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4. In-depth Analysis

Necessity: Better generalization on generative editing.
Rationality: Less entity bias; 

Hard to distinguish by humans.
Diversity: New cross-generative method challenge.

Figure 1: GRE: a large-scale dataset and benchmark focused on the generative regional editing (manipulation) detection task.
(a) Cases of edited images featuring different editing approaches and various types within the GRE dataset. (b) Illustration of
several characteristics and advantages of the GRE dataset.

ABSTRACT
Considering that image editing and manipulation technologies pose
significant threats to the authenticity and security of image content,
research on image regional manipulation detection has always
been a critical issue. The accelerated advancement of generative AI
significantly enhances the viability and effectiveness of generative
regional editing methods and has led to their gradual replacement
of traditional image editing tools or algorithms. However, current
research primarily focuses on traditional image tampering, and
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for profit or commercial advantage and that copies bear this notice and the full citation
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republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

there remains a lack of a comprehensive dataset containing images
edited with abundant and advanced generative regional editing
methods.

We endeavor to fill this vacancy by constructing the GRE dataset,
a large-scale generative regional editing detection dataset with the
following advantages: 1) Integration of a logical and simulated edit-
ing pipeline, leveraging multiple large models in various modalities.
2) Inclusion of various editing approaches with distinct charac-
teristics. 3) Provision of comprehensive benchmark and evalua-
tion of SOTA methods across related domains. 4) Analysis of the
GRE dataset from multiple dimensions including necessity, ratio-
nality, and diversity. Extensive experiments and in-depth analysis
demonstrate that this larger and more comprehensive dataset will
significantly enhance the development of detection methods for
generative editing.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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1 INTRODUCTION
While image editing and manipulation technologies enrich visual
content, they also pose significant threats to the authenticity and
security of image content in various media. Therefore, research on
image regional manipulation detection has always been a critical
issue. Recently, diffusion models have sparked an AI generation
revolution in the field of computer vision, demonstrating remark-
able performance in various task scenarios, including controllable
editing [27, 28, 44, 45]. The advancement of generative technologies
lowers the cost and improves the effectiveness of edits, gradually
replacing traditional editing tools with generative editing methods.
However, current detection researches are focused on traditional
editing methods, and there remains a research gap in the detection
of novel generative regional editing.

In contrast to the challenging precise control in the full im-
age generation1 techniques, local editing methods exhibit greater
flexibility, which enables the modification of specific content in
the original image [27, 40, 46], potentially altering the conveyed
information. Moreover, compared to traditional manual manipu-
lation using tools like PhotoShop, generative regional editing is
more convenient and user-friendly for non-professionals, while still
achieving high-quality editing results. Figure 1 (a) showcases the
performance of several representative generative regional editing
methods, illustrating the difficulty in distinguishing between au-
thentic and edited images. In the present day, we can indeed assert
that “Seeing is not always believing." [19] Therefore, the detection
capabilities of generative regional editing merit our attention.

In this paper, we construct a novel large-scale dataset named
GRE (Generative Regional Editing) focused on the task of detecting
generative regional edits. Based on the GRE dataset, we establish
a benchmark to evaluate the existing detection methods across
related domains, and we analyze the dataset from multiple dimen-
sions, including necessity, rationality, and diversity. The extensive
experiments and in-depth analysis demonstrate that this larger and
more comprehensive dataset will significantly enhance the develop-
ment of detection methods for generative editing. Specifically, the
GRE dataset offers several distinct advantages over existing related
datasets, which are listed below:

(1) Logical and Simulated Editing Pipeline. Previously, small-scale
regional editing datasets ensured logical coherence (e.g., preventing
the appearance of a dog in the sky) through manual manipula-
tion, while larger datasets struggled to maintain logical consistency
through a naive automated editing pipeline. To ensure logical co-
herence in editing, semantic richness in editing, data scale, and

1In this paper, “image generation" specifically refers to instances where all pixels are
generated, while “regional editing" denotes the modification of only a portion of the
pixels based on the original image. In some literature, "regional editing" is also called
"manipulation."

scalability, we integrate multiple awesome large models in various
modalities to construct a complete image editing pipeline including
perception, creativity, and implementation.

