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ABSTRACT

Diffusion models have become essential generative tools for tasks such as image
generation, video creation, and inpainting, but their high computational and mem-
ory demands pose challenges for efficient deployment. Contrary to the traditional
belief that full-precision computation ensures optimal image quality, we demon-
strate that a fine-grained mixed-precision strategy can surpass full-precision mod-
els in terms of image quality, diversity, and text-to-image alignment. However,
directly implementing such strategies can lead to increased complexity and re-
duced runtime performance due to the overheads of managing multiple precision
formats and casting operations. To address this, we introduce DM-Tune, which
replaces complex mixed-precision quantization with a unified low-precision for-
mat, supplemented by noise-tuning, to improve both image generation quality and
runtime efficiency. The proposed noise-tuning mechanism is a type of fine-tuning
that reconstructs the mixed-precision output by learning adjustable noise through
a parameterized nonlinear function consisting of Gaussian and linear components.
Key steps in our framework include identifying sensitive layers for quantization,
modeling quantization noise, and optimizing runtime with custom low-precision
GPU kernels that support efficient noise-tuning. Experimental results across var-
ious diffusion models and datasets demonstrate that DM-Tune not only signifi-
cantly improves runtime but also enhances diversity, quality, and text-to-image
alignment compared to FP32, FP8, and state-of-the-art mixed-precision methods.
Our approach is broadly applicable and lays a solid foundation for simplifying
complex mixed-precision strategies at minimal cost.

1 INTRODUCTION

Diffusion models serve as potent tools for tasks like image generation, video creation, and inpaint-
ing, yet they demand significant computational and memory resources Ramesh et al. (2021); Saharia
et al. (2022); Rombach et al. (2022b); Liu et al. (2024). For instance, generating a single image using
Stable Diffusion XL (SDXL) Podell et al. (2023), which has approximately 10 billion parameters,
requires over two minutes on an A100 GPU, highlighting the urgency for efficiency enhancements.
Recent AI hardware advancements, particularly GPUs, often rely on low-precision computation to
improve performance. For instance, Nvidia’s next-generation GPUs, like the Blackwell chips, sup-
port a variety of floating-point (FP) formats (from FP64, FP32, TF32, FP16, and BF16, down to
FP8, FP6, and FP4), yielding a vast search space for efficient execution of deep learning models.

Quantization is an effective approach to leverage the low-precision capability of the hardware, which
can reduce memory and computational costs. However, quantizing the whole model and activations
to a low-precision format (e.g., 8-bit) often leads to low-quality images in diffusion models. To
alleviate this problem, previous research has explored mixed-precision quantization with complex
strategies (i.e., intra-layer, timestep-aware) Li et al. (2023a); Shang et al. (2023); He et al. (2024b).
However, mixed-precision quantization for diffusion models in the current literature suffers from
two main problems. 1) Full-precision fallacy: The first is that there is traditional wisdom that full-
precision computation provides the highest accuracy. However, our research has revealed a proper
FP-based mixed-precision (FP-MP) quantization strategy can outperform full-precision image gen-
eration quality and diversity, provide more details, and better follow the input prompt. This is shown
in Fig. 1 (a), which compares the generated images in FP32 and FP-MP (mixture of BF16 and FP8)
for a Stable Diffusion model. This is because diffusion models (unlike other deep learning meth-
ods) deal with probabilistic distributions with random data and the introduced quantization noise is
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Figure 1: (a) Generated images in FP32, FP-based mixed-precision (mixed BF16 and FP8), and
integer-based mixed precision (Q-Diffusion) using a fixed seed. FP-MP offers greater detail and
better prompt alignment compared to FP32. For example, in the prompt ”a view of a multi-tiered
clock tower with a US flag on the top,” FP32 misplaces the flags, leaving them suspended in the sky,
whereas FP-MP correctly positions a flag at the top of the tower. In contrast, I-MP struggles with
image regeneration, particularly when generating human faces. (b) Comparing image quality and
speed of our approach with PTQ4DM, FP32, and FP8. (c) Overview of DM-Tune.

absorbed into the inherent noise of the diffusion process, potentially improving the metrics. Prior
art focused on integer-based mixed-precision quantization. However, we believe that the nonlinear
quantization noise from FP (rather than INT) plays a vital role in performance advantage. We com-
pare a prior art PTQ4DM Shang et al. (2023) that uses integer-based mixed-precision (I-MP) with
full-precision in Figure 1 (a). I-MP not only fails to improve image generation quality and prompt
alignment but also produces low-quality images. 2) Mixed-precision overhead: The second chal-
lenge is that mixed-precision quantization can be slower even compared to full-precision due to the
complicated quantization strategies and casting overheads. Additionally, low-precision resources
that are critical for achieving the peak throughput are not fully exploited.

