity of the environment increases.

4

Algorithm 1: UPSIDE
Initialize: Discriminability threshold η ∈ (0, 1), branching factor N0 ≥ 1, patience K
Initialize: Tree T initialized as a root node indexed by 0, queue of parent nodesW = {0}.
while W 6= ∅ do // tree expansion

1 Dequeue a node/skill w ∈ W and expand T at w by adding a set C(w) of N0 nodes/skills
2 Create random policies πz, ∀z ∈ C(w)
3 Initialize discriminator qφ with |T | classes
4 Continue = true; Saturated = false
5 while Continue do
6 for K iterations do
7 Sample a skill z from T at random
8 Extract the sequence of nodes z(1), . . . , z in T leading to z
9 Execute the composed (directed part) policy (πz(1) , . . . , πz) followed by the diffusing part

10 Add states observed during the diffusion part to state buffer Bz
11 Update discriminator qφ with SGD on Bz to predict label z
12 if z ∈ C(w) then // Update only new policies, other polices kept fixed
13 Update policy πz using SAC to optimize the discriminator reward as in Sect. 3.1.
14 Compute the skill-discriminability d(z) = q̂(B)

φ (z) = 1
|Bz |

∑
s∈Bz qφ(z|s) for all z ∈ C(w)

15 if minz∈C(w) d(z) < η then // Node removal
16 Remove the node/skill z = argminz∈C(w) d(z) from C(w) and T
17 Set Saturate = true
18 else if not Saturated then
19 Add one new node/skill to C(w) and T
20 else
21 Set Continue = false

22 Enqueue inW the consolidated nodes C(w)

3.3 Composing Skills in a Tree Structure148

The MI optimization problem as well as our constrained variant (4) depend on the initial state s0149

and on the length of each skill. Although these quantities are usually predefined and only appear150

implicitly in the equations, they have a crucial impact on the obtained behavior. In fact, resetting after151

each skill execution unavoidably restricts the coverage to a radius of at most T +H steps around s0.152

This may suggest to set T and H to a large value. However, increasing the horizon makes the training153

of the skills more challenging, as learning π would require solving a difficult RL problem itself.154

Instead, we propose to “extend” the length of the skills through composition. Indeed, the decoupled155

skill structure and the constraint in (4) entail that the directed part of each of the η-consolidated skills156

reliably reach a specific (and distinct) region of the environment and it is thus re-usable and amenable157

to composition. We propose to chain the directed part of the skills in order to reach further and further158

parts of the state space. Specifically, we build a growing tree, where the root is the initial state s0, the159

edges represent the directed part of the skills, and the nodes represent the diffusing part of skills. As160

such, whenever a skill z is selected, the directed part of all the policies associated to its predecessor161

skills in the tree are executed first (see Fig. 1 for an illustration of the tree structure).162

As a result, the agent naturally builds a curriculum on the episode lengths, which grow as the sequence163

(iT +H)i≥1. As such, it does not require prior knowledge on an adequate horizon of the downstream164

goal-based task.4 Here this knowledge is replaced by T and H which are more environment-agnostic165

and task-agnostic quantities, as their choice rather has an impact on the size and shape of the learned166

tree (e.g., the smaller T and H the bigger the tree).167

3.4 The UPSIDE Algorithm168

We are now ready to introduce UPSIDE, which provides a specific implementation of the components169

described before (see Fig. 1 for a qualitative illustration and Algorithm 2 for the detailed pseudo-code).170

We perform standard approximations to make the constraint in (4) easier to estimate. We approximate171

the unknown posterior p(z|s) with a learned discriminator qφ(z|s) with parameters φ. We also172

4See e.g., the discussion in [33] on the “importance of properly choosing the training horizon in accordance
with the downstream-task horizon the policy will eventually face.”

5

remove the logarithm from the constraint to have an estimation range of [0, 1] and thus lower173

variance2. Finally, we replace the expectation over s with an empirical estimate q̂(B)

φ (z) averaging the174

value of the discriminator evaluated on the last B states observed while executing the diffusing part175

of z. Integrating these approximations in (4) leads to176

max
N≥1,π

N s.t. min
z∈[N]

q̂(B)

φ (z) ≥ η. (5)

As discussed in Sect. 3.2, this problem can be conveniently optimized using a greedy strategy. We177

then integrate the optimization of (5) into an adaptive tree expansion strategy: (Generating new178

skills) Given a tree structure as described in Sect. 3.3, we expand the tree at a leaf w by adding N0179

new nodes/skills following a breadth-first-search approach (lines 1, 2). Then (Skill Learning) the180

new skills are optimized by: i) sampling random skills in the tree to update the discriminator (lines181

7-11), and ii) by updating the policies to optimize the discriminability reward (Sect. 3.1) computed182

using the discriminator (lines 13). To speed-up convergence, we only update the policies that have be183

added to the tree structure, keeping all the previous policies fixed (line 12). Note that in the update of184

the discriminator we leverage the states observed in previous phases of the algorithm by maintaining185

a (small) replay buffer of states for each skill. (Node Consolidation) After a patience period (line 6),186

if all skills are η-consolidated, we tentatively add more skills to the leaf w (line 18). On the other187

hand, if any skill does not meet the discriminability threshold, we remove it and consolidate the188

remaining skills into the tree (lines 16, 17) and we repeat the process.189

Model selection. A core aspect of any RL algorithm is model selection, i.e., finding the best190

configuration of hyperparameters. In URL with no prior knowledge of the downstream task(s), it191

is non-trivial to devise an adequate criterion for model selection and this aspect is rarely addressed,192

despite being crucial in practice. For instance, while the coverage of the state space may be a good193

proxy for the performance of a URL algorithm [see e.g., 10], it may be difficult to measure in194

continuous problems. Interestingly, our optimization problem directly provides a single, task-agnostic195

and environment-agnostic criterion for model selection, which is the number N of η-consolidated196

skills discovered by the agent. Indeed in all of our experiments we simply select the model (i.e., set197

of hyperparameters) that maximizes N . This is a significant advantage w.r.t. existing methods, such198

as VIC and DIAYN, for which no principled approach to model selection is provided.199

4 Related work200

Unsupervised Reinforcement Learning methods can be broadly decomposed according to the way201

they summarize the experience accumulated during the unsupervised phase into reusable knowledge202

to solve downstream tasks. This includes both off-policy model-free [e.g., 34] and model-based203

[e.g., 37] methods that seek to populate a representative replay buffer and build accurate value or204

model estimates, that are used to solve a given downstream task in a zero- or few-shot manner.205

The accumulated experience during train time can also be compressed into a low-dimensional206

representation for value functions as well as policies and to improve exploration [e.g., 45]. An207

alternative line of work focuses on the discovery of a set of skills in an unsupervised manner. Our208

approach falls in this category, on which we now focus our related work review.209

Skill discovery based on MI maximization was first proposed in VIC [15], where only the final states210

of each trajectory are considered in the reverse form of (1) and where both the skills and their sampling211

rules are simultaneously learned (with a fixed support |Z|, i.e., a fixed number of skills). DIAYN [12]212

fixes the sampling rule to be uniform, and weighs the skills with an action-entropy coefficient (i.e., it213

additionally minimizes the MI between actions and skills given the state), so as to push the skills214

away from each other and enhance coverage. DADS [38] learns skills that are not only diverse but215

also predictable by learned dynamics models, by using a generative model over observations (rather216

than over skills) and optimizing a forward form of MI, namely I(s′; z|s) between the next state s′217

and current skill z (with continuous latent) conditioned on the current state s. EDL [10] shows that218

existing skill discovery approaches can provide insufficient coverage, and instead proposes to rely on219

a fixed distribution over states p(s) which is either provided by an oracle or learned. In SMM [24], the220

MI formalism is used to learn a policy for which the state marginal distribution matches a given target221

state distribution (e.g., uniform), which can be seen as a more scalable way of tackling the problem of222

maximum entropy over the state space [19], and as a way to encourage skills to go through unknown223

state regions. Other MI-based skill discovery methods include [13, 18, 31, 5, 43], as well as [44, 27]224

which investigate skill discovery in non-episodic settings.225

6

UPSIDE DIAYN SMM

Figure 3: UPSIDE, DIAYN-curriculum and SMM-10 skills learned in a bottleneck maze (Top) and a
U-maze (Bottom). For both DIAYN and SMM we report the stochastic execution of the learned skills and
for UPSIDE we report the deterministic directed parts (that are composed) followed by the (stochastic)
diffusing part, which is the same protocol used to evaluate coverage.