(2) Various Editing Approaches. In real-world scenarios, it is im-
possible to know in advance the tools or methods used for editing,
making it crucial to evaluate the generalization capabilities of de-
tection models across different and even unknown editing methods.
We select a variety of representative editing methods for thorough
investigation. These methods vary in their architectures, including
GAN-based, diffusion-based, and black-box approaches, and they
also differ in their editing control mechanisms.

(3) Comprehensive Benchmark. Besides the binary classification
task that distinguishes manipulated images from authentic ones, it
is also important to improve the explainability of the image manip-
ulation detection task in real-world media forensics scenarios by
answering where and how the image is edited. We provide multi-
level annotations in the dataset and propose three tasks: 1) Edited
Image Classification, distinguishing whether an image is edited. 2)
Edited Method Attribution, identifying the editing method used in
an edited image. 3) Edited Region Localization, localizing manipu-
lated areas within edited images. We evaluate the performance of
state-of-the-art methods on these tasks, and the experiments show
that the pixel-level localization task, although more challenging, is
meaningful in finding edited elements within a visually rich edited
image.

(4) In-depth Analysis. We conduct extensive experiments to ana-
lyze the key characteristics necessary for the GRE dataset to serve
as a benchmark, including its necessity, rationality, and diversity.
Through cross-dataset experiments with existing datasets, we vali-
date the necessity of the GRE dataset in addressing the research gap
in the detection of novel generative regional editing. TCAV analysis
and user study demonstrate that the dataset exhibits no entity bias
and that the editing operations are hard to distinguish by humans.
Cross-editing method experiments highlight the value of the di-
versity of generative editing methods. These multiple dimensions
collectively confirm that GRE is a high-quality dataset.

2 RELATEDWORK
2.1 Generation and Manipulation Datasets
Image Generation. Recently, there has been a growing emphasis
on the detection of generative images, leading to the introduction
of numerous benchmarks such as DeepArt [36], IEEE VIP Cup
[34], DE-FAKE [39], and CiFAKE [2], along with the million-scale
benchmark provided by GenImage [48]. However, the generative
images within these datasets are primarily suitable for image-level
generation detection tasks. They do not fully meet the requirements
for the edited region localization task. Creating datasets specifically
for the generative regional editing detection task incurs higher
costs, and its pixel-level automated editing process is more complex
compared to image-level generation.
Regional Image Editing. Detecting tampered or edited regions in
an image is a longstanding challenge. Table 1 provides a summary
of scale, image source, and editing approaches of existing datasets,
including Columbia [29], CASIA [5], Coverage [37], NIST16 [7],
DEFACTO [20] and IMD20 [21], which are widely used and recog-
nized. Among these datasets, only the DEFACTO dataset includes
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Table 1: Summary of various regional editing detection datasets. GRE surpasses any other dataset both in scale and diversity.

Dataset
Dataset Scale Original Image Generative Editing Approaches

Pipeline
Edited Images Generative Ratio(%) Daily News GAN-based Diffusion-based Black-box

Columbia[29] 180 0.0 ! % % % % Random
CASIAv1[5] 920 0.0 ! % % % % Manual
CASIAv2[5] 5,063 0.0 ! % % % % Manual
Coverage[37] 100 0.0 ! % % % % Manual
NIST16[7] 564 36.9 ! % ! % % Manual
DEFACTO[20] 149,587 16.7 ! % ! % % Random
IMD20[21] 2,010 0.0 ! % % % % Manual
GRE (Ours) 228,650 100.0 ! ! ! ! ! Simulated&Manual

a relatively extensive collection of generative edited image data.
Other datasets predominantly include early non-generative forms
of editing (e.g., simple splice and copy-move). However, the genera-
tive editing methods employed in the DEFACTO dataset are limited,
and the automated editing pipeline is relatively simple. This edit-
ing pipeline leaves noticeable traces of automation, resulting in
significant generalization issues for models trained on the dataset.