To solve these problems, we propose DM-Tune, a framework that first identifies an efficient FP-MP
strategy that outperforms full-precision by progressively introducing controlled noise to the model.
Then, it replaces the FP-MP model with a unified low-precision model, coupled with a noise-tuning
head, to optimize both image generation quality and speed. Noise-tuning is a form of fine-tuning
that adds a guided noise head, learned through trainable parameters, to the model’s low-precision
output to recover the FP-MP output. Noise-tuning has low overhead, as only the added parameters
for the head are trained and applied once before inference.

To achieve this goal, three challenges need to be addressed. First, the search space for exploring the
optimal FP-MP strategy to outperform full-precision is vast. The second challenge is how the oper-
ator of noise-tuning needs to be expressed. Third, deploying the noise-tuning during the inference
slows down the diffusion model since the noise-tuning operator is memory-bound. To resolve the
first challenge, we first identify sensitive layers and then propose two novel techniques to enhance
the quality: prompt-aware and timestep-aware quantization. Second, we recognize that multiple
overlapping Gaussians are needed as nonlinear functions to recover FP-MP output. Finally, we pro-
vide a highly optimized GPU kernel that fuses matrix multiplication in low-precision with nonlinear
Gaussian terms. Our approach significantly reduces the runtime of diffusion models compared to
state-of-the-art (SOTA) methods, while also enhancing image quality compared to both SOTA and
full-precision models (Figure 1 (b)). Figure 1 (c) shows the overview of this work. This paper makes
the following contributions:

• We show that a novel mixed-precision strategy can outperform full-precision image gener-
ation quality and diversity for different types of diffusion models.

• We propose a new technique called noise-tuning, which enables running the model in low-
precision at high speed while achieving mixed-precision quality in a data-free manner.

• We develop highly optimized GPU kernels that fuse matrix multiplication in low-precision
with nonlinear functions.

• Experimental results show that our approach improves the runtime of prior art by 5.2×
while improving image generation quality and diversity.
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2 BACKGROUND

Diffusion Models: Diffusion models generate images using a Markov chain process. Initially, a
forward diffusion process adds Gaussian noise to the data x0 ∼ q(x) over T steps, resulting in
progressively noisier samples x1, . . . ,xT :

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

Here, βt ∈ (0, 1) is a variance schedule that determines the intensity of Gaussian noise at each step.
As T → ∞, xT converges to an isotropic Gaussian distribution.

The backward process removes noise from a sample drawn from the Gaussian noise input
xT ∼ N (0, I) to generate high-fidelity images. Since the actual reverse conditional distribution
q(xt−1|xt) is unknown, diffusion models sample from a learned conditional distribution:

pθ(xt−1|xt) = N (xt−1; µ̃θ(xt),Σθ(xt, t)) (2)

µ̃θ(xt) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
(3)

where αt = 1− βt and ᾱt =
∏t

i=1 αi. The variance Σθ(xt, t) can either be reparameterized or set
to a constant schedule σt. When using a constant schedule, xt−1 is given by:

xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz (4)

where ϵθ(xt, t) is the noise estimation model output at timestep t. The U-Net architecture Ron-
neberger et al. (2015) is predominantly used in designing the noise estimation model. For further
details, we refer readers to Ho et al. (2020). This work focuses on quantization of the U-Net during
the inference (backward process).

Evaluation of Diffusion Models: The evaluation of diffusion models is different from other deep
learning models. First, the evaluation can be unfair and biased. Second, only one metric (i.e.,
accuracy in image classification) is not sufficient to evaluate the model as the distribution of gener-
ated images can suffer from different phenomena. These phenomena include memorization, mode
collapse, mode shrinkage, mode invention, and density shift Alaa et al. (2022). To address these
challenges, we adopt a similar approach to Stein et al. (2023) by using DINOv2-ViT model as the
feature extractor instead of the traditional Inception-V3. Also, we evaluate the models compre-
hensively with different metrics. We use Fréchet Inception Distance (FID), Kernel Distance (KD),
and Sliced-Wasserstein Distance (SW) to evaluate overall image generation performance Stein et al.
(2023). Additionally, we assess CLIP (for prompt alignment), precision and density (for image
quality), recall and coverage (for diversity), and authenticity (to ensure the model does not replicate
images from the training data) metrics Naeem et al. (2020). For FID, KD, and SW, the lower is
better but for other metrics, the higher is better.

3 MOTIVATION

We summarize the key motivations of this work.