Our approach shares a similar motivation to prior MI-based works of targeting skills that are both226

directed and state-covering. In particular, the decoupled structure introduced in Sect. 3.1 can be seen227

as a more suitable way to achieve the objective of improving the coverage of VIC as done in DIAYN228

and SMM, without compromising the directedness of the skills.229

While most skill discovery approaches consider a fixed number of skills, a curriculum with increasing230

number of skills is studied in [1, 3]. Our discriminability constraint is what enables skills to be231

composed along a tree structure, which allows increases or decreases the support of available skills232

depending on the region of the state space.233

Recently, [46] proposed a hierarchical RL method that discovers abstract and task-agnostic skills234

while jointly learning a higher-level policy which is trained to maximize environment reward. Our235

approach builds on a similar promise of composing skills instead of resetting to s0 after each execution,236

yet we articulate the composition differently, by exploiting the direct-then-diffuse structure to ground237

learned skills to the state space instead of being abstract.238

In addition, approaches such as DISCERN [42] and Skew-Fit [34] learn a goal-conditioned policy in239

an unsupervised way with an MI objective. As explained in [10, Sect. 5], this can be interpreted as a240

skill discovery approach with latent Z = S, i.e., where each goal state can define a different skill.241

Conditioning on either goal states or abstract latent skills forms two extremes of the spectrum of242

unsupervised RL. We target an intermediate approach, seeking to benefit from the groundedness of243

the latent skill Z and the states S (and thus amenability to composition) of goal-conditioned RL, and244

from the reduced search space and sampling ease of skill-based RL.245

An alternative approach to skill discovery builds on “spectral” properties of the dynamics of the246

environment. This includes eigenoptions [28, 29] and covering options [22, 23], as well as the247

algorithm of [4] that builds a discrete graph representation which learns and composes spectral skills.248

5 Experiments249

In this section, we investigate the following questions: i) Can the adaptive tree structure of UPSIDE in-250

crementally cover an unknown environment while preserving directedness of the skills? ii) Following251

the unsupervised phase, how can UPSIDE be leveraged to solve goal-based downstream tasks?252

We report results on: a) Navigation problems in continuous mazes, where actions represent the desired253

shift in x and y coordinates; b) A difficult instance of CartPole, where the cart starts with zero speed254

and the pole is oriented downside; c) The Reacher [41] problem using the MuJoCo implementation255

in Gym [8]. In all environments, the per-dimension action space is in [−1; +1].256

7

0 0.2 0.4 0.6 0.8 1 1.2

·106

0

0.2

0.4

0.6

0.8

1

Env interactions

C
ov
er
a
ge

Bottleneck Maze

0 0.2 0.4 0.6 0.8 1 1.2

·106

0

0.2

0.4

0.6

0.8

1

Env interactions

C
ov
er
a
ge

U-Maze

UPSIDE
SMM-50
SMM-10
DIAYN-50
DIAYN-10
DIAYN-curriculum
Random policy

Figure 4: Normalized coverage in U-maze and bottleneck.

We compare to different baselines. DIAYN-K, where K is a fixed number of skills, is the original257

algorithm proposed in [12]. DIAYN-Curriculum is a variant where the number of skills is automatically258

tuned following the same procedure as in UPSIDE ensuring a good discriminability. We also compare259

to SMM [24], which is similar to DIAYN, but it includes an exploration bonus encouraging the policies260

to visit rarely encountered states. In our implementation, the exploration bonus is obtained by261

maintaining a multinomial distribution over “buckets of states” obtained by discretization, resulting262

in an computation-efficient and stable implementation that is more stable than the original VAE-based263

method. UPSIDE and all baselines are implemented with Soft-Actor Critic (SAC) [17].264

Unsupervised Phase. We run all methods until convergence. We then do model selection according265

to the criterion of either the final number of skills for UPSIDE and DIAYN-curriculum and the final266

average discriminability for DIAYN-K and SMM. To compute the coverage, we perform rollouts by267

first sampling a skill uniformly at random and executing its associated policy until termination. We268

discretize states into buckets (50 interval per dimension for mazes and 10 for control environments)269

and report the proportion of buckets reached by each method as a function of the total number of270

steps executed in the environment over multiple rollouts. Since only a small portion of the discretized271

states can be reached, we normalize the coverage such that the best method obtains 1.272

We consider two topologies of mazes with size (height and width) 50 such that exploration is non-273

trivial (i.e., a random policy is only able to cover a small part of the state space): a U-shaped maze274

and a Bottleneck maze (which is a harder version of the one in [10, Fig. 1] which is only of size 10275

for the same action space). In Fig. 3 we show that UPSIDE succeeds in covering the near-entirety276

of the state space by creating a tree of directed skills. Moreover, UPSIDE created directed skills277

with a low entropy, while the two baselines tend to create skills that are more stochastic. This is278

particularly evident for SMM, due to the state-entropy exploration bonus, that while it encourages279

broader coverage makes skills less directed.280

In Fig. 4 we report the coverage on the Bottleneck maze and U-Maze. For UPSIDE, executing a281

skill corresponds to executing the directed part of all the “parent” skills in the tree and concluding282

with the diffusion part of the skill. SMM achieves better coverage than DIAYN thanks to the increased283

level of stochasticity (diffusion) of its skills. UPSIDE outperforms both by reaching regions of the284

environment that are not be achieved by other methods. Here, we plot UPSIDE with T = 10 and285

H = 10, but we found UPSIDE to be robust to these parameters as shown in the supplementary.286

Results are similar in the CartPole problem (see Fig. 5) where UPSIDE (with T = 20 and H = 20)287

obtains better coverage than baselines. On the other hand, in Reacher (see Fig. 5), DIAYN-50288

outperforms UPSIDE in terms of coverage. This can be explained by the fact that, in this environment,289

highly stochastic skills provide a good coverage. Nonetheless, this comes at the cost of very low290

discriminability (rightmost plot), which suggests DIAYN-50 skills have poor directedness. On the291

other hand, UPSIDE (and DIAYN-curriculum) achieves much larger discriminability by removing292

redundant skills and favoring more directed policies.293

Downstream Tasks. Following the unsupervised phase, UPSIDE has learned a tree of skills. We294

now investigate how these skills are used to tackle a downstream task. In that setting, we propose to295

use skill-based approaches (i.e UPSIDE, DIAYN and SMM) in the following way: a) (exploration) first296

we sample rollouts over the different skills. b) We then select the best skill based on the maximum297

cumulative reward collected and c) we fine-tune this skill to maximize the reward. We report results298

on mazes (additional results are provided in the supplementary). We consider a sparse positive reward299

8

0 2 4 6 8

·105

0

0.2

0.4

0.6

0.8

1

Env interactions

C
ov
er
ag

e

Cartpole

0 2 4 6 8

·105

0

0.2

0.4

0.6

0.8

1

Env interactions

C
ov
er
ag

e

Reacher

0 0.5 1 1.5

·107

0

0.2

0.4

0.6

0.8

1

Env interactions

D
is
cr
im

in
a
to
r
av
er
ag

e

Reacher

UPSIDE
DIAYN-50
DIAYN-10
DIAYN-curriculum
SMM-10
Random policy

Figure 5: Normalized coverage in Cartpole (Left) and Reacher (Middle). (Right) Average discrim-
inability of the skills during training in Reacher.

when reaching a particular defined goal.5 We consider goals at different distances from the initial300

state s0, the further, the harder. Fig. 6 shows the learning curves obtained when fine-tuning the best301

skill for the different models and compare to a classical SAC algorithm where a single policy is302

learned from scratch. DIAYN/SMM means we use the best state-covering policies between DIAYN and303

SMM. For the “close” goal setting, both UPSIDE and DIAYN/SMM are able to learn to reach this goal304

efficiently while SAC solves the task only for some of the training runs. Note that we do not show305

DIAYN performance since it is lower than the SMM one. For the “far” goal setting, only UPSIDE learns306

to reach this goal. Obtained trajectories are illustrated in Fig. 6.307

0 2 4 6 8

·106

0

0.2

0.4

0.6

0.8

1

Env interactions

S
u
cc
es
s
ra
te

U-Maze: Unknown Close Goal

0 1 2 3 4 5

·106

0

0.2

0.4

0.6

0.8

1

Env interactions

S
u
cc
es
s
ra
te

U-Maze : Unknown Far Goal

0 2 4 6 8

·106

0

0.2

0.4

0.6

0.8

1

Env interactions

S
u
cc
es
s
ra
te

Bottleneck Maze: Unknown Close Goal

0 1 2 3 4 5 6

·106

0

0.2

0.4

0.6

0.8

1

Env interactions

S
u
cc
es
s
ra
te

Bottleneck Maze - Unknown Far Goal

Figure 6:
(Left): Learning curves for “short” distance and (Middle)
“medium” distance goals. (Right): Learned policies after
fine-tuning (Top) U-maze. (Bottom): Bottleneck maze.