2.2 Generative Regional Editing Methods
Diffusion-basedmethods. The emergence of diffusionmodels has
truly propelled generative editing methods to outperform operation
sequences dominated by manual interventions, both in terms of
convenience and effectiveness. Stable Diffusion [27] represents an
advanced text-to-image diffusion model capable. The inclusion of
simple mask replacement operations during the inference process
enables targeted region editing. ControlNet [46] introduces inno-
vative modules that enable the control of pre-trained large-scale
diffusionmodels to accommodate additional input conditions. Paint-
byExample [40] explores exemplar-guided image editing rather
than language-guided image editing, enabling even more precise
control over the editing process.
GAN-based methods. However, we must also acknowledge the
significant performance improvements in GAN-based image editing
methods that have occurred in recent times. MAT [13] customizes
an inpainting-oriented transformer block, in which the attention
module aggregates non-local information exclusively from partially
valid tokens, as indicated by a dynamic mask. This approach demon-
strates remarkable effectiveness in addressing extensive inpainting
challenges. LaMa [31] optimizes the intermediate feature maps of
a network by minimizing a multi-scale consistency loss during in-
ference. This approach adeptly handles the issue of lacking detail
present at higher resolutions, resulting in improved visual quality.

3 GRE CONSTRUCTION
Most of the existing image generation datasets only contain full im-
age generated samples, without considering the common scenario
of regional editing within images. Most previous regional editing
datasets only contain manipulation without the participation of
generative models, and the creation processes lack consideration
of logical rationality and semantic diversity. In contrast, our pro-
posed GRE dataset provides various generative regional editing
approaches and defines three tasks (i.e. edited image detection,

edited region localization, and editing method attribution) with
a total of 228K images. We design an automated editing pipeline
assisted by multiple large models with different modalities, capable
of performing logically consistent editing operations. We compare
our GRE with other public regional editing datasets, as detailed in
Table 1. Overall the comparison items listed in the table, our dataset
outperforms others in both scale and diversity.

3.1 Original Image Collection
In the context of the internet, where image content and scenes
are highly complex and diverse, we select the two most frequently
tampered or edited scenarios: Daily Moment Snapshots and News &
Public Sentiment Visuals. In these two typical scenarios, we gather
abundant original images to enhance diversity across dimensions
such as scenes, content, and resolution.

Daily Moment Snapshots comprises user-shared pictures captur-
ing daily life scenes and sharing moments, depicting the ordinary
and personal aspects of individuals’ lives. COCO [14] and Flickr2K
[32] collected images from flickr.com, comprising photographs up-
loaded by amateur photographers with searchable keywords, in-
cluding 40 scene categories. Similarly, DIV2K [1] and SR-RAW [47]
gathered high-resolution images from a diverse set of websites and
cameras, capturing snapshots of various moments and abundant
contents. We select original data from these datasets, where the
resolutions range from 480P to 2K. News & Public Sentiment Visuals
include visuals intricately linked to current events, news, or public
sentiment, fostering broader discussions and sparking the attention
of a larger audience. VisualNews [15] is a benchmark designed
for the news image caption task, consisting of a large-scale col-
lection of news images and associated metadata. The dataset was
sourced from prominent news outlets such as BBC, USA Today,
and The Washington Post, among others. From this dataset, we
specifically select news illustrations with resolutions exceeding
720P and possessing rich content as the original images.

3.2 Regional Editing Pipeline
To simulate the image editing process in real-world scenarios and
ensure logical coherence in edited content, we design the editing
pipelines assisted by multiple large models of different modalities,
as illustrated in Figure 2. This pipeline primarily consists of three
pivotal components. (1) Perception, which involves selecting the re-
gion to be edited and understanding the original image content. (2)
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[Image Prompt]: An airliner is taxiing
on the runway… There are many green
belts near the expressway, along with...
[Source Prompt]: A large jet airliner.

Text-to-Image
Generation Method

ChatGPT

STEP #3: Provide Idea

STEP #4: Abundant Guidance

Instruction: Now you have an image
described as [Image Prompt], which has an
region described as [Source Prompt]. Please
give your editing idea with [Target Prompt].

Creativity (STEP #3 to STEP #4)

[Target Prompt]: A colorful hot air balloon
above the cityscape.

[Target Prompt]: A colorful hot air balloon
above the cityscape.

Editing
Methods

STEP #5: Edit

Implementation (STEP #5)
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Figure 2: Illustration of our logical and simulated pipeline with the assistance of multiple large models for regional editing.

Segment
Anything

Irregular Object Region
Regular Non-Object Region

(a)

(b) (c)

Figure 3: Illustration of point-based SAM segmentation.

Creativity, which involves determining the editing goal, and gath-
ering corresponding textual descriptions and image examples (the
guidance inputs for subsequent editing). (3) Implementation, which
entails selecting the required guidance, employing various editing
methods for multiple iterations of image editing, and filtering the
optimal result.