1) Mixed-precision outperforms full-precision: Contrary to the traditional wisdom that assumes
full-precision calculation provides the highest image generation quality, FP-MP has the potential to
outperform its full-precision counterpart in diffusion models. This is due to two main reasons. First,
the diffusion model is a stochastic process (i.e., the seed for the initial state), meaning that certain
seeds may yield better image generation results. Second, the quantization noise is absorbed into the
noise introduced by the scheduler, which can alter the diffusion trajectory in a beneficial direction.
To understand this, we have the following equation if we rewrite the Eq. 4 for the quantized model:

x′
t−1 =

1
√
αt

(
x′
t −

βt√
1− ᾱt

(ϵθ(x
′
t, t) + ∆ϵθ(x

′
t, t))

)
+ σtz

=
1

√
αt

(
x′
t −

βt√
1− ᾱt

ϵθ(x
′
t, t)

)
− βt√

αt(1− ᾱt)
∆ϵθ(x

′
t, t) + σtz

(5)
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Figure 2: Evaluating three diffusion models for different data formats.

where x′
t and ∆ϵθ(x

′
t, t) are the quantized input and U-Net output quantization error at timestep

t, respectively. We assume that the benefit of mixed-precision quantization is unique to floating-
point formats (FP-MP), as we observe that I-MP does not offer significant improvements in image
generation. This is because integer quantization has a limited dynamic range and the quantized
numbers are clipped to the maximum/minimum. Therefore, a complex mixed-precision strategy is
required to maintain high-quality image generation with integer-based quantization.

2) Mixed-precision slows down: The mixed-precision designs (both I-MP and FP-MP) suffer from
poor speed due to the overhead of complicated quantization strategies (it can be even slower than
full-precision). Recent AI hardware advancements, particularly GPUs, often rely on lower precision
computation to enhance performance. To optimize speed, we found that using unified low-precision
for the entire U-Net while adding a nonlinear function with a negligible number of parameters
(compared to the total parameters) is enough to recover FP-MP output. Our proposed FP-MP will
be introduced at the end of Sec. 4.1.

4 DM-TUNE

In this section, we describe the components of DM-Tune framework. These are: mixed-precision
search, noise modeling, data generation, noise-tuning, and runtime optimization. Our methodology
provides a generalized and scalable solution that can be adapted to different models, datasets, and
quantization techniques.

4.1 MIXED-PRECISION SEARCH

In this step, we first select two precisions out of all supported data formats in GPUs. Subsequently,
we provide our FP-MP quantization methodology to outperform full-precision.

1) Precision Selection: In recent years, GPU vendors have introduced support for a variety of data
formats. The supported floating-point formats include FP32, TF32, BF16, FP16, FP8 (E4M3), FP8
(E5M2), FP6, and FP4. This creates a large search space. Although the last two formats are not
the focus of this work, our approach is applicable to them as well. To simplify precision selection,
we limit the options to two precision levels: low and high. To determine these levels, we conduct
experiments on three different diffusion models, where we quantize all linear layers to a specific
data format in each case (see Fig. 2). Experimental settings are discussed in Sec. 5.1. We find
that 32-bit and 16-bit quantization offer comparable performance, leading us to prefer 16-bit for
its significant speedup. Between BF16 and FP16, BF16 performs better in most cases, making it
our choice for high-precision. For low-precision, we select FP8 (E4M3) over FP8 (E5M2) due to
better performance across more scenarios. Our key insight is that reducing exponent bits beyond
a certain threshold severely degrades image generation quality due to large errors from overflow,
which propagate through diffusion model timesteps. In contrast, reducing mantissa bits does not
cause significant errors and can even enhance image diversity. However, for 8-bit formats, a 2-bit
mantissa is insufficient to maintain precision.

2) Search Space Reduction: The challenge of mixed-precision (FP-MP) search stems from the vast-
ness of the search space: even with just two formats (BF16 and FP8), T timesteps, and L layers, the
search space expands to an overwhelming 2(T×L) possibilities. Given the impracticality of a brute-
force approach, we further reduce the search space by categorizing the layers into two distinct sets:
sensitive and insensitive. Sensitive layers are those for which quantization significantly degrades
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Figure 3: Selecting cut-off point between high and low precision for different models: X-axis is the
number of layers quantized to high-precision (the rest of the layers are quantized to low-precision)
and Y-axis is FID (lower is better).

model quality, necessitating their preservation in high precision. Conversely, insensitive layers can
be safely quantized to a low precision without severely impacting the model’s performance.