UPSIDE

DIAYN/SMM
SAC

6 Conclusion308

We introduced UPSIDE, a novel algorithm for unsupervised skill discovery designed to trade off309

between coverage and directedness and develop a tree of skills that can be used to both perform310

efficient exploration of the environment and learn effective goal-directed policies. Natural venues for311

future investigation are: 1) The diffusing part of each skill could be explicitly trained to maximize312

local coverage; 2) UPSIDE assumes a good representation of the state is provided as input, it would313

be interesting to pair UPSIDE with effective representation learning techniques to tackle problems314

with high-dimensional input (e.g., image-based RL); 3) While UPSIDE is grounded on the solid315

principle of MI maximization, a more thorough theoretical investigation is needed to explicitly link316

the optimization problem and its approximations to the downstream performance.317

5Notice that if the goal was known, the learned discriminator could be directly used to identify the most
promising skill to fine-tune.

9

References318

[1] J. Achiam, H. Edwards, D. Amodei, and P. Abbeel. Variational option discovery algorithms.319

arXiv preprint arXiv:1807.10299, 2018.320

[2] M. Andrychowicz, D. Crow, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,321

P. Abbeel, and W. Zaremba. Hindsight experience replay. In NIPS, 2017.322

[3] A. Aubret, L. Matignon, and S. Hassas. Elsim: End-to-end learning of reusable skills through323

intrinsic motivation. arXiv preprint arXiv:2006.12903, 2020.324

[4] A. Bagaria, J. Crowley, J. W. N. Lim, and G. Konidaris. Skill discovery for exploration and325

planning using deep skill graphs. 2021.326

[5] K. Baumli, D. Warde-Farley, S. Hansen, and V. Mnih. Relative variational intrinsic control.327

arXiv preprint arXiv:2012.07827, 2020.328

[6] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An329

evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,330

2013.331

[7] D. Bertsekas. Dynamic programming and optimal control, volume 2. 1995.332

[8] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.333

Openai gym, 2016.334

[9] A. Z. Broder and A. R. Karlin. Bounds on the cover time. Journal of Theoretical Probability,335

2(1):101–120, 1989.336

[10] V. Campos, A. Trott, C. Xiong, R. Socher, X. Giro-i Nieto, and J. Torres. Explore, discover and337

learn: Unsupervised discovery of state-covering skills. In International Conference on Machine338

Learning, 2020.339

[11] M. Diaz, L. Paull, and P. S. Castro. Loco: Adaptive exploration in reinforcement learning via340

local estimation of contraction coefficients. ICLR Workshop SSL-RL, 2021.341

[12] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning skills342

without a reward function. In International Conference on Learning Representations, 2019.343

[13] C. Florensa, Y. Duan, and P. Abbeel. Stochastic neural networks for hierarchical reinforcement344

learning. arXiv preprint arXiv:1704.03012, 2017.345

[14] C. Florensa, D. Held, X. Geng, and P. Abbeel. Automatic goal generation for reinforcement346

learning agents. In International Conference on Machine Learning, pages 1515–1528, 2018.347

[15] K. Gregor, D. J. Rezende, and D. Wierstra. Variational intrinsic control. arXiv preprint348

arXiv:1611.07507, 2016.349

[16] S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep reinforcement learning for robotic manipula-350

tion with asynchronous off-policy updates. In 2017 IEEE international conference on robotics351

and automation (ICRA), pages 3389–3396. IEEE, 2017.352

[17] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy353

deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290, 2018.354

[18] S. Hansen, W. Dabney, A. Barreto, D. Warde-Farley, T. Van de Wiele, and V. Mnih. Fast task355

inference with variational intrinsic successor features. In International Conference on Learning356

Representations, 2019.357

[19] E. Hazan, S. Kakade, K. Singh, and A. Van Soest. Provably efficient maximum entropy358

exploration. In International Conference on Machine Learning, pages 2681–2691, 2019.359

[20] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck, and P. Abbeel. Vime: variational360

information maximizing exploration. In Proceedings of the 30th International Conference on361

Neural Information Processing Systems, pages 1117–1125, 2016.362

10

[21] T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement learning.363

Journal of Machine Learning Research, 11(Apr):1563–1600, 2010.364

[22] Y. Jinnai, J. W. Park, D. Abel, and G. Konidaris. Discovering options for exploration by365

minimizing cover time. In International Conference on Machine Learning, pages 3130–3139.366

PMLR, 2019.367

[23] Y. Jinnai, J. W. Park, M. C. Machado, and G. Konidaris. Exploration in reinforcement learning368

with deep covering options. In International Conference on Learning Representations, 2020.369

[24] L. Lee, B. Eysenbach, E. Parisotto, E. Xing, S. Levine, and R. Salakhutdinov. Efficient370

exploration via state marginal matching. arXiv preprint arXiv:1906.05274, 2019.371

[25] S. H. Lim and P. Auer. Autonomous exploration for navigating in MDPs. In Conference on372

Learning Theory, pages 40–1, 2012.373

[26] Y. Liu and E. Brunskill. When simple exploration is sample efficient: Identifying sufficient374

conditions for random exploration to yield pac rl algorithms. arXiv preprint arXiv:1805.09045,375

2018.376

[27] K. Lu, A. Grover, P. Abbeel, and I. Mordatch. Reset-free lifelong learning with skill-space377

planning. arXiv preprint arXiv:2012.03548, 2020.378

[28] M. C. Machado, M. G. Bellemare, and M. Bowling. A laplacian framework for option discovery379

in reinforcement learning. In International Conference on Machine Learning, pages 2295–2304.380

PMLR, 2017.381

[29] M. C. Machado, C. Rosenbaum, X. Guo, M. Liu, G. Tesauro, and M. Campbell. Eigenoption382

discovery through the deep successor representation. In International Conference on Learning383

Representations, 2018.384

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,385

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-386

forcement learning. nature, 518(7540):529–533, 2015.387

[31] N. Modhe, P. Chattopadhyay, M. Sharma, A. Das, D. Parikh, D. Batra, and R. Vedantam.388

Ir-vic: Unsupervised discovery of sub-goals for transfer in rl. In Proceedings of the Twenty-389

Ninth International Joint Conference on Artificial Intelligence, IJCAI-20. International Joint390

Conferences on Artificial Intelligence Organization, 2020.391

[32] S. Mohamed and D. J. Rezende. Variational information maximisation for intrinsically motivated392

reinforcement learning. In Advances in neural information processing systems, pages 2125–393

2133, 2015.394

[33] M. Mutti, L. Pratissoli, and M. Restelli. A policy gradient method for task-agnostic exploration.395

arXiv preprint arXiv:2007.04640, 2020.396

[34] V. H. Pong, M. Dalal, S. Lin, A. Nair, S. Bahl, and S. Levine. Skew-fit: State-covering397

self-supervised reinforcement learning. In International Conference on Machine Learning,398

2020.399

[35] M. L. Puterman. Markov Decision Processes.: Discrete Stochastic Dynamic Programming.400