3.2.1 Perception. The first crucial component of the pipeline is to
achieve the perception of the original image. In this component,
we aim to comprehend the image and select editing regions that
are diverse and reasonable for subsequent editing. In real-world
scenarios, edited regions can be broadly categorized into two types:
object regions and non-object regions. For the former, editing oper-
ations such as removal or replacement can be performed, while for
the latter, operations involve creating content that is not present in
the original image.

To simulate the selection of objects, we employ an advanced
semantic segmentation model SAM [11] to obtain precise object
region masks, as illustrated in Step #1. SAM can achieve point-based
segmentation. Therefore, we utilize a dense grid of points, as illus-
trated in Figure 3 (a), to guide SAM for multiple region predictions.
For an object or region with clear semantic meaning, it should be se-
lected by at least two points and produce similar masks. We use this

criterion to filter regions with complete semantic meaning. Con-
versely, outside these regions, there is a high probability of being
background areas with no clear semantic meaning. In these cases,
we use randomly sized rectangular regions to select these areas.
We employ constraints related to size and the number of connected
components to eliminate fragmented and meaningless segments.
Consequently, we obtain irregular object region masks and regular
non-object region masks, denoted as [Region Mask], which is the
most crucial guidance for the subsequent editing process.

We employ the large-scale visual-text model BLIP2 [12] for the
recognition of specified content in Step #2. We aim for BLIP2 to
provide a detailed description of the original image, referred to as
[Image Prompt]. Subsequently, we crop the selected region with
bounding boxes enlarged by 1.3x and expect BLIP2 to provide a
description of the original object or content within that region,
denoted as [Source Prompt]. Finally, we analyze the coarse-grained
position of the selected region in the image (using combinations
such as center, top, bottom, left, and right) and incorporate this
information with the [Source Prompt].

3.2.2 Creativity. In the real world, common editing types can be
summarized as removal, replacement, and creation. Among these,
removal is the most straightforward to establish, requiring only the
[Region Mask] obtained in the earlier steps. However, for achieving
the other editing types, the preparation of corresponding guidance
that can describe the editing idea and purpose becomes essential.

ChatGPT, developed by OpenAI upon InstructGPT [23], is an
excellent advisor for generating innovative editing ideas. We utilize
a carefully designed instruction format to inform ChatGPT about
the content of the original image and the content of the selected
region for editing. We hope that it can provide diverse and real-
istic editing ideas that align with real-world logic in Step #3. The
required text description of the editing target, [Target Prompt],
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Figure 4: Pairs of the authentic image (with edited region boundary) and corresponding edited image.

can be extracted from its response. We leverage the currently best
open-source text-to-image generation model, Stable Diffusion XL
[24], to translate the text description into image examples [Target
Example] in Step #4. This serves as a different form of guidance
needed for the subsequent editing process. It’s essential to clarify
that the target examples generated in this step do not belong to
the final dataset, they are merely the guidance generated by the
intermediate steps.

3.2.3 Implementation. We have gathered comprehensive guidance
information for region editing, including a precise binary mask
indicating the editing region [Region Mask], textual descriptions
indicating the editing target [Target Prompt], and image examples
providing visual references for the editing target [Target Example].
These pieces of information offer diverse guidance for generative
region editing methods, enabling end-to-end region editing.

Some works in image generation detection and attribution pro-
posed and analyzed various generative methods from different per-
spectives, highlighting that different methods leave distinct traces
and fingerprints [41]. Moreover, there is a noted poor generalization
of detection models across data generated by different methods.
To ensure diversity in edited images within our GRE dataset and
to provide a reasonable benchmark for generalization evaluation,
we have chosen six editing methods to complete the final compo-
nent in the pipeline, implementation. These six editing methods
include MAT, LaMa, Stable Diffusion V2.0 (SD-V2.0), ControlNet,
PaintByExample (PaintEx), and PhotoShop, which has introduced
Generative AI functionality. Details on the architecture and the re-
quired guidance for these methods, as well as other characteristics,
can be found in the Appendix.

For each original image, we employ all white-box methods to
generate corresponding edited images. However, due to the manual
intervention required in the generative editing process within Pho-
toShop, we select only a subset of images for PhotoShop editing.
When using the three diffusion models in the above-mentioned
editing methods, we incorporate diverse inference steps, randomly
selecting the number of steps from the set [20, 30, 50, 100] for each
inference. Considering the variable quality of images generated by
the diffusion-based model, multiple images are generated for each
case. Subsequently, we choose the image with higher textual faith-
fulness based on the CLIP score [26]. Finally, we simulate real-world

scenarios by introducing perturbations to the edited images, involv-
ing random combinations of different compression algorithms and
noise addition algorithms, among other post-processing operations.

