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A1 RELATED WORKS

Causal Discovery. In general, there are mainly three categories of methods for causal discovery
(CD) from observed data (Spirtes & Zhang, 2016): constraint-based methods, score-based meth-
ods and function-based methods. Constraint-based methods utilize the conditional independence
test (CIT) to learn a skeleton of the directed acyclic graph (DAG), and then orient the edges upon
the skeleton. Such methods contain Peter-Clark (PC) algorithm (Spirtes & Zhang, 2016) and Fast
Causal Inference (FCI) algorithm (Spirtes, 2001). Some typical CIT methods include kernel-based
independent conditional test (Zhang et al., 2012) and approximate kernel-based conditional indepen-
dent test (Strobl et al., 2019). Score-based methods use a score function and a greedy search method
to learn a DAG with the highest score by searching all possible DAGs from the data, such as Greedy
Equivalent Search (GES) (Chickering, 2002). Within the score-based category, there is a continu-
ous optimization-base subcategory attracting increasing attention. NOTEARS (Zheng et al., 2018)
firstly reformulates the DAG learning process as a continuous optimization problem and solves it
using gradient-based method. NOTEARS is designed under the assumption of the linear relations
between variables. Subsequent works have extended NOTEARS to handle nonlinear cases via deep
neural networks, such as DAG-GNN (Yu et al., 2019) and DAG-NoCurl (Yu et al., 2021). ENCO
(Lippe et al., 2022) presents an efficient DAG discovery method for directed acyclic causal graphs
utilizing both observational and interventional data. AVCI (Lorch et al., 2022) infers causal struc-
ture by performing amortized variational inference over an arbitrary data-generating distribution.
These continuous-optimization-based methods might suffer from various technical issues, including
convergence (Wei et al., 2020; Ng et al., 2022), nonconvexity (Ng et al., 2023), and sensitivity to
data standardization (Reisach et al., 2021). Function-based methods rely on the causal asymmetry
property, including the linear non-Gaussion model (LiNGAM) (Shimizu et al., 2006), the additive
noise model (Hoyer et al., 2008), and the post-nonlinear causal model (Zhang & Hyvarinen, 2012).

Causal Discovery from Heterogeneous Data. Most of the causal discovery methods mentioned
above usually assume that the data is independently and identically distributed (i.i.d.). However, in
practical scenarios, distribution shift is possibly occurring across datasets, which can be changing
across different domains or over time, as featured by heterogeneous or non-stationary data (Huang
et al., 2020). To tackle the issue of changing causal models, one may try to find causal models on
sliding windows for non-stationary data (Calhoun et al., 2014), and then compare them. Improved
versions include the regime aware learning algorithm to learn a sequence of Bayesian networks that
model a system with regime changes (Bendtsen, 2016). Such methods may suffer from high esti-
mation variance due to sample scarcity, large type II errors, and a large number of statistical tests.
Some methods aim to estimate the time-varying causal model by making use of certain types of
smoothness of the change (Huang et al., 2015), but they do not explicitly locate the changing causal
modules. Several methods aim to model time-varying time-delayed causal relations (Xing et al.,
2010), which can be reduced to online parameter learning because the direction of the causal rela-
tions is given (i.e., the past influences the future). Moreover, most of these methods assume linear
causal models, limiting their applicability to complex problems with nonlinear causal relations. In
particular, a nonparametric constraint-based method to tackle this causal discovery problem from
non-stationary or heterogeneous data, called CD-NOD (Huang et al., 2020), was recently proposed,
where the surrogate variable was introduced, written as smooth functions of time or domain index.
The first model-based method was proposed for heterogeneous data in the presence of cyclic causal-
ity and confounders, named CHOD (Zhou et al., 2022). Saeed et al. (Saeed et al., 2020) provided a
graphical representation via the mixture DAG of distributions that arise as mixtures of causal DAGs.

Federated Causal Discovery. A two-step procedure was adopted (Gou et al., 2007) to learn a DAG
from horizontally partitioned data, which firstly estimated the structures independently using each
client’s local dataset, and secondly applied further conditional independence test. Instead of us-
ing statistical test in the second step, a voting scheme was used to pick those edges identified by
more than half of the clients (Na & Yang, 2010). These methods leverage only the final graphs
independently estimated from each local dataset, which may lead to suboptimal performance as
the information exchange may be rather limited. Furthermore, (Samet & Miri, 2009) developed a
privacy-preserving method based on secure multiparty computation, but was limited to the discrete
case. For vertically partitioned data, (Yang et al., 2019) constructed an approximation to the score
function in the discrete case and adopted secure multiparty computation. (Chen et al., 2003) devel-
oped a four-step procedure that involves transmitting a subset of samples from each client to a central
site, which may lead to privacy concern. NOTEARS-ADMM (Ng & Zhang, 2022) and Fed-DAG
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(Gao et al., 2022) were proposed for the federated causal discovery (FCD) based on continuous opti-
mization methods. Fed-PC (Huang et al., 2022) was developed as a federated version of classical PC
algorithm, however, it was developed for homogeneous data, which may lead to poor performance on
heterogeneous data. DARLIS (Ye et al., 2022) utilizes the distributed annealing (Arshad & Silaghi,
2004) strategy to search for the optimal graph, while PERI (Mian et al., 2023) aggregates the results
of the local greedy equivalent search (GES) (Chickering, 2002) and chooses the worst-case regret
for each iteration. Fed-CD (Abyaneh et al., 2022) was proposed for both observational and inter-
ventional data based on continuous optimization. FEDC2SL (Wang et al., 2023) extended �2 test
to the federated version, however, this method is restrictive on discrete variables and therefore not
applicable for any continuous variables. Notice that most of these above-mentioned methods heav-
ily rely on either identifiable functional causal models or homogeneous data distributions. These
assumptions may be overly restrictive and difficult to be satisfied in real-world scenarios, limiting
their diverse applicability.

A2 DETAILS ABOUT THE CHARACTERIZATION

A2.1 CHARACTERIZATION OF CONDITIONAL INDEPENDENCE

In this section, we will provide more details about the interpretation of ⌃
ẌY |Z

as formulated in Eq.
13, the definition of characteristic kernel as shown in Lemma 9, which is helpful to understand the
Lemma 1 in the main paper. We then provide the uncorrelatedness-based characterization of CI in
Lemma 10.

First of all, for the random vector (X,Y ) on X ⇥ Y , the cross-covariance operator from HY to HX

is defined by the relation

hf,⌃XY giHX = EXY [f(X)g(Y )]� EX [f(X)]EY [g(Y )], (11)

for all f 2 HX and g 2 HY . Furthermore, we define the partial cross-covariance operator as

⌃XY |Z = ⌃XY � ⌃XZ⌃
�1
ZZ

⌃ZY . (12)

If ⌃ZZ is not invertible, use the right inverse instead of the inverse. We can intuitively interpret
the operator ⌃XY |Z as the partial cross-covariance between {f(X), 8f2HX } and {g(Y ), 8g2HY}

given {q(Z), 8q2HZ}.
Lemma 9 (Characteristic Kernel (Fukumizu et al., 2007)). A kernel KX is characteristic, if the
condition EX⇠PX [f(X)]=EX⇠QX [f(X)] (8f2HX ) implies PX=QX , where PX and QX are two
probability distributions of X . Gaussian kernel and Laplacian kernel are characteristic kernels.