John Wiley & Sons, 1994.401

[36] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization402

algorithms. arXiv preprint arXiv:1707.06347, 2017.403

[37] R. Sekar, O. Rybkin, K. Daniilidis, P. Abbeel, D. Hafner, and D. Pathak. Planning to explore404

via self-supervised world models. In International Conference on Machine Learning, pages405

8583–8592. PMLR, 2020.406

[38] A. Sharma, S. Gu, S. Levine, V. Kumar, and K. Hausman. Dynamics-aware unsupervised407

discovery of skills. In International Conference on Learning Representations, 2020.408

11

[39] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,409

M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge. nature,410

550(7676):354–359, 2017.411

[40] J. Tarbouriech, E. Garcelon, M. Valko, M. Pirotta, and A. Lazaric. No-regret exploration in412

goal-oriented reinforcement learning. In International Conference on Machine Learning, 2020.413

[41] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012414

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 50pou26–5033,415

2012.416

[42] D. Warde-Farley, T. Van de Wiele, T. Kulkarni, C. Ionescu, S. Hansen, and V. Mnih. Unsuper-417

vised control through non-parametric discriminative rewards. In International Conference on418

Learning Representations, 2019.419

[43] K. Xie, H. Bharadhwaj, D. Hafner, A. Garg, and F. Shkurti. Skill transfer via partially amortized420

hierarchical planning. In International Conference on Learning Representations, 2021.421

[44] K. Xu, S. Verma, C. Finn, and S. Levine. Continual learning of control primitives: Skill422

discovery via reset-games. arXiv preprint arXiv:2011.05286, 2020.423

[45] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Reinforcement learning with prototypical424

representations. arXiv preprint arXiv:2102.11271, 2021.425

[46] J. Zhang, H. Yu, and W. Xu. Hierarchical reinforcement learning by discovering intrinsic426

options. In International Conference on Learning Representations, 2021.427

12

Checklist428

1. For all authors...429

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s430

contributions and scope? [Yes]431

(b) Did you describe the limitations of your work? [Yes] We discuss the limitations and432

directions of further investigation in the conclusion.433

(c) Did you discuss any potential negative societal impacts of your work? [N/A] We do434

not foresee any obvious negative societal impacts from our work, which focuses on the435

fundamentals of reinforcement learning and proposes a new algorithm for unsupervised436

skill discovery.437

(d) Have you read the ethics review guidelines and ensured that your paper conforms to438

them? [Yes]439

2. If you are including theoretical results...440

(a) Did you state the full set of assumptions of all theoretical results? [N/A]441

(b) Did you include complete proofs of all theoretical results? [N/A]442

3. If you ran experiments...443

(a) Did you include the code, data, and instructions needed to reproduce the main exper-444

imental results (either in the supplemental material or as a URL)? [No] We plan to445

release our code upon acceptance of this work.446

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they447

were chosen)? [Yes] See Appendix.448

(c) Did you report error bars (e.g., with respect to the random seed after running experi-449

ments multiple times)? [Yes] Yes when possible.450

(d) Did you include the total amount of compute and the type of resources used (e.g., type451

of GPUs, internal cluster, or cloud provider)? [No]452

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...453

(a) If your work uses existing assets, did you cite the creators? [Yes] See Sect. 5.454

(b) Did you mention the license of the assets? [N/A]455

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]456

457

(d) Did you discuss whether and how consent was obtained from people whose data you’re458

using/curating? [N/A]459

(e) Did you discuss whether the data you are using/curating contains personally identifiable460

information or offensive content? [N/A]461

5. If you used crowdsourcing or conducted research with human subjects...462

(a) Did you include the full text of instructions given to participants and screenshots, if463

applicable? [N/A]464

(b) Did you describe any potential participant risks, with links to Institutional Review465

Board (IRB) approvals, if applicable? [N/A]466

(c) Did you include the estimated hourly wage paid to participants and the total amount467

spent on participant compensation? [N/A]468

13

469

Appendix470

Table of Contents
471
472

A UPSIDE Algorithm 14473

B Environment Details 16474

C Experimental Details 16475

D Additional Experiments 19476

E An interpretation of our optimization problem 22477

478
479480

A UPSIDE Algorithm481

Figure 7: High-level approach of UPSIDE

We provide a diagram of the high-level approach of UPSIDE in Fig. 7 and a detailed pseudo-code in482

Alg. 2. UPSIDE initializes a tree structure T with root node 0 and queue of parent nodesW = {0}.483

As long as the queue is not empty, the following steps are performed:484

• (Generating new skills) We expand the tree at a leaf w ∈ W by adding N0 new nodes/skills485

denoted by C(w) (lines 1, 2). We initialize a discriminator with |T | classes to account for the newly486

created nodes (line 3).487

• (Skill Learning) Then the new skills and discriminator are optimized as follows:488

- We sample (uniformly) and rollout the new skills z ∈ C(w) and add the states of their diffusing489

parts in their corresponding buffers Bz (lines 8 to 11).490

- We update the discriminator by leveraging the states and skill labels in the buffers (lines 12 to491

17). In particular, the ratio µ signifies that we train more often the discriminator on the previously492

consolidated skills/classes than on the new skills/classes in C(w), i.e., we sample pairs (label z,493

state in Bz) with probability (I[z ∈ |C(w)|] + µI[z /∈ |C(w)|])/((1− µ)|C(w)|+ µ|T |). We give494

slightly more weight to the already consolidated skills in the discriminator training because the495

14

Algorithm 2: UPSIDE
Initialize: Discriminability threshold η ∈ (0, 1), branching factor N0 ≥ 1 (to be adapted at each node),

(optional) maximum branching factor Nmax ≥ N0, patience K, window V , number of trajectory rollouts
R per update of discriminator and policies, batch size of Ndiscr to train the discriminator, ratio µ of
probabilities between consolidated classes and new classes to train discriminator

Initialize: Tree T initialized as a root node indexed by 0, queue of parent nodesW = {0}.
while W 6= ∅ do // tree expansion

1 Dequeue a node/skill w ∈ W and expand T at w by adding a set C(w) of N0 nodes/skills
2 Create random policies πz and buffers Bz , ∀z ∈ C(w)
3 Initialize discriminator qφ with |T | classes
4 Continue = true; Saturated = false
5 while Continue do
6 for K iterations do
7 for r ∈ [[1, R]] do // collect R trajectories
8 Sample a skill z from C(w) at random
9 Extract the sequence of nodes z(1), . . . , z in T leading to z

10 Execute the composed (directed part) policy (πz(1) , . . . , πz) followed by the diffusing part
11 Add states observed during the diffusing part to Bz
12 B = {} // Initialize batch to update the discriminator
13 while |B| < Ndiscr do
14 Sample a skill z from T w.p. (I[z ∈ |C(w)|] + µI[z /∈ |C(w)|])/((1− µ)|C(w)|+ µ|T |)
15 Sample a state s from the last V states of Bz
16 Add (s, z) to B
17 Update discriminator qφ with SGD on B to predict label z
18 for z ∈ C(w) do
19 Update policy πz using SAC to optimize the discriminator reward as in Sect. 3.1.
20 Compute the skill-discriminability d(z) = q̂(B)

φ (z) = 1
|B|

∑
(s,z)∈B qφ(z|s) for all z ∈ C(w)

21 if minz∈C(w) d(z) < η then // Node removal
22 Remove the node/skill z = argminz∈C(w) d(z) from C(w) and T
23 Set Saturate = true
24 else if not Saturated then
25 Add one new node/skill to C(w) and T
26 if |C(w)| = Nmax then
27 Set Saturate = true
28 else
29 Set Continue = false

30 Enqueue inW the consolidated nodes C(w)

discriminator is reinitialized whenever new classes (i.e., nodes) are added, thus we seek to avoid the496

new classes from invading the territory of the older classes that were previously correctly learned.497

