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Input Prompt:… woman 
who has…

Prompt: …a old
woman who …

Input No Prompt Prompt: … who 
has big eyes…

Input Prompt: …a young
woman who has…

Prompt: … who 
has eyeglasses…

(a) Reference-based Face Restoration Results

(b) Controlling Restoration with Face Attribute Prompts

Figure 1: The proposed MGFR model demonstrates an exceptional ability in restoring low-quality face images,
yielding more outstanding visual effects with the addition of reference images, particularly in situations of
extreme degradation, shown in (a). Furthermore, the model is capable of target-specific restoration in (b),
directed by facial attribute prompts. This encompasses defining facial age characteristics (Case 1), adjusting the
restoration process based on attribute prompts (Case 2), and executing precise modifications to facial elements
(Case 3). w/o Reference Image means the results of our model without introducing reference image.

ABSTRACT

We introduce a novel Multi-modal Guided Real-World Face Restoration (MGFR)
technique designed to improve the quality of facial image restoration from low-
quality inputs. Leveraging a blend of attribute text prompts, high-quality reference
images, and identity information, MGFR can mitigate the generation of false facial
attributes and identities often associated with generative face restoration methods.
By incorporating a dual-control adapter and a two-stage training strategy, our
method effectively utilizes multi-modal prior information for targeted restoration
tasks. We also present the Reface-HQ dataset, comprising over 23,000 high-
resolution facial images across 5,000 identities, to address the need for reference
face training images. Our approach achieves superior visual quality in restoring
facial details under severe degradation and allows for controlled restoration pro-
cesses, enhancing the accuracy of identity preservation and attribute correction.
Including negative quality samples and attribute prompts in the training further
refines the model’s ability to generate detailed and perceptually accurate images.
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(a) LQ No Prompt ‘woman, young,
no beard...’

GT (b) LQ w/o Reference w/ Reference GT

Figure 2: Motivation. In conditions of severe degradation, the loss of facial identity information becomes
profoundly pronounced without reference image. During the face restoration process, distortions of facial
attributes, including gender and age, are commonly encountered. Appropriate attribute prompts can offer
additional reference points and exert control in the recovery process.

1 INTRODUCTION

Real-World Face Restoration (FR) aims to reconstruct high-resolution, high-quality (HQ) facial
images from their degraded, low-resolution observations. Recent works, leveraging powerful gen-
erative priors and diffusion models, have achieved significant progress Menon et al. (2020); Yang
et al. (2021b); Wang et al. (2021b); Lin et al. (2023); Wang et al. (2023b), particularly in addressing
severely degraded facial images. However, the information contained in the low-quality (LQ) inputs
is limited. FR inevitably introduces the illusion of generation, producing results with different facial
attributes or even different identities from the target image. For example, in Figure 1 (a) and Figure 2,
we cannot effectively predict the eye colour and skin characteristics of the person in the LQ input,
resulting in the output results – even the quality can be improved – having an apparent perceptual
distance from the target image. Many applications find this unacceptable, as humans can readily
identify these flaws. Achieving optimal facial image recovery requires effectively tackling false
hallucinations.

Practically, we find that for the restoration of specific face images, we can obtain a lot of prior
information. For example, we may know this person’s various attributes and identity, and there may
even be other clear images of this person in the photo album. Suppose we can use this information
as additional guidance to guide the restoration. In that case, we can alleviate the impact of false
illusions on key issues, thus helping to generate facial details that better suit our needs. For example,
in Figure 2 (a), when we provide an additional key description of gender and age, we can correct the
illusion. In Figure 1 (a) and Figure 2 (b), additional high-quality images are used as reference, and the
details of the eyes and skin texture can be accurately generated. What is even more gratifying is that
this kind of prior information can be widely obtained, making this problem of application significant.

This work proposes a method called Multi-modal Guided Real-World Face Restoration (MGFR).
We aim to use multiple control methods to consider diverse multi-modal prior information in FR
to restore face images in a targeted manner. Specifically, MGFR uses attribute text prompts, HQ
reference images, and identity information as priors for collaborative guidance during restoration. We
design a dual-control adapter with a two-stage training strategy to balance the complex multi-modal
and multi-source prior information. This dual controller is compatible with pre-trained generative
diffusion models Rombach et al. (2022) and prioritises restoration tasks while incorporating additional
multi-modal guidance. In addition, we collect the Reface-HQ dataset to address the scarcity of
reference image samples containing over 5000 identities and 23000 high-resolution facial images.
Based on the FFHQ Karras et al. (2019a) and the proposed Reface-HQ datasets, we develop a high-
quality synthetic dataset for model training enriched with attribute text prompts. Furthermore, we
adopt a counter-intuitive strategy to integrate negative-quality samples with negative-quality prompts
and negative-attribute prompts into training to enhance perceptual quality and detail generation.