As shown in Lemma 1, if we use characteristic kernel and define Ẍ , (X,Z), the characterization
of CI could be related to the partial cross-covariance as ⌃

ẌY |Z
= 0 () X ?? Y |Z, where

⌃
ẌY |Z

= ⌃
ẌY
� ⌃

ẌZ
⌃�1

ZZ
⌃ZY . (13)

Similarly, we can intuitively interpret the operator ⌃
ẌY |Z

as the partial cross-covariance between
{f(Ẍ), 8f2H

Ẍ
} and {g(Y ), 8g2HY} given {q(Z), 8q2HZ}.

Based on Lemma 1, we further consider a different characterization of CI which enforces the
uncorrelatedness of functions in suitable spaces, which may be intuitively more appealing. De-
note the probability distribution of X as PX and the joint distribution of (X,Y ) as PXY . Let
L2
X

be the space of square integrable functions of X and L2
XY

be that of (X,Y ). Specifically,
L2
X

= {f(X)|E(f2) <1}, and likewise for L2
XY

. Particularly, consider the following constrained
L2 spaces:

S
Ẍ

, {f 2 L2
Ẍ

| E(f |Z) = 0},

S
Ÿ
, {g 2 L2

Ÿ
| E(g|Z) = 0},

S
0

Y |Z
, {g0 | g0 = g(Y )� E(g|Z), g 2 L2

Y
}.

(14)
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They can be constructed from the corresponding L2 spaces via nonlinear regression. From example,
for any function f 2 L2

XZ
, the corresponding function f 0 is given by:

f 0(Ẍ) = f(Ẍ)� E(f |Z) = f(Ẍ)� �⇤

f
(Z), (15)

where �⇤

f
(Z) 2 L2

Z
is the regression function of f(Ẍ) on Z. Then, we can then relate the different

characterization of CI from Lemma 1 to the uncorrelatedness in the following lemma.
Lemma 10 (Characterization of CI based on Partial Association (Daudin, 1980)). Each of the fol-
lowing conditions are equivalent to X ?? Y |Z

(i.) E(fg) = 0, 8f 2 S
Ẍ

and 8g 2 S
Ÿ
,

(ii.) E(fg0) = 0, 8f 2 S
Ẍ

and 8g0 2 S
0

Y |Z
,

(iii.) E(fg̃) = 0, 8f 2 S
Ẍ

and 8g̃ 2 L2
Ÿ
,

(iv.) E(fg̃0) = 0, 8f 2 S
Ẍ

and 8g̃0 2 L2
Y
.

(16)

When (X,Y, Z) are jointly Gaussian, the independence is equivalent to the uncorrelatedness, in other
words, X ?? Y |Z is equivalent to the vanishing of the partial correlation coefficient ⇢XY |Z . We can
regard the Lemma 10 as as a generalization of the partial correlation based characterization of CI.
For example, condition (i) means that any ”residual” function of (X,Z) given Z is uncorrelated with
that of (Y, Z) given Z. Here we can observe the similarity between Lemma 1 and Lemma 10, except
the only difference that Lemma 10 considers all functions in L2 spaces, while Lemma 1 exploits the
spaces corresponding to some characteristic kernels. If we restrict the function f and g0 in condition
(ii) to the spaces H

Ẍ
and HY , respectively, Lemma 10 is then reduced to Lemma 1.

Based on the two lemmas mentioned above plus the Lemma 1, we could further derive Lemma 3 in
our main paper.

A2.2 CHARACTERIZATION OF INDEPENDENT CHANGE

In Lemma 2 of the main paper, we provide the independent change principle (ICP) to evaluate the
dependence between two changing causal models. Here, we give more details about the definition
and the assigned value of normalized HSIC. A smaller value means being more independent.
Definition 1 (Normalized HSIC (Fukumizu et al., 2007)). Given variables U and V , HSIC provides
a measure for testing their statistical independence. An estimator of normalized HSIC is given as

HSICN

UV
=

tr(M̃UM̃V )

tr(M̃U ) tr(M̃V )
, (17)

where M̃U and M̃V are the centralized Gram matrices, M̃U , HMUH , M̃V , HMV H ,
H = I �

1
n
11T , I is n ⇥ n identity matrix and 1 is vector of n ones. How to construct MU

and MV will be explained in the corresponding cases below. To check whether two causal modules
change independently across different domains, the dependence between P(X) and P(Y |X) and the
dependence between P(Y ) and P(X|Y ) on the given data can be given by

4
X!Y

=
tr(M̃XM̃Y |X)

tr(M̃X) tr(M̃Y |X)
, 4

Y!X
=

tr(M̃Y M̃X|Y )

tr(M̃Y ) tr(M̃X|Y )
. (18)

According to CD-NOD (Huang et al., 2020), instead of working with conditional distribution
P(X|Y ) and P(Y |X), we could use the ”joint distribution” P(X,Y ), which is simpler, for esti-
mation. Here we use Y instead of Y to emphasize that in this constructed distribution X and Y are
not symmetric. Then, the dependence values listed in Eq. 18 could be estimated by

4̂
X!Y

=
tr(M̃XM̃Y X)

tr(M̃X) tr(M̃Y X)
, 4̂

Y!X
=

tr(M̃Y M̃XY )

tr(M̃Y ) tr(M̃XY )
, (19)

where M̃X , HMXH , MX , µ̂X|f·µ̂T

X|f. Similarly, we define M̃Y ,MY and µ̂Y |f. According
to (Huang et al., 2020), we have

µ̂X|f , �(f)(Cff + �I)�1
CfX , (20)
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where µ̂X|f , �(f)(Cff + �I)�1
CfX , µ̂X|f,�(f) 2 Rn⇥h, � is a small ridge parameter, �

represents the feature map, and f is the surrogate variable indicating different domains or clients.
Similarly, we define M̃Y ,MY and µ̂Y |f.

µ̂Y |f , �(f)(Cff + �I)�1
CfY . (21)

Moreover, M̃Y X , HMY XH , MY X , µ̂Y X|f · µ̂T

Y X|f. Similarly, we define M̃XY ,MXY and
µ̂XY .

µ̂Y X|f , �(f)(Cff + �I)�1
Cf,(Y,X)

µ̂XY |f , �(f)(Cff + �I)�1
Cf,(X,Y ),

(22)

Eq. 19 as formulated above is helpful to further derive Theorem 5 in our main paper.

A3 PROOFS

Here, we provide the proofs of the theorems and lemmas, including Lemma 3, Theorem 4, Theorem
5, Theorem 6, Lemma 7, and Theorem 8 in our main paper.

A3.1 PROOF OF LEMMA 3

Proof: We define the covariance matrix in the null hypothesis as C
ẌY |Z

= 1
n

P
n

i=1[(Äi �

E(Ä|Z))T (Bi�E(B|Z))] which corresponds to the partial cross-covariance matrix with n samples,
C
ẌY |Z

2Rh⇥h, Ä=f(Ẍ)2Rn⇥h, B=g(Y )2Rn⇥h, {f j(Ẍ)|h
j=1}2FẌ

, {gj(Y )|h
j=1}2FY . Notice

that F
Ẍ

and FY are function spaces. n and h denote the number of total samples of all clients and
the number of hidden features or mapping functions, respectively.