In addition, we only update the discriminator on recent batches of data from the buffers via the498

window V (which considers only the last V states in each skill buffer), which is more sample499

efficient than doing the discriminator update in a fully on-policy manner (e.g., [12]), especially500

in our setting where the discriminator changes over training as new skill-nodes (i.e., classes) are501

added.502

- We update the policies of the new skills/nodes in C(w) with SAC to optimize the intrinsic503

reward of the discriminator predictions as explained in Sect. 3.1 (line 19). Note that we keep fixed504

the policies of the previously consolidated nodes/skills, which makes the learning of the tree more505

stable.506

• (Node Consolidation) After a patience period characterized by K iterations of training (line 6),507

if all skills are η-consolidated (i.e., the constraint of problem (5) is verified), we tentatively add508

more skills to the leaf w (line 25). On the other hand, if any skill does not meet the discriminability509

threshold, we remove it and seek to consolidate the remaining skills into the tree (line 22). The role510

of the Saturated and Continue booleans is to ensure that the node addition operation cannot be511

performed if a node removal operation has already been performed in the training of the set C(w).512

Recall that the function is monotone, so if a skill is removed, the optimum cannot be larger. The513

(optional) Nmax value represents the maximum branching factor (i.e., number of children nodes)514

imposed at each node of the tree.515

15

B Environment Details516

Continuous mazes. We consider mazes with height and width 50. The state space is continuous,517

and there are some horizontal and verticals walls of width 1. The agent observes its current (x, y)518

Cartesian position (i.e., it does not observe the walls) and it outputs actions [dx, dy] that control its519

location. The actions dx and dy are constrained to be in [−1,+1]. The movement of the agent is520

affected by collisions with walls: when the agent collides with a wall, it stays in its original position.521

CartPole. We modify slightly the simulator from OpenAI Gym [8] to make exploration more522

difficult and thus to make it more challenging to learn diverse behaviors: the agent moves along the x523

horizontal position between −2.4 and 2.4 and the pole starts in the reverse position at x = 0. When524

the agent goes out of the x interval, it is teleported back to its initial position (but there is no reset).525

Observations are (x, ẋ, θ, θ̇) where x is the horizontal position, θ is the angle of the pole to the x-axis,526

and ẋ, θ̇ are their respective velocities.527

Reacher. We use the standard MuJoCo implementation of Reacher [41], which is a two-joint528

robotic arm where the action space ([−1,+1]) is the torque applied to both joints with gear 30.529

C Experimental Details530

C.1 Baselines531

For all methods, we augment the state space with the current time-step because horizons are finite.532

DIAYN-K. This corresponds to the original DIAYN algorithm [12] where K is the number of skills533

to be learned. In order to make the architecture more similar to UPSIDE, we use distinct policies for534

each skill, i.e. they do not share weights as opposed to [12]. While this may come at the price of535

sample efficiency, it may also help put lesser constraint on the model (e.g. gradient interference).536

DIAYN-Curriculum. We augment DIAYN with a curriculum that enables to be less dependant537

on an adequate tuning of the hyperparameter of the number of skills of DIAYN. We consider the538

curriculum of UPSIDE where we start from either a large or small number N0 of skills, learn skills539

during a period of time/number of interactions. If the configuration satisfies the discriminablity540

threshold η, a skill is added, otherwise a skill is removed or learning stopped (as in Alg. A, lines541

20-29). Note that the increasing version of this curriculum is similar to the one proposed in VALOR [1,542

Sect. 3.3].543

SMM. We used SMM [24] as it is state-of-art in terms of coverage, at least on long-horizon control544

problems, although [10] reported poor performance in hard-to-explore bottleneck mazes. We tested545

the regular SMM version, i.e. learning a state density model with a VAE, yet we failed to make it work546

on the Mazes domain. As we use the cartesian xy positions in maze domains, learning the identity547

function on two-dimensional input data is too easy with a VAE, thus preventing the benefits of using548

a density model to drive exploration. Thus we considered a more straightforward implementation of549

SMM by using the “real” state distribution through counting. Specifically, we maintain a discretized550

state distribution by counting states in buckets (similar to the way we compute the achieved coverage).551

The distribution is just computed by dividing by the sum over buckets. We did not use a moving552

average so counts are not forgotten: the state distribution is over all policies encountered since the553

beginning of training (whereas the state distribution is “online” in [24]).554

C.2 Architecture and Hyperparameters555

The architecture of the different methods remains the same in all our experiments, except that the556

number of hidden units changes across considered environments. We consider decoupled actor and557

critic in SAC, they both have the same (but unshared weights) state processing architectures. The558

observation and the step are passed through non-linear MLP with 1 hidden layer with units h, then559

are concatenated. The concatenation is then mapped to an embedding. For the actor, this embedding560

is mapped to a mean and variance embedding, then passes through a Squashed Gaussian as explained561

16

in [17]. For the critic, the embedding is concatenated with a non-linear (1 hidden layer) embedding562

of the action, then passed through a final non-linear MLP (1 layer) to a one-dimensional value.563

The discriminator is a two-hidden layer model with output size the number of skills in the tree.564

Environment-specific hyperparameters. Mazes: h = {16, 64} hidden units per layer for policy,565

and h = 128 hidden units per layer for discriminator. Continuous control domains: h = 256 hidden566

units per layer for both policy and discriminator.567

Common (for methods and environments) optimization hyperparameters. (See App. A for568

meaning of each hyperparameter)569

• SAC entropy: {0.1, 0.01, 0.001}570

• discount factor: γ = 0.99571

• Q-function soft updates τ = 0.005572

• learning rates lrpolicy = 0.001, lrdiscriminator = {0.0001, 0.001}573

• discriminator batch size B = 1024574

• µ = {2, 5}575

• V = 100576

• Replay buffer size: 1e6577

Note that hyperparameters are kept fixed for the downstream tasks too.578

For UPSIDE and DIAYN-curriculum, we set the patience to be a time-limit instead of a number of579

iterations. We tried both 300 and 600 seconds to avoid the running time getting too high if the tree580

grows large.581

The total running time for DIAYN-K and SMM is the same than the maximum running time of UPSIDE.582

C.3 Model selection583

We train all methods with a grid search over the set of hyperparameters described in App. C.2, for584

multiple seeds, which we call unsupervised seeds, to evaluate robustness over both the initialization585

of model weights and randomness of the algorithm. For each unsupervised seed, we select the586

set of hyperparameters that has maximum value for the criterion of number of skills for UPSIDE,587

DIAYN-curriculum and for the criterion of average discriminability for DIAYN-K and SMM.588

With this set of hyperparameters per seeds, we can then report some measurement, e.g. coverage,589

averaged over unsupervised seeds.590

C.4 Evaluation protocol591

1. We train the method in its unsupervised phase.592

2. We then do model selection as explained in App. C.3, which gives a model per method per593

unsupervised seed.594

3. We rollout N episodes per model and compute coverage as explained in the main paper in Sect. 5.595

Coverage is averaged over unsupervised seeds.596

4. For each model (associated to a method) and unsupervised seed, we run the downstream tasks (as597

explained in App. C.5), with the same grid search over hyperparameters, with additional seeds,598

which we call downstream seeds.599

5. For each method and unsupervised seed, we do model selection over downstream seeds on the600

criterion of reward.601

6. We plot the reward averaged over unsupervised and downstream seeds, with error bars for each602

method.603

17

C.5 Downstream task scenario in Mazes
We consider the downstream task of quickly finding and
then reliably reaching an unknown goal, summarized in
Alg. 3. There exists a goal region G with unknown coor-
dinates (xG , yG) that can be identified only once it is reached.
The unknown nature of the goal and its sparse identification
signal (i.e., reward rG(s) = 1[s ∈ G]) makes the problem
challenging, as the agent must perform “blind” and exhaus-
tive exploration so as to encounter the goal as quickly as
possible. UPSIDE’s clustering of the state space with its abil-
ity to navigate efficiently to any given cluster is a desirable
property to tackle this problem. In Alg. 3, we uniformly
sample the nodes of the tree (i.e., execute the diffusing part
of each skill) until the goal is found. Note that we use a
budget of K iterations (which could be either environment
interactions or time) for UPSIDE to find the goal with the tree,
otherwise we train a policy with SAC on the reward.
Once the goal is identified, this becomes a standard goal-
oriented task, where no distance-to-goal is available, i.e., the
reward signal is sparse, which makes the learning problem
more difficult. The design of UPSIDE enables to identify the
closest skill to the goal according to the learned discriminator,
and we then fine-tune its diffusing part into a goal-oriented
policy, as shown in Alg. 4.
The same approach is used for DIAYN and SMM. For SAC, a
plain policy is trained directly on the reward signal.
We thus see that this task calls for a dual property of coverage
and directedness.
Goals g were sampled uniformly in the available state-space,
but for the sake of simplicity, we only show in Section 5 two
representative goal positions, a moderately close goal and a
far goal. The goal region is a circle with radius 1, thus the
agent gets rewarded 1, when ‖s− g‖22 < 1.