The proposed MGFR model shows exemplary performance in the FR task, achieving superior visual
quality in facial details, especially under severe degradation conditions. MGFR can take a high-
resolution reference image as prior information and restore important details based on the reference
image that cannot be displayed in the LQ input. The identity information provided by the reference
image will also be considered in FR to ensure that the restoration does not change the identity
characteristics. In addition, MGFR can also provide a certain degree of control over the restoration
process through attribute text prompts, significantly enhancing the feasibility of FR. As shown in
Figure 1 (b), textual prompts fulfil a dual function: they significantly reduce facial attribute illusions,
such as “big eyes” or “old”, and also guide the restoration of specific facial features, such as “wearing
glasses” and “young”.
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2 RELATED WORKS

Real-World Face Image Restoration Real-World face restoration (FR) concentrates on the chal-
lenging task of reconstructing HQ face images from LQ inputs. These LQ inputs are often blemished
by various forms of quality degradation such as low-resolution Chen et al. (2018); Dong et al. (2014);
Lim et al. (2017), blur Kupyn et al. (2018); Shen et al. (2018), noise Zhang et al. (2017), and JPEG
compression artifacts Dong et al. (2015), etc. FR heavily relies on facial priors, such as facial
landmarks Chen et al. (2018), parsing maps Chen et al. (2018; 2021), and facial component heatmaps
Yu et al. (2018). Generative priors Karras et al. (2020); Rombach et al. (2022); Gu et al. (2020); Shen
et al. (2020) have also emerged as fundamental elements in providing vibrant textures and details
in FR Menon et al. (2020); Hu et al. (2023); Zhu et al. (2022). Advanced techniques like GPEN
Yang et al. (2021a), GFP-GAN Wang et al. (2021a), and GLEAN Chan et al. (2021) are recognized
for more effectively incorporating these priors within encoder-decoder structures. There are also
works that considerably reduce the uncertainty commonly associated with generative priors Gu et al.
(2022); Zhou et al. (2022); Wang et al. (2022), which are trained on discrete feature codebooks for
high-quality facial images. Recently, diffusion models like DiffBIR Lin et al. (2023) have revitalized
interest in this area, leveraging the generative power of pre-trained LDM as a prior. DR2 Wang et al.
(2023b) also makes contributions by transforming input images into noisy states and then iteratively
denoising them to capture the essential semantic information.

Reference-Based Face Image Restoration Reference-based face restoration utilizes HQ images
of the same identity as references. This concept was first introduced in Li et al. (2018a). To address
discrepancies in poses and expressions, GWAInet Dogan et al. (2019) and the later work of Li
et al. Li et al. (2020b; 2018b) focused on more effectively directing deformations or choosing
the optimal reference image for reconstruction. MyStyle Nitzan et al. (2022) adopts a unique
approach by refining StyleGAN Karras et al. (2019a) with numerous reference images based on
personal appearance. DMDNet Li et al. (2023) employs a dictionary constructed from diverse,
high-quality facial images to rehabilitate degraded images using its high-quality components. In
the MGFR framework, incorporating a single reference image is vital for tailoring the restoration to
individual faces. Unlike conventional methods, MGFR does not require strict alignment constraints
on expressions or postures.

Multi-modal Guided Generation Diffusion models have shown significant effectiveness in a broad
range of image processing tasks. Current methods Chen et al. (2023b); Zhang et al. (2023); Yu et al.
(2024); Chen et al. (2023a) employ pre-trained text-to-image diffusion models Rombach et al. (2022)
for image processing, demonstrating the potential of language as a comprehensive input for image
reconstruction tasks. Concurrently, approaches like ControlNet Zhang et al. (2023), T2I-adapter Mou
et al. (2023), and ControlNet-XS Zavadski et al. (2023) have further developed the integration of
more intricate condition controls within the text-to-image framework, facilitating more precise and
tailored image generation. Nevertheless, the field of FR, particularly in the utilization of natural
language prompts, continues to be an area of untapped potential.