Notice that E(Ä|Z) and E(B|Z) could be non-linear functions of Z which may be difficult to
estimate. therefore, we would like to approximate them with linear functions. Let q(Z)2Rn⇥h,
{qj(Z)|h

j=1}2FZ . We could estimate E(f j
|Z) with the ridge regression output uT

j
q(Z) under the

mild conditions given below.
Lemma 11. (Sutherland & Schneider, 2015) Consider performing ridge regression of f j on Z.
Assume that (i)

P
n

i=1 f
j

i
= 0, f j is defined on the domain of Ẍ; (ii) the empirical kernel matrix

of Z, denoted by KZ , only has finite entries (i.e., kKZk1 < 1); (iii) the range of Z is compact,
Z ⇢ RdZ . Then we have

P
h
|Ê(f j

|Z)� uT

j
q(Z)| � ✏

i


c0
✏2
e�h✏

2
c1 , (23)

where Ê(f j
|Z) is the estimate of E(f j

|Z) by ridge regression, c0 and c1 are both constants that do
not depend on the sample size n or the number of hidden dimensions or mapping functions h.

The exponential rate with respect to h in the above lemma suggests we can approximate the output
of ridge regression with a small number of hidden features. Moreover, we could similarly estimate
E(gj |Z) with vT

j
q(Z), because we could guarantee that P

h
|Ê(gj |Z)� vT

j
q(Z)| � ✏

i
! 0 for any

fixed ✏ > 0 at an exponential rate with respect to h.

Similar to the L2 spaces in condition (ii) of Lemma 10, we can consider the following condition to
approximate conditional independence:

E(f̃ g̃) = 0, 8f̃ 2 F̃
Ẍ|Z

and 8g̃ 2 F̃Y |Z , where

F̃
Ẍ|Z

= {f̃ | f̃ j = f j
� E(f j

|Z), f j
2 F

Ẍ
},

F̃Y |Z = {g̃ | g̃j = gj � E(gj |Z), gj 2 FY }.

(24)

According to Eq. 23, we could estimate E(f j
|Z) and E(gj |Z) by uT

j
q(Z) and vT

j
q(Z), respectively.

Thus, we can reformulate the function spaces as
F̃

Ẍ|Z
= {f̃ | f̃ j = f j

� uT

j
q(Z), f j

2 F
Ẍ
},

F̃Y |Z = {g̃ | g̃j = gj � vT
j
q(Z), gj 2 FY }.

(25)
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Proof ends.

A3.2 PROOF OF THEOREM 4
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Figure A1: Given that X ?? Y |Z, we could
introduce the independence between R

Ẍ|Z

and RY |Z .

Proof: Assume that there are n i.i.d. samples for
X,Y, Z. Let K̃

Ẍ|Z
be the centralized kernel matrix,

given by K̃
Ẍ|Z

,R̃
Ẍ|Z

R̃T

Ẍ|Z
=HR

Ẍ|Z
RT

Ẍ|Z
H ,

where R
Ẍ|Z

,f̃(Ẍ)=f(Ẍ)�uT q(Z) which
can be seen as the residual after ridge
regression. Similarly, We could define
K̃Y |Z,R̃Y |ZR̃

T

Y |Z
=HRY |ZR

T

Y |Z
H and

RY |Z,g̃(Y )=g(Y )�vT q(Z). Accordingly,
we let K̃

ẌY |Z
,R̃

Ẍ|Z
R̃T

Y |Z
=HR

Ẍ|Z
RT

Y |Z
H . We

set the test statistic as TCI=nkC
ẌY |Z

k
2
F

, where
C
ẌY |Z

,R̃T

Ẍ|Z
R̃Y |Z=

1
n
RT

Ẍ|Z
HHRY |Z .

Let �
Ẍ|Z

and �Y |Z be the eigenvalues of K̃
Ẍ|Z

and
K̃Y |Z , respectively. Furthermore, we define the EVD decomposition K̃

Ẍ|Z
= V

Ẍ|Z
⇤

Ẍ|Z
V

T

Ẍ|Z
,

where ⇤
Ẍ|Z

is the diagonal matrix containing non-negative eigenvalues �
Ẍ|Z,i

. Similarly, we define
K̃Y |Z = VY |Z⇤Y |ZV

T

Y |Z
with eigenvalues �Y |Z,i. Let  

Ẍ|Z
= [ 

Ẍ|Z,1, Ẍ|Z,2, . . . , Ẍ|Z,n
] ,

VY |Z⇤
1/2
Y |Z

and �Y |Z = [�Y |Z,1,�Y |Z,2, . . . ,�Y |Z,n] , VY |Z⇤
1/2
Y |Z

.

On the other hand, consider eigenvalues �⇤
Ẍ|Z,i

and eigenfunctions u
Ẍ|Z,i

of the kernel k
Ẍ|Z

w.r.t. the probablity measure with the density P(ẍ), i.e., �⇤
Ẍ|Z,i

and u
Ẍ|Z,i

satisfy
R
k
Ẍ|Z

(ẍ, ẍ0) ·

u
Ẍ|Z,i

(ẍ) · P(ẍ)dẍ = �⇤
Ẍ|Z,i

· u
Ẍ|Z,i

(ẍ0), where we assume that u
Ẍ|Z,i

have unit variance, i.e.,

E[u2
Ẍ|Z,i

(Ẍ)] = 1. Similarly, we define kY |Z , �⇤
Y |Z,i

, and u⇤

Y |Z,i
. Let {↵1, . . . ,↵L} denote i.i.d.

standard Gaussian variables, and thus {↵2
1, . . . ,↵

2
L
} denote i.i.d. �2

1 variables.
Lemma 12 (Kernel-based Conditional Independence Test (Zhang et al., 2012)). Under the null
hypothesis that X and Y are conditional independent given Z, we have that the test statistic TCI ,
1
n
tr(K̃

Ẍ|Z
K̃Y |Z) have the same asymptotic distribution as T̂CI , 1

n

P
n
2

k=1 �̃k · ↵2
k
, where �̃k

are eigenvalues of ww
T , w = [w1, . . . ,wn], with the vector wt obtained by stacking Mt =

[ 
Ẍ|Z,1(Ẍt), Ẍ|Z,2(Ẍt), . . . , Ẍ|Z,n

(Ẍt)]T · [�Y |Z,1(Yt),�Y |Z,2(Yt), . . . ,�Y |Z,n(Yt)].

In the above lemma, their test statistic is equivalent to ours, due to the fact that
1

n
tr(K̃

Ẍ|Z
K̃Y |Z) =

1

n
tr(R̃

Ẍ|Z
(R̃T

Ẍ|Z
R̃Y |ZR̃

T

Y |Z
))

=
1

n
tr((R̃T

Ẍ|Z
R̃Y |ZR̃

T

Y |Z
)R̃

Ẍ|Z
)

=
1

n
kR̃T

Ẍ|Z
R̃Y |Zk

2
F

=
1

n
knC

ẌY |Z
k
2
F

= nkC
ẌY |Z

k
2
F
.