Algorithm 3: Unknown goal
Input: Unknown goal region G,

Budget K .
for K iterations do // Find G

Sample z in T at random
Extract the sequence of nodes
z(1), . . . , z in T leading to z

Execute the composed
(directed part) policy
(πz(1) , . . . , πz) followed by
the diffusing part of z

Stop if G is reached.
if G was found then

Run Alg. 4 with goal G
else

Train SAC policy on the
reward

Algorithm 4: Known goal
Input: Known goal region G.
Compute skill-node

z∗ = argmax
z∈T

∑
g∈G

qφ(z|g).

Fine-tune the diffusing part of
skill-node z∗ via RL with reward
rG(s) = 1[s ∈ G].

604

18

0 2 4 6

·105

0

0.2

0.4

0.6

0.8

1

Env interactions

C
ov
er
ag
e

Bottleneck Maze

0 2 4 6

·105

0

0.2

0.4

0.6

0.8

1

Env interactions

C
ov
er
ag
e

U-Maze

Figure 8: Ablation on the values of T and H for UPSIDE on the bottleneck and U-maze.

Figure 9: Difficulty of UPSIDE to cover the mazes if the hyperparameters T,H are set too large
w.r.t. the environment size (here, T = H = 40, and we recall that the mazes are of size 50× 50). Top
(resp. bottom) row corresponds to the stochastic (resp. deterministic) executions of the policies of the
directed parts of the skills.

D Additional Experiments605

In this section, we report additional experiments. We ran all methods with 3 unsupervised seeds for606

each set of hyperparameters. All plots are generated according to the evaluation protocol explained in607

App. C.4.608

D.1 Ablation on the skill lengths T and H609

We investigate the sensitiveness of UPSIDE w.r.t.T and H , the lengths of the directed and diffusing610

part of the skill, respectively. Fig. 8 shows that the method is quite robust to reasonable choices611

of T and H , although there exists configurations where UPSIDE does not achieve full coverage, in612

particular in the bottleneck maze when T and H are too large (e.g., T = 40, H = 20), see also613

Fig. 9. This makes sense as the environments require “narrow” exploration (e.g., the bottleneck region614

that the agent must “escape” from is quite small), thus composing disproportionately long skills615

may hinder the coverage. Moreover, increasing T and H makes the RL training longer and more616

challenging (e.g., the reward is more delayed).617

D.2 Visual example how the tree learned by UPSIDE fits the environment618

We investigate the adaptivity (w.r.t. the input branching factor) of the tree structure of UPSIDE619

and illustrate that it can properly fit the unknown environment. As demonstrated in 10, UPSIDE620

successfully covers a large part of the tree maze, which is quite hard to explore given its narrow621

corridors. Here T = 5 and H = 10, and the branching factor N0 is set to 3. In the terminal region622

19

Figure 10: (Left) Unbalanced tree-shaped maze and (Right) the tree structure learned by UPSIDE. We
see that it can successfully map the underlying structure of the unknown environment.

0 0.2 0.4 0.6 0.8 1

·106

0.2

0.4

0.6

0.8

1

Env interactions

C
ov
er
ag

e

Cartpole

UPSIDE (h = 128)

UPSIDE (h = 56)

UPSIDE (h = 28)

Figure 11: Ablation on h, the number of hidden units per layer of the discriminator of UPSIDE

of skill 1 (yellow), it is crucial to consolidate two skills 2 and 3 so that the tree can grow in both623

directions. While the tree may have expanded two skills 4 and 5 straight from 3, we see that the skill624

4 (blue) overlaps with the intersection of the two small corridors, thus it is the only one sufficiently625

discriminable at this tree level, and UPSIDE covers the bottom right corridor in the subsequent level626

(i.e., from skill 4 to skill 5 in purple).627

D.3 Ablation on the capacity of the discriminator628

On CartPole, we found that it was quite easy for the discriminator to separate skills, though they had629

close behaviors “visually”. This can be explained by the fact that high-dimensional states are easier630

to discriminate. By reducing the capacity of the discriminator, skills would be naturally forced to be631

more “diverse” and avoid overfitting to certain state space regions. To verify this claim, we perform632

an ablation on the number of hidden units per layer of the discriminator (Fig. 11), which reveals that633

there is a sweet spot of hidden size where coverage is the best. When the hidden size h is too big (128634

or 256 in the main paper), many skills (more) are consolidated, but not diverse in their behavior, thus635

the coverage is not that large. On the other hand, when h is too small, it is too hard to discriminate636

between skills.637

D.4 Results with more unsupervised seeds638

In Fig. 12 we add results with 3 new unsupervised seeds per method and set of hyper-parameters. This639

complements Fig. 4 and 5 from the main paper by adding error bars. Compared to the main paper,640

training time was increased, thus explaining the slight differences in performance (e.g., UPSIDE,641

DIAYN-50, SMM-50 improve compared to the random policy thanks to training time).642

D.5 Average discriminator performance on Mazes and Cartpole643

Fig. 13 reports the average discriminability of the skills (UPSIDE, DIAYN-curriculum and DIAYN-50)644

during training in Bottleneck maze, U-maze and Cartpole. We make the same observation as for645

Reacher (see rightmost plot of Fig 5). The DIAYN-50 skills (green) suffer from low discriminability,646

20

0 2 4 6

·105

0

0.2

0.4

0.6

0.8

1

Env interactions

C
ov
er
a
g
e

Bottleneck Maze

0 2 4 6

·105

0

0.2

0.4

0.6

0.8

1

Env interactions

C
ov
er
a
g
e

U-Maze

0 0.2 0.4 0.6 0.8 1 1.2

·106

0

0.2

0.4

0.6

0.8

1

Env interactions

C
ov
er
a
g
e

Cartpole

Figure 12: Normalized coverage in U-maze and bottleneck, aver-
aged over 3 unsupervised seeds.

UPSIDE
SMM-50
SMM-10
DIAYN-50
DIAYN-10
DIAYN-curriculum
Random policy

0 1 2 3 4 5

·107

0

0.2

0.4

0.6

0.8

Env interactions

D
is
cr
im

in
at
or

av
er
ag

e

Bottleneck Maze

0 1 2 3 4 5

·107

0

0.2

0.4

0.6

0.8

Env interactions

D
is
cr
im

in
at
or

av
er
ag

e
U-Maze

0 1 2 3

·107

0

0.2

0.4

0.6

0.8

1

Env interactions

D
is
cr
im

in
at
or

av
er
ag

e

Cartpole

Figure 13: Average discriminability of the skills during training in Bottleneck maze, U-maze and
Cartpole

while UPSIDE (red) (as well as DIAYN-curriculum in yellow) achieves much higher discriminability647

by removing redundant skills.648

21

E An interpretation of our optimization problem649

In this section we provide a theoretically grounded interpretation of the optimization problem solved650

by UPSIDE in Sect. 3 and the extent to which it allows to tackle two downstream scenarios: known goal651

(Alg. 4) or unknown goal (Alg. 3). Throughout App. E, we consider that the MDP M is finite-state,652

finite-action and communicating [35] (i.e., for every pair of states (s, s′), there exists a deterministic653

stationary policy under which s′ is accessible from s in finite time with non-zero probability).654

E.1 Preliminaries655

First we review some concepts and define notation. For any stationary policy π and pair of states656

(s, s′), we denote by τπ(s, s′) the (possibly infinite) random variable of the hitting time of state s′657

starting from state s following policy π. We then define the distance dπ as the expected hitting time658

of policy π, i.e.,659

τπ(s, s′) := inf{t ≥ 0 : st+1 = s′ | s1 = s, π}, dπ(s, s′) := E[τπ(s, s′)],

where the expectation is w.r.t. the random sequence of states generated by executing π starting from660

state s. In addition, given a starting state s0 and distance d, we define the Max-Distance as661

D
(
d,M, s0

)
:= max

s∈S
d(s0, s).