3.3 Cases
To provide a more intuitive observation of the effectiveness of
our editing pipeline, as well as the rationality and diversity of the
edited images, we display cases from the dataset in Figure 4. These
include three different types of edits: removal, replacement, and
creation. The data are presented in pairs of authentic and edited
images, with the edited region boundaries specifically marked on
the authentic images. The marked regions represent the actual
regions where edits occurred, meaning that changes occurred only
within these regions. We also display some images manually edited
using PhotoShop, which are also part of the GRE dataset.

4 GRE BENCHMARK
4.1 Benchmark Settings

Basic Dataset Partition. For each original image collected in GRE,
we employ all white-box methods to generate corresponding edited
images, resulting in a distribution from 1 (authentic) to𝑛−1 (edited).
Consequently, we group images edited with the same method into
a subset, while all original images form the authentic subset. To
ensure data uniformity and prevent data leakage, we initially parti-
tion the subset of authentic images into training, validation, and
test sets in a ratio of 8 : 1 : 1. The division of each edited subset
remains consistent with the authentic subset. In other words, if an
original image is in the test set, all images edited from it also belong
to the test set, ensuring exclusion from the training set.

Task 1. Edited Image Classification. This task is a 2-way image-
level classification task aimed at distinguishing between authentic
and edited images. We design the evaluation protocol to train mod-
els using a combination of authentic and one edited subset and then
test them on other edited subsets. Specifically, we choose the SD-
V2.0 subset as the training edited subset based on the experiment
results presented in Table 7. This approach assesses the general-
ization performance of various detection methods across different
types of edits. For this binary classification task, we evaluate the
models using Accuracy as the performance metric.
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Figure 5: The t-SNE feature visualization of the authentic images and images edited by different regional editing approaches.

Table 2: Comparison of related methods under the Edited
Image Classification (Task 1).

Method
Seen Subset Unseen Subset

Authentic SD-V2.0 MAT LaMa ControlNet PaintEx

ResNet-18 89.8 86.5 79.4 80.6 81.1 81.9
ResNet-50 90.7 88.5 91.1 91.3 88.1 88.3
DeiT-S 91.6 79.3 72.0 73.8 71.9 71.5
Swin-T 95.4 87.8 85.5 85.6 86.1 85.2

CNNSpot 85.8 73.6 71.3 72.9 70.7 69.5
F3Net 82.3 68.1 62.4 61.7 59.8 60.5
GramNet 92.7 93.2 91.5 90.7 89.0 88.9
Universal 91.0 93.1 91.9 91.2 91.5 91.4

Task 2. Edited Method Attribution. This task refers to a 𝑛-way
(authentic and 𝑛 − 1 editing methods) method-level attribution
task. Beyond discerning between authentic and edited images, the
objective is to attribute edited images to the specific editing method
employed. The evaluation protocol involves training models using
all authentic and edited subsets, while the testing is performed
using the basic partition of the test set. Evaluation metrics include
Accuracy, F1-score, and mean Average Precision.

Task 3. Edited Region Localization. This task concerns a 2-way
pixel-level segmentation task aimed at distinguishing between au-
thentic and edited regions in images. For a comprehensive analysis,
we introduce the protocol, which is training on a combination of
the MAT subset and SD-V2.0 subset, followed by testing on other
subsets. The combined training set includes one GAN-based and
diffusion-based editing method respectively, a decision inspired by
the experimental conclusions shown in Table 6. We use Intersection
over Union (IoU) and pixel-level F1-score as assessment metrics.

4.2 Edited Image Classification
For a comprehensive evaluation, we provide results of several base-
line models, including ResNet-18 [8], ResNet-50 [8], DeiT-S [33]
and Swin-T [17]. We extend SOTA detection methods for image
generation detection to the classification task of regional editing
images. It is observed that the performance of GramNet [18] and
Universal [22] surpasses that of CNNSpot [35], F3Net [25] and base-
line. However, in Figure 5 (a) and (b), we utilize t-SNE to analyze
and visualize the features of two baselines, ResNet-50 and Swin-T.
An evident observation from Table 2 emerges, while the features of
authentic images and edited images form a distinct classification
boundary, the features of images edited using different methods do
not cluster well.