(26)

However, their asymptotic distribution is different from ours. Based on their asymptotic distribution,
we could go further. The first two rows of Eq. 26 hold true because of the commutative property of
trace, namely, tr(AB) = BA, refer to Lemma 6 for more details. According to the formulation of
R̃

Ẍ|Z
and R̃Y |Z , we have (

f(Ẍ) = uT q(Z) +R
Ẍ|Z

g(Y ) = vT q(Z) +RY |Z .
(27)
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Based on the above formulations, we could easily draw the causal graph as shown in Fig. A1.
In particular, considering that X and Y are conditionally independent given Z, we could further
determine that R

Ẍ|Z
and RY |Z are independent, namely, we have

X ?? Y |Z () R
Ẍ|Z
?? RY |Z . (28)

As f(Ẍ) and g(Y ) are uncorrelated, then E(wt) = 0. Furthermore, the covariance is ⌃ =
C ov(wt) = E(wtw

T
t ), where w is defined in the same way as in Lemma 12. If R

Ẍ|Z
?? RY |Z ,

for k 6= i or l 6= j, we denote the non-diagonal (ND) entries of ⌃ as eND, where

eND = E[
q
�⇤
Ẍ|Z,i

�⇤
Y |Z,j

�⇤
Ẍ|Z,k

�⇤
Y |Z,l

u
Ẍ|Z,i

uY |Z,juẌ|Z,k
uY |Z,l]

=
q
�⇤
Ẍ|Z,i

�⇤
Y |Z,j

�⇤
Ẍ|Z,k

�⇤
Y |Z,l

E[u
Ẍ|Z,i

u
Ẍ|Z,k

]E[uY |Z,juY |Z,l]

= 0.

(29)

We then denote the diagonal entries of ⌃ as eD, where

eD = �⇤
Ẍ|Z,i

�⇤
Y |Z,j

E[u2
Ẍ|Z,i

]E[u2
Y |Z,j

]

= �⇤
Ẍ|Z,i

�⇤
Y |Z,j

,
(30)

which are eigenvalues of ⌃. According to (Zhang et al., 2012), 1
n
�
Ẍ|Z,i

converge in probability
�⇤
Ẍ|Z

. Substituting all the results into the asymptotic distribution in Lemma 12, we can get the
updated asymptotic distribution

T̂CI , 1

n2

LX

i,j=1

�
Ẍ|Z,i

�Y |Z,j↵
2
ij

as L = n!1. (31)

Consequently, TCI and T̂CI have the same asymptotic distribution. Proof ends.

A3.3 PROOF OF THEOREM 5

Proof: First of all, since ↵2
ij

follow the �2 distribution with one degree of freedom, thus we have
E(↵2

ij
) = 1 and Var(↵2

ij
) = 2. According to the asymptotic distribution in Theorem 4 and the

derivation of Lemma 7, we have

E(T̂CI |D) =
1

n2

X

i,j

�
Ẍ|Z,i

�Y |Z,j

=
1

n2

X

i

�
Ẍ|Z,i

X

j

�Y |Z,j

=
1

n2
tr(K̃

Ẍ|Z
) tr(K̃Y |Z)

=
1

n2
tr(R̃

Ẍ|Z
R̃T

Ẍ|Z
) tr(R̃Y |ZR̃

T

Y |Z
)

=
1

n2
tr(n · C

Ẍ|Z
) tr(n · CY |Z)

= tr(C
Ẍ|Z

) tr(CY |Z),

(32)

where R̃
Ẍ|Z

and R̃Y |Z are defined in the proof of Theorem 3 above. Therefore, E(T̂CI |D) =

tr(C
Ẍ|Z

) tr(CY |Z).
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Furthermore, ↵2
ij

are independent variables across i and j, and notice that tr(K̃2
Ẍ|Z

) =
P

i
�2
Ẍ|Z,i

,

and similarly tr(K̃2
Y |Z

) =
P

i
�2
Y |Z,i

. Based on the asymptotic distribution in Theorem 4, we have

Var(T̂CI |D) =
1

n4

X

i,j

�2
Ẍ|Z,i

�2
Y |Z,j

Var(↵2
ij
)

=
2

n4

X

i

�2
Ẍ|Z,i

X

j

�2
Y |Z,j

=
2

n4
tr(K̃2

Ẍ|Z
) tr(K̃2

Y |Z
).

(33)

Additionally, according to the similar rule as in Eq. 26, we have

tr(K̃2
Ẍ|Z

) = tr(R̃
Ẍ|Z

R̃T

Ẍ|Z
R̃

Ẍ|Z
R̃T

Ẍ|Z
)

= tr(R̃T

Ẍ|Z
R̃

Ẍ|Z
R̃T

Ẍ|Z
R̃

Ẍ|Z
)

= kR̃T

Ẍ|Z
R̃

Ẍ|Z
k
2
F

= kn · C
Ẍ|Z
k
2
F

= n2
kC

Ẍ|Z
k
2
F
.

(34)

Similarly, we have tr(K̃2
Y |Z

) = n2
kCY |Zk

2
F

. Substituting the results into the above formula-
tion about variance, we have 2

n4 tr(K̃2
Ẍ|Z

) tr(K̃2
Y |Z

) = 2
n4 · n2

kC
Ẍ|Z
k
2
F
· n2
kCY |Zk

2
F

. Thus,

Var(T̂CI |D) = 2 · kC
Ẍ|Z
k
2
F
· kCY |Zk

2
F

. Proof ends.

A3.4 PROOF OF THEOREM 6

Proof: According to the above-mentioned formulations, we have M̃X , HMXH = ˜̂µX|f ·

˜̂µT

X|f,
˜̂µX|f , H · µ̂X|f. Based on the rules of estimating covariance matrix from kernel matrix

in Lemma 6, we have

tr(M̃X) = tr(˜̂µX|f · ˜̂µT

X|f)

= tr(˜̂µT

X|f · ˜̂µX|f) (35)

= tr((H�(f)(Cff + �I)�1
CfX)T (H�(f)(Cff + �I)�1

CfX)) (36)

= tr(CXf(Cff + �I)�1�(f)TH ·H�(f)(Cff + �I)�1
CfX))

=
1

n
tr(CXf(Cff + �I)�1

Cff(Cff + �I)�1
CfX) (37)

=
1

n
tr(C⇤

X
). (38)

Eq. 35 is obtained due to the trace property of the product of the matrices, as shown in Lemma 6.
Eq. 36 is substituting from Eq. 20. Here we use Eq. 38 for simple notation. We can see that it can
be represented with some combinations of different covariance matrices. Similarly, we have

tr(M̃Y ) =
1

n
tr(CYf(Cff + �I)�1

Cff(Cff + �I)�1
CfY ) =

1

n
tr(C⇤

Y
). (39)

Regarding the centralized Gram matrices for joint distribution, similarly we have

tr(M̃Y X) =
1

n
tr(C(Y,X),f(Cff + �I)�1

Cff(Cff + �I)�1
Cf,(Y,X)) =

1

n
tr(C⇤

Ỹ
),

tr(M̃XY ) =
1

n
tr(C(X,Y ),f(Cff + �I)�1

Cff(Cff + �I)�1
Cf,(X,Y )) =

1

n
tr(C⇤

X̃
),

(40)
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where tr(M̃Y X) = tr(M̃XY ). Furthermore, based on Lemma 6 and Eq. 22, we have

tr(M̃XM̃Y X) = tr(˜̂µX|f ˜̂µ
T

X|f · ˜̂µY X|f ˜̂µ
T

Y X|f)

= tr(˜̂µT

X|f ˜̂µY X|f ˜̂µ
T

Y X|f · ˜̂µX|f) (41)

= k ˜̂µT

X|f ˜̂µY X|fk
2
F

= k(H�(f)(Cff + �I)�1
CfX)T (H�(f)(Cff + �I)�1

Cf,(Y,X))k
2
F

(42)

= kCXf(Cff + �I)�1�(f)TH ·H�(f)(Cff + �I)�1
Cf,(Y,X)k

2
F

= k
1

n
CXf(Cff + �I)�1

Cff(Cff + �I)�1
Cf,(Y,X)k

2
F

(43)

=
1

n2
kC

⇤

X,Ỹ
k
2
F
. (44)

Eq. 41 is obtained due to the trace property of the product of the matrices, as shown in Lemma 6.
Eq. 41 is substituting from Eq. 20 and Eq. 22. Here we use Eq. 44 for simple notation. We can see
that it can be represented with some combinations of different covariance matrices. Similarly, we
have

tr(M̃Y M̃XY ) = k
1

n
CYf(Cff + �I)�1

Cff(Cff + �I)�1
Cf,(X,Y )k

2
F

=
1

n2
kC

⇤

Y,X̃
k
2
F
.