3) Sensitivity Criteria: To determine which layers fall into the sensitive category, we apply two
criteria. (1) Range: layers exhibiting a large range are prone to substantial errors when quantized,
as values may be clipped to a maximum threshold. (2) Standard Deviation (STD) of distribution:
Layers with a high STD are susceptible to large quantization errors due to the limited resolution of
low-precision formats. Using these criteria, we sort the layers by their sensitivity. This sorted list
provides a prioritized guide for quantization. Algorithm 1 outlines our methodology for identifying
the sensitive layers in diffusion models.

Algorithm 1 DM-Tune Algorithm for Identifying Sensitive Layers
1: Input: Calibration dataset, MAX FLT (maximum allowable value). Output: sensitive list
2: sensitive list← [], Shuffle the calibration dataset.
3: for each batch of samples in the calibration dataset do
4: Randomly select a seed.
5: Calculate the running average of overflow ratios for activation layers, storing in overflow layers.
6: Calculate the running average of std for activation layers, storing in std layers.
7: end for
8: Sort overflow layers by ratio, std layers by std. i← 0
9: while overflow layers[i].ratio ̸= 0 do

10: Push overflow layers[i].layer to sensitive list, i← i + 1
11: end while
12: for i = 0 to size(std layers) - 1 do
13: if std layers[i].layer is not in sensitive list then
14: Push std layers[i].layer to sensitive list.
15: end if
16: end for
17: return sensitive list

4) Selecting Cutoff Point: Once the layers are sorted by sensitivity, the next step is to determine
an appropriate cutoff point between high and low precision. However, evaluating each potential
cutoff point by running the model and measuring quality would be prohibitively time-consuming.
To address this, we employ a binary search technique to efficiently converge on a cutoff point where
the model’s quality is close to that of full-precision. We begin by selecting the midpoint of the
sorted sensitivity list and evaluating the model’s performance. If the quality falls below a specified
threshold, we proceed to the midpoint of the upper half of the list. Otherwise, we move to the
midpoint of the lower half, progressively narrowing the range. This process is repeated until the
range is reduced to a single layer. Figure 3 depicts the cut-off point determined using this approach
for three different models. Each model has distinct requirements regarding the number of sensitive
layers. For instance, while DiT requires only a few high-precision layers to maintain quality, DDIM
needs most layers in high-precision. Although this approach helps us achieve near-full-precision
quality, it alone may not be sufficient to surpass it.

5) Surpassing Full-Precision: To outperform full-precision, we introduce two additional tech-
niques: (1) Prompt-aware quantization: conditional diffusion models often employ classifier-free
guidance Ho & Salimans (2022), which requires the model to process two inputs: one with the
given prompt and another with a null prompt. In this technique, we propose to quantize only the
path associated with the input prompt to low-precision, while maintaining the null prompt path in
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Figure 4: (a) U-Net output quantization noise at timestep=12 for Stable Diffusion model using MS-
COCO dataset: it is modeled with a correlated (linear) and an uncorrelated (nonlinear) component.
(b) Distribution of the uncorrelated component for different ranges of U-Net output.

high-precision. This selective quantization introduces controlled noise into the image generation
process, which can enhance the overall quality of the output. (2) Timestep-aware quantization: this
approach focuses on the quantization of insensitive layers during the early timesteps (the first 80% in
this work) of the diffusion process to low-precision, while preserving them in high-precision for the
final timesteps. This strategy allows the model to recover from any quantization-induced noise in-
troduced in the early steps, ensuring sharper and more accurate images. Failure to preserve precision
during the final timesteps has been shown to result in blurriness.

By following the five steps outlined in this section, we achieve our proposed FP-MP design, which
not only approaches the quality of full-precision but also exceeds it. To summarize, only the portion
of the activation tensors that receives the prompt during early timesteps for insensitive layers (as
determined by Algorithm 1 and our cutoff point) are quantized to FP8 (E4M3), while the rest remain
in BF16. For the weights, all sensitive (insensitive) layers are quantized to BF16 (FP8).

4.2 NOISE MODELING

The goal of noise-tuning is to reconstruct FP-MP using only unified low-precision (FP8 in this work)
with adjustable noise. To efficiently derive such noise and minimize the number of added parame-
ters, we aim to establish a relationship between the U-Net low-precision output and the quantization
error due to transitioning from FP-MP to unified low-precision. Previous work He et al. (2024b)
demonstrated that the error is linearly correlated with the U-Net output for INT8 quantization. We
conduct an experiment to profile the FP quantization error. Figure 4 (a) shows this relationship for
a specific timestep of the Stable Diffusion model using MS-COCO calibration dataset. We observe
that there is a nonlinear relationship between U-Net output in unified low-precision and quantization
error, which differs from integer quantization. As shown, the error can be modeled with a correlated
(linear) and an uncorrelated component (distance from the fitted line). Figure 4 (b) displays the dis-
tribution of the uncorrelated component across different ranges of U-Net output. We find that three
overlapping Gasussians are needed to effectively model this uncorrelated part. Thus, we parame-
terize each Gaussian with trainable tensors that represent the mean, variance, and scaling of each
distribution. We formulate the quantization noise as:

xt−1,MP =
1

√
αt

(
xt,MP − βt√

1− ᾱt
(ϵθ,LP (xt,MP , t) + ∆ϵθ(xt,MP , t))