We can instantiate two commonly considered distances.662

• First, the random-walk distance is dRW(s, s′) := dπRW(s, s
′), where πRW denotes a uniformly stochas-663

tic policy (i.e., whose executed actions are uniformly distributed, independently of the state of the664

MDP). Note that for d ← dRW, D corresponds to the cover time starting from s0. This notion of665

complexity measures how hard it is, in expectation, to cover the entire state space of the MDP666

following a uniformly stochastic policy starting from s0. It was studied in e.g., [26, 22, 11],667

leveraging graph theory [9].668

• Second, the shortest-path distance is dSP(s, s′) := minπ dπ(s, s′) (the minimum can be taken669

over the set of stationary deterministic policies [7]). Note that for d ← dSP, D corresponds to670

the diameter of the MDP [21, 40] and characterizes the complexity of navigating the state space671

starting from s0 following the set of shortest-path policies. Note that for any state s′, dSP(·, s′) is672

the optimal value function under (undiscounted) reward function r(s) = −1[s 6= s′]. As such,673

numerous methods in goal-conditioned RL (explicitly or implicitly) target the set of policies that674

minimize dSP (or variants of it, such as discounted or horizon-truncated) [e.g., 2, 34].675

E.2 Interpretation676

An interpretation of our approach is that it performs clustering over the state space based on two677

different distance functions:678

• A tight and difficult-to-deploy distance d?. The tightest metric possible is to consider d? ← dSP,679

the shortest-path distance.680

• A coarse and cheap-to-deploy distance d+. For example we can consider d+ ← dRW, the random-681

walk distance.682

Specifically, our approach can be interpreted as seeking to minimize the intra-cluster distance d+683

while maximizing the inter-cluster distance d?. Although d+ is coarser than d?, it had the advantage684

of being easier to execute the policy to which it corresponds (e.g., a random policy). The implicit685

assumption that we make is that d+ is a decent enough proxy for d? for small horizon, although it686

degrades sharply as the horizon increases.687

In App. E.3 we analyze a simplified structure of our algorithm UPSIDE which allows us to theoretically688

analyze the extent to which UPSIDE can tackle the two downstream scenarios explained in App. C.5,689

depending on the environment’s properties. For simplicity we will consider the “flat case” of UPSIDE690

(see Rmk. 2 for a discussion on the extension to the tree case). Before analyzing the downstream691

scenarios (App. E.4.1), we begin by analyzing the properties of the directed part (App. E.3.1) and the692

diffusing part (App. E.4) of each UPSIDE skill.693

22

E.3 An analysis of two downstream scenarios tackled by UPSIDE694

E.3.1 Directed part of each UPSIDE skill695

Structure/Assumptions.696

• The directed part of each skill k is characterized by a pair (πk, ck) where the policy πk is of length697

T and aims to attain a goal state ck ∈ S (chosen by the skill).698

• From the optimization problem of UPSIDE, each skill is η-consolidated according to the discrim-699

inator. We consider that the latter discriminates between the goals {ck}k∈[K] given the current700

state. We then have that mink∈[K] qφ(ck|sT) ≥ η.701

• Finally, we assume that the predictions of the discriminator can serve as εdiscr-accurate approx-702

imations of the probability of πk reaching the centroid ck within its length of T steps, where703

0 ≤ εdiscr < η. This implicitly assumes that we can connect the discriminability property and the704

directedness property (respectively appearing in the reverse and forward forms of MI).705

We first notice that the directed part πk has an intrinsic reward signal that approximately targets a706

goal-directed behavior. Indeed, as argued in [34, App. E], having an intrinsic reward signal of rz(s)707

scaling as p(ck|s) would amount to learning a goal-oriented policy with goal ck. In particular, the708

optimal non-episodic policy π† that minimizes E
[∑+∞

t=1 (1 + βH(π(·|st)))1[st 6= ck]
]

induces a709

distance-to-goal of dπ†(s, ck) ≤ (1 + β logA)dSP(s, ck), i.e., it targets the shortest path up to an710

entropy bias. However, algorithmically, the directed parts are of length T and the UPSIDE skills reset711

every T +H steps. This episodic nature introduces a bias w.r.t. the optimal shortest-path behavior712

that is non-trivial to analyze and bound.713

We now show that thanks to the constraint in the optimization problem of UPSIDE and by our714

assumption on the connection between the discriminability property and the directeness property, we715

can recover goal-directed properties for each first part of skills output by UPSIDE.716

Lemma 1. Any pair (πk, ck) output by UPSIDE verifies717

dπk
(s0, ck) ≤ T +H + 1− η + εdiscr

η − εdiscr
.

Proof. Recall that the skill k is episodic of length T +H , i.e., it resets to s0 every T +H time steps.718

We denote by d(T+H)
π the total number of steps before reaching either the skill’s centroid or T +H719

steps, and by f (T+H)
π the probability of failure to reach the centroid within T +H steps. Then720

dπk
(s0, ck)

(i)
=
d
(T+H)
πk (s0, ck) + f

(T+H)
πk (s0, ck)

1− f (T+H)
πk (s0, ck)

(ii)
≤ T +H + f

(T)
πk (s0, ck)

1− f (T)
πk (s0, ck)

,

where (i) comes from [25, App. B.3], (ii) uses that d(T+H) ∈ [0, T +H] and that f (T+H)
πk (s0, ck) ≤721

f
(T)
πk (s0, ck). We now approximate the probability of failure of reaching the centroid by using the722

predictions of the discriminator (the more expressive the discriminator, the better the approximation):723

|1− f (T)
πk (s0, ck)− qφ(ck|sT)| ≤ εdiscr. The constraint of our optimization problem ensures that the724

pair (πk, ck) output by UPSIDE satisfies qφ(ck|sT) ≥ η. Therefore, it holds that725

T +H + f
(T)
πk (s0, ck)

1− f (T)
πk (s0, ck)

≤ T +H + 1− qφ(ck|sT) + εdiscr

qφ(ck|sT)− εdiscr
≤ T +H + 1− η + εdiscr

η − εdiscr
. (6)

726

Note that given any goal state g, having a policy π with bounded dπ(·, g) is non-trivial, since it implies727

that it reaches the goal with probability 1 (i.e., that it is proper [7]). Also note that the “worst-case”728

discriminability property in the constraint (i.e., qφ(ck|sT) ≥ η) is crucial to obtain Lem. 1, since it729

may not be possible to guarantee it given a discriminability property verified on average (e.g., via a730

conditional entropy term in the MI).731

23

E.4 Diffusing part of each UPSIDE skill732

Structure/Assumptions.733

• The diffusing part of skill k is of length H and is composed of a set of states radiating around734

ck, which acts as a centroid for the cluster of states generated by the diffusing part. Formally, we735

consider that there exists δ > 0 such that736

DIFF(k) :=
{
yk : P(τ+(ck, yk) ≤ H) ≥ δ

}
, (7)

where τ+(s, s′) denotes the hitting time following the policy that minimizes d+(s, s′).737

• According to the optimization problem solved by UPSIDE, the clusters associated to the K skills738

saturate the state space, i.e., we cannot consolidate an additional cluster. We propose to write this739

condition as740

∀s ∈ S, ∃k ∈ [K], ∃yk ∈ DIFF(k), P
(
τ+(s, yk) ≤ H

)
≥ δ, (8)

otherwise from (7) it would be possible to consolidate an additional cluster with centroid s.741

• Finally, we spell out an assumption on the environment that we make throughout App. E.4:742

Assumption 1. There exists Θ ≥ 0 such that743

∀(s, s′), P(τ+(s, s
′) ≤ H) ≥ δ =⇒ d?(s, s

′) ≤ H + Θ.