(45)

Substituting the equations above into Eq. 19, we have

4̂
X!Y

=
kC

⇤

X,Ỹ
k
2
F

tr(C⇤

X
) · tr(C⇤

Ỹ
)
, 4̂

Y!X
=

kC
⇤

Y,X̃
k
2
F

tr(C⇤

Y
) · tr(C⇤

X̃
)
. (46)

Proof ends.

A3.5 PROOF OF LEMMA 7

Proof: First of all, we incorporate random Fourier features to approximate the kernels, because
they have shown competitive performances to approximate the continuous shift-invariant kernels.
Lemma 13 (Random Features (Rahimi & Recht, 2007)). For a continuous shift-invariant kernel
K(x, y) on R, we have:

K(x, y) =

Z

R
p(w)ejw(x�y)dw = Ew[⇣w(x)⇣w(y)], (47)

where ⇣w(x)⇣w(y) is an unbiased estimate of K(x, y) when w is drawn from p(w).

Since both the probability distribution p(w) and the kernel entry K(x, y) are real, the integral in Eq.
47 converges when the complex exponentials are replaced with cosines. Therefore, we may get a
real-values mapping by:

K(x, y) ⇡ �w(x)
T�w(y),

�w(x) ,
r

2

h
[cos(w1x+ b1), ..., cos(whx+ bh)]

T ,

�w(y) ,
r

2

h
[cos(w1y + b1), ..., cos(why + bh)]

T ,

(48)

where w is drawn from p(w) and b is drawn uniformly from [0, 2⇡]. x, y, w, b 2 R, and the random-
ized feature map �w : R ! Rh. The precise form of p(w) relies on the type of the shift-invariant
kernel we would like to approximate. Here in this paper, we choose to approximate Gaussian kernel
as one of the characteristic kernels, and thus set the probability distribution p(w) to the Gaussian
one. Based on Eq. 48, we have

tr(K̃x,y) ⇡ tr(�̃w(x)�̃w(y)
T ), (49)
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where x,y2Rn, K̃x,y2Rn⇥n, �̃w(x)2Rn⇥h is the centralized random feature, �̃w(x)=H�w(x).
Furthermore, benefiting from the commutative property of the trace of the product of two matrices,
we have

tr(�̃w(x)�̃w(y)
T ) = tr(�̃w(y)

T �̃w(x)), (50)

Since each random feature is centralized, meaning the zero mean for each feature, therefore, we
have:

tr(�̃w(y)
T �̃w(x)) = tr(

1

n
Cx,y) =

1

n
tr(Cx,y), (51)

where Cx,y is the covariance matrix for variable x and y, Cx,y 2 Rh⇥h, h is the number of hidden
features.

For the second formulation, we have

tr(K̃xK̃y) = tr[�̃w(x)�̃w(x)
T �̃w(y)�̃w(y)

T ]

= tr[�̃w(x)(�̃w(x)
T �̃w(y)�̃w(y)

T )]

= tr[(�̃w(x)
T �̃w(y)�̃w(y)

T )�̃w(x)]

= tr[�̃w(x)
T �̃w(y)�̃w(y)

T �̃w(x)]

= k�̃w(x)
T �̃w(y)k

2
F

= knCx,yk
2
F

= n2
kCx,yk

2
F
.

(52)

Together with Eq. 49, Eq. 50, Eq. 51 and Eq. 52 formulated above, we could prove the Lemma 7 in
the main paper. Proof ends.

A3.6 PROOF OF THEOREM 8

Proof. The summary statistics contain two parts: total sample size n and covariance tensor CT 2
Rd

0
⇥d

0
⇥h⇥h. Let Cij

T
2 Rh⇥h be the (i, j)-th entry of the covariance tensor, which denotes the

covariance matrix of the i-th and the j-th variable.

With the summary statistics as a proxy, we can substitute the raw data at each client. During the
procedures of causal discovery, the needed statistics include TCI in Theorem 4, E(T̂CI |D) and
Var(T̂CI |D) in Theorem 5, and 4̂

X!Y
and 4̂

Y!X
in Theorem 6.

1) Based on the Eq. (7) in the main paper, we have

C
ẌY |Z

= C
ẌY
� C

ẌZ
(CZZ + �I)�1

CZY

= C(X,Z),Y � C(X,Z),Z(CZZ + �I)�1
CZY (53)

= (CXY + CZY )� (CXZ + CZZ)(CZZ + �I)�1
CZY

In this paper, we consider the scenarios where X and Y are single variables, and Z may be a single
variable, a set of variables, or empty. Assuming that Z contains L variables. We have

CZY =
LX

i=1

CZiY , CXZ =
LX

i=1

CXZi , CZZ =
LX

i=1

LX

j=1

CZiZj , (54)

where CXY , CZiY , CXZi , and CZiZj are the entries of the covariance tensor CT . According to Theo-
rem 3, TCI , nkC

ẌY |Z
k
2
F

. Therefore, the summary statistics are sufficient to represent TCI .

2) Similar to Eq. 53, we have

C
Ẍ|Z

= (CXX + 2CXZ + CZZ)(CXZ + CZZ)(CZZ + �I)�1(CXZ + CZZ) (55)

CY |Z = CY Y � CY Z(CZZ + �I)�1
CZY . (56)
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Substituting Eq. 54 into Eq. 55 and Eq. 56, we can also conclude that the covariance tensor
is sufficient to represent C

Ẍ|Z
and CY |Z . In other words, the summary statistics are sufficient to

represent E(T̂CI |D) and Var(T̂CI |D).

3) As shown in section A3.3, we have

4̂
X!Y

=
kC

⇤

X,Ỹ
k
2
F

tr(C⇤

X
) · tr(C⇤

Ỹ
)
, 4̂

Y!X
=

kC
⇤

Y,X̃
k
2
F

tr(C⇤

Y
) · tr(C⇤

X̃
)
, (57)

where each components can be represented as some combinations of covariance matrices, as shown
in Eq. 37, Eq. 39, Eq. 40, Eq. 43, and Eq. 45. Therefore, the summary statistics are sufficient to
represent 4̂

X!Y
and 4̂

Y!X
.

4) To sum up, we could conclude that: The summary statistics, consisting of total sample size n
and covariance tensor CT , are sufficient to represent all the statistics needed for federated causal
discovery.

Proof ends.

A4 DETAILS ABOUT FEDERATED UNCONDITIONAL INDEPENDENCE TEST

Here, we provide more details about the federated unconditional independence test (FUIT), where
the conditioning set Z is empty. Generally, this method follows similar theorems for federated
conditional independent test (FCIT).