Table 3: Comparison of related methods under the Edited
Method Attribution (Task 2).

Method Accuracy F1-score mAP

ResNet-18 64.2 67.5 76.7
ResNet-50 72.6 73.4 82.8
Deit-S 61.9 66.0 71.4
Swin-T 74.3 74.7 82.1

DCT-CNN 67.4 67.1 78.2
DNA-Det 72.8 74.5 82.0
RepMix 72.5 73.9 83.6
POSE 74.1 75.8 83.1
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Figure 6: Confusion matrix under the Edited Method Attri-
bution (Task 2).

4.3 Editing Method Attribution
We expand the 2-way classification labels of Task 1 to n-way at-
tribution labels in Task 2. In addition to distinguishing between
authentic and edited images, our objective is to attribute edited
images to the specific editing method employed. Following the pro-
tocol, we use the authentic subset and all edited subsets for both
training and testing, constituting a closed-set attribution task.

In addition to the classification baselines mentioned earlier, we
also evaluate SOTA attribution models, including DCT-CNN [6],
DNA-Det [42], RepMix [3], and POSE [43]. The experimental results
are presented in Table 3. We also employ t-SNE to visualize the
feature distributions of two baselines (ResNet-50 and Swin-T) under
the protocol of Task 2, as shown in Figures 5 (c) and (d). Through
comparison with Figures 5 (a) and (b), a crucial change is observed,
where images edited by different methods cluster more distinctly.
Additionally, various GAN-basedmethods can bewell distinguished,
while distinction among different diffusion-based methods is more
challenging. Furthermore, in Figure 6, we present the confusion
matrices for the attribution results of ResNet-18 and ResNet-50,
aligning with the observation mentioned earlier.
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Table 4: Comparison of related methods under the Edited
Region Localization (Task 3).

Method
Seen Subset Unseen Subset

MAT SD-V2.0 LaMa ControlNet PaintEx

Unet-R50 72.0/80.4 57.9/66.1 29.9/38.0 54.7/62.9 62.5/70.9
Unet-Eb4 76.3/84.7 65.1/74.1 40.5/50.7 60.2/69.1 66.5/75.5
Deeplab𝑉 3-R50 72.6/81.4 61.1/70.2 38.6/48.2 59.4/68.4 64.8/73.9
Deeplab𝑉 3-Eb4 78.1/87.9 59.8/69.5 38.4/47.6 54.0/64.5 60.4/70.6

Mantra-Net* - - 0.1/0.1 0.1/0.1 0.1/0.1
SPAN* - - 0.1/0.1 0.1/0.2 0.1/0.1
PSCC-Net 38.9/50.0 26.6/37.1 17.4/25.1 25.3/35.8 26.9/35.5
MVSS-Net 63.7/73.1 47.6/56.8 25.9/33.4 45.2/54.0 52.6/62.2
SAFL-Net 75.7/84.2 58.9/64.6 35.6/41.1 61.0/67.5 65.4/74.9

4.4 Edited Region Localization
In the context of regional edited image detection, merely distin-
guishing between authentic and edited images is insufficient. Lo-
cating the edited regions is a core task, and it is also the most
challenging. To establish a comprehensive evaluation, we select
classic baselines and representative image manipulation detection
methods. We employ different combinations of classic segmenta-
tion models (Unet and Deeplab𝑉 3) and backbones (ResNet-50 and
EfficientNet-B4) as baselines for the segmentation task. For Mantra-
Net [38] and SPAN [9], the core lies in their pre-trained feature
extractor. Therefore, we did not retrain them on the GRE training
set but rather evaluated their pre-trained models on the testing
set, which is indicated by *. In addition, we evaluate MVSS-Net [4],
PSCC-Net [16] and SAFL-Net [30], and the detailed experimental
results are presented in Table 4.

It is worth noting that all methods exhibit acceptable localization
abilities within the seen subsets. However, there is a notable lack
of generalization within the unseen subsets. An important factor
contributing to this phenomenon is that these methods primarily
focus on non-generative forms of region editing (e.g., simple splice
and copy-move). In contrast, generative regional editing approaches
produce higher-quality images with less distinct boundaries for
edited regions. The logic and simulated characteristics of our editing
pipeline further ensure that editing operations are less perceptible.
This emphasizes the value of our proposed GRE dataset for the field
of regional editing detection.