This formalizes the assumption commonly made in goal-conditioned deep RL — either implicitly or744

explicitly [e.g., 14, Sect. 3.3] — that if a goal is reachable, then there exists a policy that does so745

reliably. Note that in the special case of a deterministic MDP we have Θ = 0.746

Definition 1. We define the following “local” quantities:747

• For any s ∈ S and any k ∈ [K], define ∆+(s; k) := maxyk∈DIFF(k)|d+(s, yk)− d+(yk, s)|.748

• For any s ∈ S and any k ∈ [K], define ∆?(s; k) := maxyk∈DIFF(k)|d?(s, yk)− d?(yk, s)|.749

Note that under the communicating MDP assumption, both quantities are always bounded. They750

measure the level of “reversibility” of the MDP w.r.t. the d+ and d? distance, respectively. Moreover,751

in the special case of an MDP with locally symmetric actions, the distance d? is symmetric so ∆? = 0.752

We first derive two lemmas and then position their statements w.r.t. the two downstream objectives of753

UPSIDE.754

Lemma 2. It holds that755

∀s ∈ S, ∃k ∈ [K] : P
(
τ+(ck, s) ≤ H +

H + ∆+(s; k) + Θ

1− δ
)
≥ δ2.

Lemma 3. It holds that756

∀s ∈ S, ∃k ∈ [K] : d?(ck, s) ≤ 2(H + Θ) + ∆?(s; k),

Proof of Lem. 2. We prove the result by contradiction. Assume the contrary of Lem. 2; then there757

exists a state s ∈ S such that for every k ∈ [K], P(τ+(ck, s) ≤ H + Zk) < δ2, with Zk :=758

(H + ∆+(s; k) + Θ)/(1− δ). We now use that the diffusing part of each skill k radiating around its759

centroid ck is composed of states {yk : P(τ+(ck, yk) ≤ H) ≥ δ}. This means that for every k ∈ [K]760

and yk ∈ DIFF(k), P(τ+(yk, s) ≤ Zk) < δ. Noticing that d+(yk, s) = E[τ+(yk, s)] by definition,761

we get d+(yk, s) > (1 − δ)Zk ≥ H + Θ + d+(yk, s) − d+(s, yk), where the last inequality comes762

from the definition of ∆+(s; k). Therefore, d+(s, yk) > H + Θ. So by contraposition of Asm. 1,763

P(τ+(s, yk) ≤ H) < δ. Since this is true for all k ∈ [K] and yk ∈ DIFF(k), we get a contradiction764

on condition (8).765

Proof of Lem. 3. Take any state s ∈ S. Case 1: ∃k ∈ [K], s ∈ DIFF(k). Then P(τ+(ck, s) ≤766

H) ≥ δ. From Asm. 1 this means d?(ck, s) ≤ H + Θ. Case 2: ∀k ∈ [K], s /∈ DIFF(k). Then767

from condition (8), there exists k ∈ [K] and yk ∈ DIFF(k) such that P
(
τ+(s, yk) ≤ H

)
≥ δ,768

which implies that d?(s, yk) ≤ H + Θ from Asm. 1. By definition of ∆?(s; k), it holds that769

d?(sk, y) ≤ H + Θ + ∆?(s; k). Furthermore, yk verifies P(τ+(ck, yk) ≤ H) ≥ δ, which means770

from Asm. 1 that d?(ck, yk) ≤ H + Θ. We conclude by the triangle inequality that d?(ck, y) ≤771

d?(ck, sk) + d?(sk, y) ≤ 2(H + Θ) + ∆?(s; k).772

24

E.4.1 Analysis of two downstream scenarios tackled by UPSIDE773

We consider the two downstream tasks detailed in App. C.5: ¬ finding an unknown goal (Alg. 3) and774

­ reliably reaching a known goal (Alg. 4).775

These downstream scenarios require the ability to efficiently traverse from s0 to any state s of the776

MDP. Ideally we would deploy the policy associated to d?(s0, s), i.e., the shortest-path policy, yet it777

is difficult to compute. On the other extreme, deploying the random-walk strategy is very easy yet778

much more inefficient, since d?(s0, s)� d+(s0, s). Our approach targets the following intermediate779

approach.780

First, we upper bound using the triangle inequality781

max
s∈S

d?(s0, s) ≤ max
s∈S

{
min
k∈[K]

d?(s0, ck) + d?(ck, s)

}
. (9)

Under a zero-shot downstream set-up, the training objective of UPSIDE seeks to control the follow-782

ing upper bound of (9)783

max
s∈S

{
min
k∈[K]

d?(s0, ck) + d+(ck, s)

}
. (10)

Under a few-shot downstream set-up, UPSIDE fine-tunes the diffusing part of the skill to reach the784

desired goal state. As such, it targets (9).785

We now distinguish between the two types of downstream scenarios.786

¬ The unknown-goal downstream task.787

From Lem. 2, whatever the unknown goal state s, there exists a skill k whose diffusing part starting788

from its centroid ck can reach s with strictly positive probability, as long as it is executed long enough789

(with length depending in particular on the local quantity ∆+(s; k)).790

As such, Lem. 1 and Lem. 2 prescribe the following algorithmic strategy: in a round-robin fashion791

over k ∈ [K], execute the directed part of skill k plus its diffusing part for increasing lengths (i.e.,792

starting from H and then gradually increasing it). The unknown goal should then be discovered at793

some point, specifically within794

O

(
1

δ2

(
T +H + 1− η + εdiscr

η − εdiscr
+
H + ∆+(s; k) + Θ

1− δ

))
time steps, by combining Lem. 1 and 2.795

­ The known-goal downstream task.796

From Lem. 3, for any known goal state s ∈ S, there exists a skill k ∈ [K] from which learning to797

reach the goal s can be facilitated. Indeed, the shortest-path distance from its centroid ck to the goal s798

depends on the local quantity ∆+(s; k) (as well as H and Θ).799

As such, Lem. 1 (with (6)) and Lem. 3 prescribe the following algorithmic strategy: first reach the800

centroid ck for which k ∈ arg max qφ(ck|s) (i.e., execute the directed part of skill k), and second801

learn to reach s from ck (by fine-tuning the diffusing part of skill k).802

Remark 1. Inspecting the quantities in Def. 1 and in Asm. 1 allows to characterize the complexity803

of the environment in tackling the two types of downstream tasks. In particular, we see that the804

complexity is reduced in environments that are close to deterministic (i.e., smaller Θ in Asm. 1)805

and that exhibit a “balanced / symmetric” behavior, with the least bottlenecks possible (i.e., smaller806

quantities in Def. 1). In addition, the size of the state space S and the diameter of the MDP implicitly807

play a role in the value of the number of clusters K required and in the choice of T , which must be808

large enough to ensure in Lem. 1 that η > 0 holds in the discriminator predictions.809

Remark 2. In the tree case of UPSIDE, T does not have to be large enough (as needed in the flat case)810

since the state space may be covered by sequentially composing the directed parts of the skills of811

length T . The equations from the flat case would look the same as in the flat case, yet two quantities812

would be replaced: the probability of success of reaching the centroid of each cluster of skill-node n813

would go from η to ηd(n) where d(n) is the depth of skill-node n, and the length of the skill would814

go from T +H to d(n)T +H .815

816

25

	Introduction
	Setting
	Algorithm Structure
	Skill Structure and Optimization
	Skill Support and Sampling Rule
	Composing Skills in a Tree Structure
	The UPSIDE Algorithm

	Related work
	Experiments
	Conclusion
	 Appendix
	UPSIDE Algorithm
	Environment Details
	Experimental Details
	Baselines
	Architecture and Hyperparameters
	Model selection
	Evaluation protocol
	Downstream task scenario in Mazes

	Additional Experiments
	Ablation on the skill lengths T and H
	Visual example how the tree learned by UPSIDE fits the environment
	Ablation on the capacity of the discriminator
	Results with more unsupervised seeds
	Average discriminator performance on Mazes and Cartpole

	An interpretation of our optimization problem
	Preliminaries
	Interpretation
	An analysis of two downstream scenarios tackled by UPSIDE
	Directed part of each UPSIDE skill

	Diffusing part of each UPSIDE skill
	Analysis of two downstream scenarios tackled by UPSIDE