A4.1 NULL HYPOTHESIS

Consider the null and alternative hypothesis
H0 : X ?? Y, H1 : X 6?? Y. (58)

Similar to FCIT, we consider the squared Frobenius norm of the empirical covariance matrix as an
approximation, given as

H0 : kC
ẌY
k
2
F
= 0, H1 : kC

ẌY
k
2
F
> 0. (59)

In this unconditional case, we set the test statistics as TUI , nkC
ẌY
k
2
F

, and give the following
theorem.
Theorem 14 (Federated Unconditional Independent Test). Under the null hypothesis H0 (X and Y
are independent), the test statistic

TUI , nkCXY k
2
F
, (60)

has the asymptotic distribution

T̂UI , 1

n2

LX

i,j=1

�X,i�Y,j↵
2
ij
,

where �X and �Y are the eigenvalues of K̃X and K̃Y , respectively. Here, the proof is similar to the
proof of Theorem 3, thus we refer the readers to section A3.2 for more details.

A4.2 NULL DISTRIBUTION APPROXIMATION

We also approximate the null distribution with a two-parameter Gamma distribution, which is related
to the mean and variance. Under the hypothesis H0 and given the sample D, the distribution of T̂CI

can be approximated by the �(, ✓) distribution. Here we provide the theorem for null distribution
approximation.
Theorem 15 (Null Distribution Approximation). Under the null hypothesis H0 (X and Y are inde-
pendent), we have

E(T̂UI |D) = tr(CX) · tr(CY ),

Var(T̂UI |D) = 2kCXk
2
F
· kCY k

2
F
,

(61)
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Here, the proof is similar to the proof of Theorem 4, thus we refer the readers to section A3.3 for
more details.

A5 DETAILS ABOUT SKELETON DISCOVERY AND DIRECTION
DETERMINATION

In this section, we will introduce how we do the skeleton discovery and direction determination
during the process of federated causal discovery. All those steps are conducted on the server side.
Our steps are similar to the previous method, such as CD-NOD (Huang et al., 2020), the core dif-
ference are that we develop and utilize our proposed federated conditional independent test (FCIT)
and federated independent change principle (FICP).

A5.1 SKELETON DISCOVERY.

We first conduct skeleton discovery on the augmented graph. The extra surrogate variable is intro-
duced in order to deal with the data heterogeneity across different clients.
Lemma 16. Given the Assumptions 1, 2 and 3 in the main paper, for each Vi 2 V , Vi and f are not
adjacent in the graph if and only if they are independent conditional on some subset of {Vj |j 6= i}.

Proof. If Vi’s causal module is invariant, which means that P(Vi|PAi) remains the same for every
value of f, then Vi ?? f|PAi. Thus, if Vi and f are not independent conditional on any subset of
other variables, Vi’s module changes with f, which is represented by an edge between Vi and f.
Conversely, we assume that if Vi’s module changes, which entails that Vi and f are not independent
given PAi, then Vi and f are not independent given any other subset of V \{Vi}. Proof ends.
Lemma 17. Given the Assumptions 1, 2 and 3 in the main paper, for every Vi, Vj 2 V , Vi and Vj

are not adjacent if and only if they are independent conditional on some subset of {Vl|l 6= i, l 6=
j} [ {f}.

Proof. The ”if” direction shown based on the faithfulness assumption on Gaug and the fact that
{ l(f)}Ll=1 [ {✓i(f)}di=1 is a deterministic function of f. The ”only if” direction is proven by
making use of the weak union property of conditional independence repeatedly, the fact that all
{ l(f)}Ll=1 and {✓i(f)}di=1 are deterministic function of f, the above three assumptions, and the
properties of mutual information. Please refer to (Zhang et al., 2015) for more complete proof.

With the given three assumptions in the main paper, we can do skeleton discovery.

i) Augmented graph initialization. First of all, build a completely undirected graph on the
extended variable set V [{f}, where V denotes the observed variables and f is surrogate
variable.

ii) Changing module detection. For each edge f � Vi, conduct the federated conditional
independence test or federated unconditional independent test. If they are conditionally
independent or independent, remove the edge between them. Otherwise, keep the edge and
orient f! Vi.

iii) Skeleton discovery. Moreover, for each edge Vi � Vj , also conduct the federated indepen-
dence test or federated unconditional independent test. If they are conditionally indepen-
dent or independent, remove the edge between them.

In the procedures, how observed variables depend on surrogate variable f is unknown and usually
nonlinear, thus it is crucial to use a general and non-parametric conditional independent test method,
which should also satisfy the federated learning constraints. Here, we utilize our proposed FCIT.

A5.2 DIRECTION DETERMINATION.

After obtaining the skeleton, we can go on with the causal direction determination. By introducing
the surrogate variable f, it does not only allow us to infer the skeleton, but also facilitate the direction
determinations. For each variable Vi whose causal module is changing (i.e., f� Vi), in some ways
we might determine the directions of every edge incident to Vi. Assume another variable Vj which
is adjacent to Vi, then we can determine the directions via the following rules.
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i) Direction determination with one changing module. When Vj’s causal module is not
changing, we can see f � Vi � Vj forms an unshielded triple. For practice purposes, we
can take the direction between f and Vi as f! Vi, since we let f be the surrogate variable
to indicate whether this causal module is changing or not. Then we can use the standard
orientation rules (Spirtes et al., 2000) for unshielded triples to orient the edge between Vi

and Vj . (1) If f and Vi are independent conditional on some subset of {Vl|l 6= j} which is
excluding Vj , then the triple forms a V-structure, thus we have f! Vi  Vj . (2) If f and
Vi are independent conditional on some subset of {Vl|l 6= i}[ {Vj} which is including Vj ,
then we have f! Vi ! Vj . In the procedure, we apply our proposed FCIT.

ii) Direction determination with two changing modules. When Vj’s causal module is chang-
ing, we can see there is a special confounder f between Vi � Vj . First of all, as mentioned
above, we can still orient f ! Vi and f ! Vj . Then, inspired by that P (cause) and
P (e↵ect|cause) change independently, we can identify the direction between Vi and Vj

according to Lemma 1, and we apply our proposed FICP.

A6 DETAILS ABOUT THE EXPERIMENTS ON SYNTHETIC DATASETS

More details about the synthetic datasets are explained in this section, including the implementation
details in section A6.1, the results analysis of F1 and SHD in section A6.2, the complete results of
precision and recall in section A6.3, the computational time analysis in section A6.4, the hyperpa-
rameter study on the number of hidden features h in section A6.5, the statistical significance test for
the results in section A6.6, and the evaluation on dense graph in section A6.7.

A6.1 IMPLEMENTATION DETAILS

We provide the implementation details of our method and other baseline methods.

• FedDAG (Gao et al., 2022): Codes are available at the author’s Github repository https:
//github.com/ErdunGAO/FedDAG. The hyperparameters are set by default.

• NOTEARS-ADMM and NOTEARS-MLP-ADMM (Ng & Zhang, 2022): Codes are
available at the author’s Github repository https://github.com/ignavierng/

notears-admm. The hyperparameters are set by default, e.g., we set the threshold level
to 0.1 for post-processing.

• FedPC (Huang et al., 2022): Although there is no public implementation provided by
the author, considering that it is the only constraint-based method among all the existing
works for federated causal discovery, we still compared with it. We reproduced it based on
the Causal-learn package https://github.com/py-why/causal-learn. Im-
portantly, we follow the paper, set the voting rate as 30% and set the significance level to
0.05.

• FedCDH (Ours): Our method is developed based on the CD-NOD (Huang et al., 2020)
and KCI (Zhang et al., 2012) which are publicly available in the Causal-learn package
https://github.com/py-why/causal-learn. We set the hyperparameter h to
5, and set the significance level for FCIT to 0.05. Our source code has been appended in
the Supplementary Materials.