5 GRE ANALYSIS
In this section, we conduct extensive experiments to investigate
the characteristics of GRE, including its necessity, rationality, and
diversity, which are essential attributes for a benchmark dataset.

5.1 Necessity
Existing image tampering detection datasets primarily focus on
traditional types of image manipulations, such as manual edits us-
ing image editing tools like PhotoShop. Only a few datasets pay
attention to manipulations performed using generative models,
and the range of included generative models is very limited. Ta-
ble 1 statistics some critical characteristics of current datasets. To
demonstrate that existing datasets fail to effectively encompass
the types of generative regional editing, as well as to highlight

Table 5: Results of cross-dataset evaluation under the pixel-
level edited region localization task.

Method Training
Dataset

Testing Dataset (Pixel-level F1)

CASIA DEFACTO NIST16 IMD20 GRE Avg.

Unet-Eb4
CASIA 51.8 19.6 21.4 19.5 11.0 24.7
DEFACTO 5.3 63.2 4.8 3.7 2.4 15.9
GRE 25.6 23.5 30.3 22.6 66.9 33.8

MVSS-Net
CASIA 44.7 25.1 26.3 22.2 16.5 27.0
DEFACTO 7.9 54.9 4.3 4.1 1.7 14.6
GRE 23.0 19.4 21.2 22.5 51.6 27.5

SAFL-Net
CASIA 48.2 15.2 24.0 21.6 9.8 23.8
DEFACTO 6.1 60.5 4.9 3.0 2.7 15.4
GRE 21.8 20.5 28.8 19.8 62.2 30.6

the distinctions between traditional tampering types and genera-
tive tampering types, we organize cross-dataset experiments. These
experiments highlight the necessity of introducing the GRE dataset.

Among the datasets commonly used for training image tamper-
ing detection methods, we select two representative datasets: CA-
SIA (v1&v2) [5], which contains only traditional tampering types,
and DEFACTO [20], which includes traditional tampering types
as well as generative tampering types implemented using GAN.
In contrast, GRE encompasses tampered images edited through
a variety of generative editing methods. The remaining existing
datasets, due to their limited data, are used solely for testing.

We employ the best-performing models in the edited region lo-
calization task, baseline model Unet, along with two state-of-the-art
methods, MVSS-Net and SAFL-Net, for cross-dataset experiments.
Table 5 displays the results of cross-dataset evaluation experiments.
By comparing the results of experiments using CASIA and GRE as
training sets, we can elucidate the differences between traditional
tampering types and generative tampering types. Although DE-
FACTO includes generative tampering implemented using GAN, the
experiment demonstrates that tampering performed with a single
generative model does not provide sufficient generalization ability
for tampering detection methods. These experiments highlight the
imperative need to introduce the GRE dataset.

5.2 Rationality
The correlation and bias in a dataset used for training between tam-
pered regions and specific semantic concepts can severely impair
the generalization capabilities of detection methods [30]. Hence,
the richness of the semantics related to the tampered regions and
avoiding entity bias are critical. In the process of constructing the
GRE dataset, we employ ChatGPT as the creator of editing ideas,
enriching the edition semantic within the dataset and further avoid-
ing entity bias. To further demonstrate that there is no correlation
between tampered regions and specific semantic concepts in the
dataset, and to validate the rationality for using ChatGPT, we use
the TCAV (Testing with Concept Activation Vectors) [10], as uti-
lized in SAFL-Net, to analyze the correlation between tampered
category predictions and common semantic concepts in models
trained with GRE, as shown in Figure 7.

Unet trained on CASIA and DEFACTO respectively, exhibit
strong correlations between common semantic concepts and tam-
pering detection. However, models trained on the GRE dataset
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Table 6: Results of cross-editing method evaluation under
the pixel-level edited region localization task.