)
+ σtz (6)

∆ϵθ(xt,MP , t) = Pt,0 · ϵθ,LP (xt,MP , t) +
∑2

i=0 Pt,1+3·i · exp
(
−0.5

(
Pt,2+3·i−ϵθ,LP (xt,MP ,t)

Pt,3+3·i

)2
)

(7)

where xt,MP , z, ϵθ,LP , ∆ϵθ represent data sample at timestep t with FP-MP, a sample from distri-
bution N (0, I), U-Net output in low-precision, and quantization error (low-precision and FP-MP
U-Net output difference). αt, βt, and σt are hyperparamters. Pt,j ∈ RC×H×W (j ∈ {0, 1, . . . , 9})
is jth trainable parameter at timestep t. It has the same dimension as xt with C, H, and W
representing the number of channels, height, and width of the latent.
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4.3 DATA GENERATION

In this stage, we generate the necessary training data for the subsequent noise-tuning step. First, we
curate the input prompts: for conditional models, we randomly sample prompts from the evaluation
dataset, while for unconditional models, input prompts are not required. For conditional models,
since the FP-MP design (Sec. 4.1) outperforms full-precision, we use the FP-MP U-Net output as
the ground truth for training. In contrast, for unconditional models, we use the U-Net output in
full-precision as the ground truth. This is because, without prompts, it is not possible to leverage
prompt-aware quantization, leading to FP-MP performance being inferior to full-precision. We run
the model using FP-MP (for conditional models) or full-precision (for unconditional models) and
record the U-Net outputs at each time step. This procedure is essential for ensuring that the generated
data provides an accurate and effective ground truth for the next phase of training.

4.4 NOISE-TUNING

The noise-tuning phase is a crucial component in our framework, where we aim to automate the
fine-tuning of noise-adjusting parameters introduced in the U-Net head. Unlike traditional manual
methods of fitting lines or curves to model behavior, our approach leverages the power of data-driven
learning, guided by the ground truth data generated in Sec. 4.3. We only train the newly added
parameters responsible for noise tuning, while keeping the rest of the model frozen. It minimizes
the risk of overfitting and reduces the computational burden, as only a small subset of parameters
is optimized. Training is conducted over a predefined number of epochs, with convergence criteria
established to halt training if improvements plateau.

4.5 RUNTIME OPTIMIZATION

Since the nonlinear function introduced in noise-tuning is memory-bound, it hinders the overall
speed of DM-Tune. With the recent quantization of the smaller number of bits, these memory-
bound kernels become more pronounced. Thus, we develop an optimized GPU kernel to fuse the
low-precision matrix multiplication with Gaussian terms. We implement matrix multiplication in
FP8 using CUTLASS1, leveraging high-throughput tensor cores. The computations in the noise-
tuning head involve performing matrix multiplication, casting the output to full-precision, adding
it to the Gaussian terms, and then casting it back to FP8. Intrinsic functions are employed for
casting and calculating the exponential. We apply three optimizations to further improve the per-
formance: using lookup tables (LUTs) to replace the whole complex function of noise-tuning (O1),
data prefetching (O2), and utilizing vector instructions (O3). We describe each optimization in more
detail. O1: We completely replace the Eq. 7 with LUTs implemented as shared memory. Based on
the profiling results (i.e., Fig. 4 (a)), we set a range for the values of ϵθ,LP (xt,MP , t) and allocate
32 KB shared memory. We first calculate the LUT index based on the value of ϵθ,LP (xt,MP , t) and
retrieve from LUT if the index is within the acceptable range of addresses. We find that the approx-
imation error due to using LUT is negligible. O2: We overlap the time for calculating exponential
functions with loading data from global memory. We use rolling prefetch; prefetching one element
and calculating exponentials for another element. O3: We use vector instructions which improve
instruction-level parallelism (ILP), throughput, and memory coalescing. We found that grouping
eight consecutive elements in FP8 leads to the highest throughput. Once combined with O2, we
prefetch eight elements at once and calculate the exponentials for the other eight elements.