For NOTEARS-ADMM, NOTEARS-MLP-ADMM, and FedDAG, the output is a directed acyclic
graph (DAG), while FedPC and our FedCDH may output a completed partially directed acyclic
graph (CPDAG). To ease comparisons, we use the simple orientation rules (Dor & Tarsi, 1992)
implemented by Causal-DAG (Chandler Squires, 2018) to convert a CPDAG into a DAG. We eval-
uate both the undirected skeleton and the directed graph, denoted by “Skeleton” and “Direction” as
shown in the Figures.

A6.2 ANALYSIS OF F1 AND SHD

We have provided the results of F1 and SHD in the main paper as shown in Figure 3 and Figure 4,
here we provide further discussions and analysis.
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(a) Precision and recall on linear Gaussian model.

(b) Precision and recall on general functional model.

Figure A2: Results of the synthetic dataset on (a) linear Gaussian model and (b) general functional
model. By rows in each subfigure, we evaluate varying number of variables d, varying number of
clients K, and varying number of samples nk. By columns in each subfigure, we evaluate Skeleton
Precision ("), Skeleton Recall ("), Direction Precision (") and Direction Recall (").
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Table A1: Results of computational time for varying number of variables d, varying number of
clients K, and varying number of samples nk. We report the average and standard deviation over 10
runs. This is the synthetic dataset based on linear Gaussian model.

Data Sizes Methods
d K nk FedPC NOTEARS-ADMM FedDAG FedCDH (Ours)

6

10 100

3.87 ± 1.97s 14.10 ± 1.89s 136.92 ± 21.50s 8.14 ± 2.47s
12 32.01 ± 3.54s 28.33 ± 2.46s 321.84 ± 65.94s 62.69 ± 7.77s
18 39.58 ± 4.75s 35.13 ± 2.89s 398.27 ± 149.51s 98.57 ± 9.23s
24 84.05 ± 7.64s 40.01 ± 2.94s 715.80 ± 268.93s 172.11 ± 18.18s
30 94.03 ± 9.48s 56.35 ± 3.91s 1441.13 ± 519.04s 232.35 ± 26.67s

6

2

100

0.72 ± 0.24s 7.04 ± 0.64s 50.38 ± 11.29s 3.88 ± 1.49s
4 2.07 ± 0.73s 9.07 ± 0.77s 85.08 ± 15.68s 5.24 ± 1.74s
8 3.64 ± 1.54s 10.80 ± 0.78s 114.81 ± 29.67s 8.01 ± 2.32s

16 5.79 ± 2.59s 19.40 ± 2.51s 342.34 ± 62.28s 12.60 ± 2.98s
32 14.08 ± 4.44s 30.56 ± 2.88s 714.06 ± 137.31s 20.30 ± 4.37s

6 10

25 0.48 ± 0.10s 13.06 ± 1.91s 125.77 ± 20.64s 3.75 ± 1.29s
50 1.47 ± 0.64s 13.75 ± 2.51s 127.25 ± 20.38s 5.74 ± 1.61s
100 3.87 ± 1.97s 14.10 ± 1.89s 136.92 ± 21.50s 8.14 ± 2.47s
200 16.52 ± 3.63s 14.68 ± 2.23s 138.67 ± 31.91s 13.78 ± 3.75s
400 51.10 ± 6.87s 15.90 ± 2.54s 140.37 ± 34.42s 22.86 ± 4.55s

We evaluate variable d 2 {6, 12, 18, 24, 30} while fixing other variables such as K=10 and nk=100.
We set client K2{2, 4, 8, 16, 32} while fixing others such as d=6 and nk=100. We let the sample
size in one client nk2{25, 50, 100, 200, 400} while fixing other variables such as d=6 and K=10.

The results of linear Gaussian model are given in Figure 3 and those of general functional model
are provided in Figure 4. According to the results, we observe that our FedCDH method generally
outperforms all other baselines across different criteria and settings. According to the results of our
method on both of the two models, when d increases, the F1 score decreases and the SHD increases
for skeletons and directions, indicating that FCD with more variables might be more challenging.
On the contrary, when K and nk increase, the F1 score grows and the SHD reduces, suggesting that
more joint clients or samples could contribute to better performances for FCD.

In linear Gaussian model, NOTEARS-ADMM and FedPC generally outperform FedDAG. The rea-
son may be that the front two methods were proposed for linear model while the latter one was
specially proposed for nonlinear model. (iv) In general functional model, FedPC obtained the worst
performance compared to other methods in direction F1 score, possibly due to its strong assumptions
on linear model and homogeneous data. FedDAG and NOTEARS-MLP-ADMM revealed poor re-
sults regarding SHD, the reasons may be two-fold: they assume nonlinear identifiable model, which
may not well handle the general functional model; and both of them are continuous-optimization-
based methods, which might suffer from various issues such as convergence and nonconvexity.

A6.3 RESULTS OF PRECISION AND RECALL

In the main paper, we have only provided the results of F1 score and SHD, due to the space limit.
Here, we provide more results and analysis of the precision and the recall. The results of average
and standard deviation are exhibited in Figure A2.

According to the results, we could observe that our FedCDH method generally outperformed all
other baseline methods, regarding the precision of both skeleton and direction. However, in the linear
Gaussian model, NOTEARS-ADMM generally achieved the best performance regarding the recall
although it performed poorly in precision. In the general functional model, when evaluating varying
number of clients K and samples nk, FedDAG performed the best with respect to the recall, however,
neither FedDAG nor NOTEARS-MLP-ADMM obtained satisfactory results in the precision.
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Table A2: Hyperparameter study on the number of hidden features h. We evaluate the F1 score,
precision, recall, and SHD of both skeleton and direction. We report the average over 10 runs. This
is the synthetic dataset based on linear Gaussian model.

h

Metrics Skeleton Direction Time#
F1 " Precision" Recall" SHD# F1 " Precision" Recall" SHD#

5 0.916 0.980 0.867 0.9 0.721 0.765 0.683 2.0 8.14s
10 0.916 0.980 0.867 0.9 0.747 0.810 0.700 2.0 8.87s
15 0.907 0.980 0.850 1.0 0.762 0.818 0.717 1.8 10.57s
20 0.889 0.980 0.833 1.2 0.767 0.833 0.717 1.8 12.72s
25 0.896 0.980 0.833 1.1 0.789 0.838 0.750 1.6 20.93s
30 0.896 0.980 0.833 1.1 0.825 0.873 0.783 1.4 37.60s

A6.4 RESULTS OF COMPUTATIONAL TIME

Existing works about federated causal discovery rarely evaluate the computational time when con-
ducting experiments. Actually, it is usually difficult to measure the exact computational time in real
life, because of some facts, such as the paralleled computation for clients, the communication time
costs between the clients and the server, and so on. However, the computational time is a signif-
icant factor to measure the effectiveness of a federated causal discovery method to be utilized in
practical scenarios. Therefore, in this section, for making fair comparisons, we evaluate the com-
putational time for each method, assuming that there is no paralleled computation (meaning that we
record the computational time at each client and server and then simply add them up) and no extra
communication cost (indicating zero time cost for communication).

We evaluate different settings as mentioned above, including varying number of variables d, varying
number of clients K, and varying number of samples nk. We generate data according to linear
Gaussian model. For each setting, we run 10 instances, report the average and the standard deviation
of the computational time. The results are exhibited in Table A3.