Training
Subset

Testing Subset (Pixel-level IoU / F1)

MAT LaMa SD-V2.0 ControlNet PaintEx

MAT 76.1/85.0 27.7/36.9 2.8/4.4 7.1/10.6 4.4/6.7
LaMa 26.0/35.9 76.8/84.9 1.9/3.0 3.0/4.8 1.5/2.5
SD-V2.0 15.2/21.4 11.2/16.2 57.9/67.1 42.5/50.5 53.2/62.1
ControlNet 15.2/22.3 5.6/8.7 21.8/28.2 70.1/78.2 63.9/72.9
PaintEx 13.9/19.7 6.0/9.0 33.4/41/1 62.1/70.2 76.3/84.1

significantly reduce this correlation. This indicates that while ensur-
ing the richness of editing semantics, the GRE dataset successfully
avoids entity bias and the correlation between tampered regions
and specific semantic concepts. The situation that exists in MVSS-
Net and SAFL-Net is the same but less pronounced because these
methods are designed from the outset to learn semantic-agnostic
features.

Additionally, a key objective in designing the entire editing
pipeline is to ensure the edited images are reasonable and real-
istic. We conducted a user study to analyze whether the regional
edited images are easily noticeable by humans. For the GRE datasets,
participants could only correctly identify around 35% of the edited
images, and they were confident with their wrong decisions that
commonly misclassified edited images as authentic ones. Detailed
procedures and results of the user study are provided in the Ap-
pendix, which thoroughly demonstrates the effectiveness of our
designed editing pipeline and the rationality of the GRE dataset.

5.3 Diversity
As the category of generative editing methods is not commonly
available as prior knowledge, the generalization ability across dif-
ferent generative editing methods becomes an important dimension
for evaluating detection models. The GRE dataset includes a variety
of generative editing methods featuring different architectures, re-
quiring different types of guidance, and serving different functions.
Initially, we conduct cross-editing method evaluation experiments
under the image manipulation detection task to illustrate the dis-
tinct features left by different editing methods, as shown in Table
6. In this task, the detection model is required to perform pixel-
level localization of edited regions, and Unet with EfficientNet-B4
is selected as the baseline model. Images edited using the same
generative editing method are defined as one subset.

Specifically, the baseline model exhibits acceptable performance
within the seen subset of editing methods it was trained on. How-
ever, its generalization ability significantly decreases when tested

Detection
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Character Animal Artwork Architecture Plant
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Figure 7: Analysis of the entity bias of edited content using
the TCAV.

Table 7: Results of cross-editing method evaluation under
the image-level edited image classification task.

Training
Subset

Testing Subset (Image-level Accuracy)

Authentic MAT LaMa SD-V2.0 ControlNet PaintEx

MAT 92.2 88.5 89.1 85.9 86.3 85.8
LaMa 91.9 89.9 90.0 87.7 88.1 87.4
SD-V2.0 90.7 91.1 91.3 88.5 88.1 88.3
ControlNet 86.9 93.6 94.0 92.4 91.4 91.5
PaintEx 92.4 86.1 85.3 83.4 83.9 82.6
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Figure 8: Visualization of model focus regions on Edited Im-
age Classification task using Grad-CAM.

on unseen subsets comprising unknown editing methods. A cru-
cial observation is that the generalization difficulty across methods
with different architectures (e.g., GAN-based and diffusion-based)
surpasses that between methods with the same architecture. This
effectively underscores the significance and value of including a
diverse range of generative editing methods in the GRE dataset.

We also conduct cross-editing method evaluation experiments
under the edited image classification task, which is an image-level
binary classification task determining whether an image is real or
edited. We choose ResNet-50 as the baseline model and evaluated
its performance across diverse editing subsets, as shown in Table 7.
Notably, the baseline model exhibits commendable generalization
performance when tested on unseen subsets, with no significant
difference observed among different editing methods. However,
further visualizations using Grad-CAM on correctly classified ex-
amples, as shown in Figure 8, reveal that the activation areas have
no relation to the actual edited regions. This highlights the impor-
tance of setting the task of edited region localization and the greater
challenges it presents.

6 CONCLUSION
In this paper, we construct a large-scale dataset and benchmark
called GRE, which focuses on the task of generative regional editing
detection. Unlike other existing datasets for regional editing (ma-
nipulation) detection, GRE is unique due to the diverse collection
of real-world images, the simulated editing pipeline, and a vari-
ety of generative editing approaches. We introduce a benchmark
composed of three crucial tasks, which provide a comprehensive
evaluation of regional editing detection methods within the context
of emerging scenarios. Furthermore, the in-depth analysis illus-
trates the necessity, rationality, and effectiveness of the GRE dataset.
We plan to continue enhancing GRE by incorporating new editing
methods and large models into our pipeline, to foster innovation
and progress in this evolving field.
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