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENTAL SETUP

Models and datasets: We use three different types of diffusion models: Stable Diffusion v1.5 Rom-
bach et al. (2022a) (text-conditioned), Diffusion Transformer (DiT) Peebles & Xie (2023) as a class-
conditioned model, and DDIM Song et al. (2021) that is an unconditional model. The datasets are
MS COCO Lin et al. (2015), ImageNet Deng et al. (2009), and CelebA-HQ (loaded from Hugging
Face2), respectively. The resolution of the images in the first model is 512×512 and it is 256×256 for
the other two models. All experimental configurations (e.g., variance schedule, guidance scale, and
scheduler) follow the official implementation. The number of time steps is 50. We also use LDM
Rombach et al. (2022a), and IDDPM Nichol & Dhariwal (2021) for comparing against related work.

1https://github.com/NVIDIA/cutlass
2https://huggingface.co/google/ddpm-celebahq-256
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Figure 5: Comparison of FID between our sensitivity-based quantization strategy and random preci-
sion selection, gradually shifting from entirely low-precision to entirely high-precision in the layers.

Quantization baselines: We compare the performance of our approach against these state-of-the-
art: Q-Diffusion Li et al. (2023a), PTQ4DM Shang et al. (2023), and PTQD He et al. (2024b).

Implementation: We implement DM-Tune using PyTorch. To develop a model-agnostic quanti-
zation method, we employ hook functions, registering them conditionally only to specific layers,
timesteps, and portions of tensors targeted for quantization. During forward pass, activation tensors
are modified by performing quantization followed by de-quantization. During the backward pass,
straight-through estimation (STE) Yin et al. (2019) is performed. Batch normalizations and activa-
tion functions are kept in high-precision. We quantize both activations and weights to the desired
format. For runtime evaluation, we developed highly optimized low-precision kernels with support
for noise-tuning, building on the original CUTLASS repository. For noise-tuning and evaluating the
quality of image generation, we run the models on an A100 GPU (40 GB memory) as it provides
enough memory. For assessing runtime, we run the models on an L4 GPU (24 GB memory) because
it supports FP8 precision. We evaluate the diffusion models based on DGM-Eval Stein et al. (2023).
We keep the seed fixed when comparing different quantization methods. For noise-tuning, Adam
optimizer is used with a learning rate of 1e-3 with 4K samples for training and 1K samples for eval-
uation. The batch sizes for evaluating diffusion models are 8 for Stable Diffusion, 64 for DiT, and
32 for DDIM. However, for noise-tuning, we halved them to prevent out-of-memory (OoM) errors.

5.2 MIXED-PRECISION SENSITIVITY

We first demonstrate the effectiveness of our mixed-precision sensitivity analysis before applying
prompt-aware and timestep-aware quantization techniques. We evaluate the sensitivity criteria by
comparing it to a random method, where we randomly decide which layers should be in high-
precision and which in low-precision based on a predetermined split. Figure 5 compares the FID
between our sensitivity-based approach and random strategy for three models. For DiT, our approach
quickly identifies sensitive layers, resulting in a larger gap between our method and the random
approach. The gap is smaller for DDIM. For Stable Diffusion, however, the choice of layers for
low- and high-precision quantization has minimal impact on final accuracy.

5.3 TRAINING
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Figure 6: Comparison of FID scores
across epochs for two noise-tuning
methods with one and three Gaussian
terms for Stable Diffusion model using
MS COCO evaluation dataset.

We evaluate noise-tuning performance over training
epochs and compare it with the best mixed-precision de-
sign (FP-MP ground truth), FP8, and FP32, to assess its
convergence. Additionally, to emphasize the superior ex-
pressivity of our noise-tuning approach, we compare it
to a version of noise-tuning that uses only one Gaus-
sian term instead of three. Figure 6 shows the train-
ing performance (FID metric) across epochs for differ-
ent approaches using the MS COCO evaluation dataset in
the Stable Diffusion model. ”NT 1 Gaussian” and ”NT
3 Gaussian” are noise-tuning with one and three Guas-
sian term(s), respectively. The training setup is discussed
in Sec. 5.1. As shown, noise-tuning with three Gaus-
sians converges much faster than with one Gaussian due
to its greater expressivity. Moreover, noise-tuning can
even outperform the FP-MP ground truth. The results
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Table 1: Comparing DM-Tune performance with different formats for Stable Diffusion, DiT, and
DDIM models. NT is noise-tuning.