According to the results, we could observe that among the four FCD methods, FedDAG is the
least efficient method with the largest time cost. Meanwhile, FedPC, NOTEARS-ADMM and our
FedCDH are comparable. In the setting of varying variables, our method exhibited unsatisfactory
performance among the three methods. However, in the case of varying variables, NOTEARS-
ADMM is the most ineffective method, and in the scenario of varying samples, FedPC is the slowest
one among the three methods.

A6.5 HYPERPARAMETER STUDY

We conduct experiments on the hyperparameter, such as the number of mapping functions or hidden
features h. Regarding the experiments in the main paper, we set h to 5 by default. Here in this sec-
tion, we set h 2 {5, 10, 15, 20, 25, 30}, d = 6, K = 10, nk = 100 and evaluate the performances.
We generate data according to linear Gaussian model. We use the F1 score, the precision, the recall
and the SHD for both skeleton and direction. We also report the runtime. We run 10 instances and
report the average values. The experimental results are given in Table A2.

According to the results, we could observe that with the number of hidden features h increasing, the
performance of the direction is obviously getting better, while the performance of the skeleton may
fluctuate a little bit. Moreover, the computational time is also increasing. When h is smaller than 20,
the runtime increases steadily. When h is greater than 20, the runtime goes up rapidly. Importantly,
we could see that even when h is small, such as h = 5, the general performance of our method is
still robust and competitive.

A6.6 STATISTICAL SIGNIFICANCE TEST

In order to show the statistical significance of our method compared with other baseline methods on
the synthetic linear Gaussian model, we report the p values via Wilcoxon signed-rank test (Woolson,
2007). For each baseline method, we evaluate four criteria: Skeleton F1 (S-F1), Skeleton SHD (S-
SHD), Direction F1 (D-F1), and Direction SHD (D-SHD).
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Table A3: Test result of statistical significance of our FedCDH method compared with other base-
line methods. We report the p values via Wilcoxon signed-rank test (Woolson, 2007). This is the
synthetic dataset based on linear Gaussian model.

Parameters [FedCDH vs. FedPC] [FedCDH vs. NOTEARS-ADMM] [FedCDH vs. FedDAG]
d k n S-F1 S-SHD D-F1 D-SHD S-F1 S-SHD D-F1 D-SHD S-F1 S-SHD D-F1 D-SHD

6 10 100 0.00 0.05 0.01 0.12 0.00 0.01 0.11 0.10 0.00 0.01 0.01 0.01
12 10 100 0.00 0.01 0.01 0.01 0.00 0.00 0.15 0.00 0.00 0.00 0.11 0.00
18 10 100 0.00 0.01 0.00 0.01 0.00 0.00 0.03 0.00 0.00 0.00 0.02 0.00
24 10 100 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.00
30 10 100 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
6 2 100 0.00 0.00 0.01 0.01 0.01 0.00 0.21 0.01 0.00 0.00 0.03 0.00
6 4 100 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.00
6 8 100 0.00 0.00 0.01 0.02 0.02 0.01 0.03 0.02 0.00 0.00 0.09 0.00
6 16 100 0.00 0.01 0.01 0.02 0.00 0.00 0.10 0.03 0.00 0.00 0.07 0.00
6 32 100 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.01 0.00 0.00 0.03 0.00
6 10 25 0.00 0.00 0.01 0.01 0.01 0.01 0.26 0.02 0.00 0.00 0.03 0.00
6 10 50 0.00 0.01 0.01 0.00 0.01 0.00 0.99 0.03 0.00 0.00 0.02 0.00
6 10 200 0.00 0.01 0.01 0.02 0.00 0.00 0.03 0.02 0.00 0.00 0.11 0.01
6 10 400 0.00 0.01 0.01 0.01 0.01 0.00 0.03 0.01 0.00 0.01 0.01 0.00

Figure A3: We evaluate on synthetic linear Gaussian model (Top Row) and general functional model
(Bottom Row) when the number of edges are two times the number of variables. By columns, we
evaluate Skeleton F1 ("), Skeleton SHD (#), Direction F1 (") and Direction SHD (#).

We set the significance level to 0.05. Those p values higher then 0.05 are underlined. From the re-
sults, we can see that the improvements of our method are statistically significant at 5% significance
level in general.

A6.7 EVALUATION ON DENSE GRAPH

As shown in Figure 3 in the main paper, the true DAGs are simulated using the Erdös–Rényi model
(Erdős et al., 1960) with the number of edges equal to the number of variables. Here we consider a
more dense graph with the number of edges are two times the number of variables.

we evaluate on synthetic linear Gaussian model and general functional model, and record the F1

score and SHD for both skeleton and directed graphs. All other settings are following the previous
ones by default.

According to the results as shown in Figure A3, we can see that our methods still outperformed other
baselines in varying number of variables. Interestingly, when the generated graph is more dense, the
performance of FedPC will obviously go down for various number of variables.
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Figure A4: Results of real-world dataset fMRI Hippocampus (Poldrack et al., 2015). By rows, we
evaluate varying number of clients K and varying number of samples nk. By columns, we evaluate
Skeleton F1 ("), Skeleton SHD (#), Direction F1 (") and Direction SHD (#).

Figure A5: Results of real-world dataset HK Stock Market (Huang et al., 2020). We evaluate varying
number of clients K, and we evaluate Skeleton F1 ("), Skeleton SHD (#), Direction F1 (") and
Direction SHD (#).

A7 DETAILS ABOUT THE EXPERIMENTS ON REAL-WORLD DATASET

A7.1 DETAILS ABOUT FMRI HIPPOCAMPUS DATASET

We evaluate our method and the baselines on fMRI Hippocampus (Poldrack et al., 2015). The direc-
tions of anatomical ground truth are: PHC! ERC, PRC! ERC, ERC! DG, DG! CA1, CA1
! Sub, Sub! ERC and ERC! CA1. Generally, we follow a similar setting as the experiments on
synthetic datasets. For each of them, we use the structural Hamming distance (SHD), the F1 score
as evaluation criteria. We measure both the undirected skeleton and the directed graph. Here, we
consider varying number of clients K and varying number of samples in each client nk.

The results of F1 score and SHD is given in Figure A4. According to the results, we could observe
that our FedCDH method generally outperformed all other baseline methods, across all the criteria
listed.

A7.2 DETAILS ABOUT HK STOCK MARKET DATASET

We also evaluate on HK stock market dataset (Huang et al., 2020) (See Page 41 for more details
about the dataset). The HK stock dataset contains 10 major stocks, which are daily closing prices
from 10/09/2006 to 08/09/2010. The 10 stocks are Cheung Kong Holdings (1), Wharf (Holdings)
Limited (2), HSBC Holdings plc (3), Hong Kong Electric Holdings Limited (4), Hang Seng Bank
Ltd (5), Henderson Land Development Co. Limited (6), Sun Hung Kai Properties Limited (7),
Swire Group (8), Cathay Pacific Airways Ltd (9), and Bank of China Hong Kong (Holdings) Ltd
(10). Among these stocks, 3, 5, and 10 belong to Hang Seng Finance Sub-index (HSF), 1, 8, and 9
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belong to Hang Seng Commerce and Industry Sub-index (HSC), 2, 6, and 7 belong to Hang Seng
Properties Sub-index (HSP), and 4 belongs to Hang Seng Utilities Sub-index (HSU).

Here one day can be also seen as one domain. We set the number of clients to be K2{2, 4, 6, 8, 10}
while randomly select nk=100 samples for each client. All other settings are following previous
ones by default. The results are provided in Figure A5. According to the results, we can infer that
our FedCDH method also outperformed the other baseline methods, across the different criteria.
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