Model/Dataset Method FID ↓ Precision ↑ Recall ↑ Authenticity ↑ CLIP ↑ Density ↑ Coverage ↑ KD ↓ SW-approx ↓

Stable Diffusion
(MS COCO 512×512)

FP32 (Baseline) 760.9 0.92 0.87 62.79 31.44 0.91 0.86 0.077 0.15
FP8 776.44 0.92 0.86 67.18 31.56 0.91 0.88 0.091 0.16

INT8 3993.55 0.0 0.0 100.0 19.16 0.0 0.0 27.62 1.73
Q-Diffusion (W8A8) 757.51 0.92 0.87 63.14 31.40 0.88 0.86 0.077 0.15
Q-Diffusion (W4A8) 768.90 0.92 0.83 63.57 31.27 0.92 0.87 0.085 0.16

Ours (w/o NT) 741.51 0.94 0.86 60.94 31.58 0.95 0.89 0.070 0.14
Ours (w/ NT) 737.89 0.91 0.89 64.31 31.32 0.94 0.92 0.075 0.14

DiT
(ImageNet 256×256)

FP32 (Baseline) 721.58 0.99 0.97 30.78 30.10 0.89 0.98 0.045 0.14
FP8 1626.56 0.98 0.31 70.41 24.31 0.75 0.91 1.88 0.63

INT8 4300.40 0.0 0.0 100.0 19.16 0.0 0.0 32.1 1.91
Ours (w/o NT) 704.74 0.99 0.97 33.77 29.91 0.94 0.99 0.045 0.13
Ours (w/ NT) 701.23 0.98 0.97 32.94 30.87 0.99 0.96 0.041 0.12

DDIM
(CelebAHQ 256×256)

FP32 (Baseline) 659.35 0.85 0.39 89.55 N/A 0.71 0.55 2.16 0.48
FP8 1971.28 0.28 0.02 98.24 N/A 0.08 0.05 8.16 1.02

INT8 4379.36 0.0 0.0 100.0 N/A 0.0 0.0 40.0 2.07
Ours (w/o NT) 750.16 0.80 0.29 91.02 N/A 0.54 0.45 2.41 0.51
Ours (w/ NT) 653.98 0.82 0.44 90.14 N/A 0.66 0.58 2.18 0.45

Table 2: Comparing DM-Tune performance with state-of-the-art. NT is noise-tuning.

Model/Dataset Method FID ↓ Precision ↑ Recall ↑ Density ↑ Coverage ↑ KD ↓ SW-approx ↓

IDDPM
(ImageNet 64×64)

FP32 (Baseline) 282.02 0.80 0.84 0.77 0.81 0.15 0.20
FP8 519.50 0.73 0.56 0.68 0.48 0.66 0.36

INT8 4186.98 0.0 0.0 0.0 0.0 31.23 1.84
PTQ4DM 376.09 0.78 0.80 0.78 0.72 0.29 0.27

Ours (w/o NT) 256.17 0.82 0.87 0.74 0.84 0.14 0.16

LDM
(ImageNet 64×64)

FP32 (Baseline) 265.83 0.98 0.42 0.98 0.89 0.059 0.12
FP8 346.77 0.95 0.41 0.99 0.87 0.28 0.26

INT8 3519.99 0.45 0.0 0.11 0.0 19.35 1.52
PTQD 226.51 0.98 0.53 0.97 0.91 0.041 0.10

Ours (w/o NT) 232.79 0.96 0.51 0.98 0.93 0.048 0.09

suggest that the FP-MP performance can be achieved in just 5 to 10 epochs with noise-tuning,
highlighting the efficiency and low training cost of our approach.

5.4 IMAGE GENERATION PERFORMANCE

In this subsection, we comprehensively assess the performance of DM-Tune and compare it with
other quantization methods. Table 1 shows this performance comparison for three diffusion models
using 1K samples based on DGM-Eval evaluation. For both Stable Diffusion and DiT models, our
approach without noise-tuning (NT) outperforms full-precision, and noise-tuning typically further
enhances performance. However, for DDIM, which is an unconditional model, DM-Tune without
noise-tuning does not surpass the FP32 baseline. With noise-tuning, though, it provides a perfor-
mance boost for certain evaluation metrics. We presume that this performance advantage arises
because we initially introduce some noise through mixed-precision (prior to noise-tuning), and by
subsequently adding nonlinear parameters and fine-tuning the model, we achieve improved results.
Overall, DM-Tune outperforms full-precision in terms of general quality, diversity, prompt align-
ment, and originality. Comparing conditional and unconditional diffusion models, our approach
shows greater effectiveness for conditional models, where we progressively apply controlled noise
to the prompt. In contrast, the improvement for unconditional models is comparatively marginal. In
addition, our approach provides better performance compared to Q-Diffusion for most cases. This
is partly due to the fact that it is an integer-based quantization method with a limited dynamic range,
and it does not employ techniques to surpass full-precision image quality. As shown in Figure 1 (a),
I-MP struggles to generate high-fidelity images, particularly when it comes to human faces.

Since we use DINOv2-ViT model as the feature extractor to avoid unfairness and bias in the evalu-
ation, our FID results are larger than those published in related work. Thus, we also regenerate the
related work performance with our evaluation approach using the same feature extractor. However,
since related work only support specific models and datasets due to their calibration method, we
separately compare DM-Tune with them for the datasets they support. Table 2 shows this compari-
son using 5K samples based on DGM-Eval evaluation. As shown, DM-Tune outperforms prior arts
for most of the scenarios. Among SOTA, only PTQD provides better performance compared to our
approach for some metrics.

9
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5.5 RUNTIME

Table 3: Comparison of noise-tuning optimization
techniques for matrix multiplication (1k×1k ma-
trices). Normalized runtime is shown.

FP8 NT (8 bit)
w/o opt

NT (8 bit)
O1

NT (8 bit)
O1 + O2

NT (8 bit)
O1 + O2 + O3

1.00X 1.12X 1.04X 1.02X 1.01X

We now assess the runtime of the proposed
noise-tuning. First, we focus on the runtime of
a single matrix-multiplication kernel with NT
head. Table 3 presents the performance com-
parison of various optimizations applied to a
matrix multiplication kernel fused with noise-
tuning (with three Gaussian terms) where the dimensions of all input and output matrices are 1k×1k.
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Figure 7: Normalized model per-
formance comparison of noise-tuning
against state-of-the-art methods.

We run each kernel 10 times and then report the aver-
age runtime compared to FP8 (with no noise-tuning). By
enabling all of the optimizations, the runtime becomes
similar to that of FP8 with no noise-tuning, which demon-
strates the effectiveness of our optimizations in mitigating
the performance loss associated with noise-tuning.

Next, we compare the model performance of our opti-
mized noise-tuning with FP32, FP8, and the state-of-the-
art as shown in Figure 7. The average per-sample run-
time is measured and normalized to that of FP32. The
proposed fully optimized noise-tuning introduces mini-
mal overhead compared to FP8, while boosting performance by an average of 5.2× compared to
prior arts in diffusion model quantization.

6 RELATED WORK

Diffusion Model Quantization: Q-Diffusion Li et al. (2023a) proposes a post-training quantization
(PTQ) strategy for integer format (8/4 bits) with a time step-aware calibration data sampling mech-
anism from the pretrained diffusion model. Similarly, PTQ4DM Shang et al. (2023) also employs
8-bit integer quantization for diffusion models, but its focus is limited to smaller models like DDPM
and DDIM. To the best of our knowledge, no prior work has shown quantization to be beneficial for
the image generation process in diffusion models.

Fine-Tuning: QuEST Wang et al. (2024) proposes a fine-tuning framework for low-bit diffusion
model quantization to enhance model robustness against large activation perturbations under the
supervision of the full-precision. The authors in Li et al. (2023b) develop a timestep-aware smooth-
ing process to avoid oscillations in the activation distribution that can work for both inference and
training. Again only small-scale models are considered. The disadvantage is that it is more resource-
intensive than training a full-precision model. Efficient-DM He et al. (2024a) further uses low-rank
adapters (LoRA) Hu et al. (2021) to reduce training costs. However, it introduces extra weight
parameters and still requires substantial training iterations.

Noise Modeling: The authors in He et al. (2024b) propose a mixed-precision quantization method
based on integer format that models the quantization noise and utilizes correction methods to recon-
struct the full-precision output. However, they assume that the full-precision provides the highest
performance as opposed to our approach which proposes to use mixed-precision as ground truth.
Also, their approach is based on statistics and manual profiling which limits their applicability to
certain data formats and models.

7 CONCLUSION

In this work, we proposed DM-Tune, a novel framework that combines unified low-precision quan-
tization with noise-tuning to enhance the efficiency of diffusion models while improving image
quality. Our approach overcomes the limitations of traditional mixed-precision quantization by
effectively utilizing the inherent noise in diffusion models to improve image generation metrics.
Through extensive experiments on multiple diffusion models, we demonstrated that DM-Tune not
only matches but can outperform full-precision models in terms of image quality, diversity, and text-
to-image alignment, while significantly reducing inference time. The optimized GPU kernels further
accelerate deployment of diffusion models. Future work will explore extending DM-Tune to even
lower-precision formats such as FP4/6 and quantizing additional components of diffusion models,
such as the encoder-decoder structures, to further enhance runtime.
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