3 METHODOLOGY

The proposed MGFR method is able to take face attribute text prompts, reference images, and identity
information as input to alleviate illusions and improve visual effects. MGFR involves controlling
information from multiple modalities. However, we found that if the model is directly trained to
process control information from multiple sources and of different importance, it is not easy to utilize
all the information effectively. The model may ignore the more complex information to utilize. This
causes some of the controls to fail and reduces image quality. In our method, text prompts are the
most complex control information because they involve understanding text and the correspondence
between text and face attributes. Therefore, we divide the training into two stages. In the first stage,
the training focuses on the basic text-guided restoration model (Section 3.1). This allows the model
to restore high-quality images and understand facial attributes. Then, we introduce other control
information on this basis. The second stage introduces the HQ reference image and face identity
information as the control means (Section 3.2). To improve the image effect further, Section 3.3
describes negative examples and the adopted prompting strategy.
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Figure 3: Framework Overview. This figure illustrates the overall workflow of the proposed MGFR model.

3.1 STAGE ONE: TEXT-GUIDED FACE RESTORATION

This stage trains the face image restoration model that accepts text prompt as input, as shown in
Figure 4. We use the pre-trained Stable Diffusion (SD) Rombach et al. (2022) model as our generative
prior and train an additional adapter to extend it to the face restoration applications. The pre-trained
SD generative prior has the ability to understand face image attributes text and generate high-quality
face images. In this stage, our model restores the image x according to the condition {y, ca}, where y
represents the degraded LQ image, and ca constitutes the facial attribute prompts describing the face
attributes. We first use the CLIP text encoder Radford et al. (2021) to calculate the text embedding
er = CLIP(ca). The LQ input y is also mapped to a latent representation zlq using the VAE encoder
in SD Rombach et al. (2022). We then perform diffusion generation on this latent representation. In
the framework of SD, the model uses UNet Ronneberger et al. (2015) denoising model Eθ (zt, t, er)
to perform the diffusion generation process, where t is the time stamp in diffusion model and zt is
the intermediate results at time t. Based on the ControlNet Zhang et al. (2023) framework, we use
an external adapter that takes the LQ input y and text prompts embedding er as input to provide
guidance for the fixed UNet Eθ. We call this adapter the LQ Control Adapter (LCA). Specifically,
the UNet model contains the encoder, intermediate blocks, and the decoder. The decoder receives
features from the encoder and fuses them at each corresponding scale. The LCA contains the same
encoder and intermediate blocks as in the UNet model. The feature output of each scale in LCA is
integrated with the corresponding scale of the UNet decoder to achieve the effect of output control.
However, we found that simply using the above ControlNet framework has a key limitation – the
lack of information exchange from the UNet encoder to the LCA. This gap means that the LCA
is unaware of the processes that are performed in the UNet encoder, thereby limiting its ability to
generate effective control features. In order to solve this problem, we add the feature output of each
scale in the UNet encoder to the corresponding scale in the LCA. The LQ controller part of Figure 5
illustrates this operation. In this way, the capability of the LCA is greatly enhanced, so better visual
effects and control results can be achieved.

3.2 STAGE TWO: MULTI-MODAL-GUIDED FACE RESTORATION

After the first stage of training, the model can already reconstruct high-quality images from the LQ
inputs, guided by text prompts. Next, we further enrich the guidance and introduce high-quality
reference images and face identity information as additional control means based on the first-stage
model. We design a new Dual-Control Adapter (DCA), as shown in Figure 3. In DCA, we introduce
a Reference Control Adapter (RCA) specifically for reference image processing. RCA has the same
architecture as LCA, and its role is to extract related and useful information from reference images
and identity information and provide additional details to LCA. The input of RCA includes an HQ
reference face image r containing the same identity as the LQ input and its identity information
embedding ef . For the reference image r, we first use the VAE encoder consistent with the SD
model for feature extraction to obtain zref . Next, we fuse the LQ latent representation zlq with
zref using a reference and LQ feature fusion module (RLF). This module allows RCA to identify
the high-frequency details missing in the LQ input and perform targeted information extraction for
restoration guidance. For identity information embedding, we calculate ef = Proj(Arcface(r)),
where Arcface(r) is the face recognition model Arcface Deng et al. (2019) to extract the identity
feature from the reference image r. We align it to the space that RCA can handle through a trainable
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Figure 4: The model architecture employed during the
initial training stage is discussed. In the article, ’Ours
w/o Reference Image’ refers to the outcome of the
model trained following this stage.
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Figure 5: Dual-control Adapter. LQ-blocks are from
the LQ control adapter (LCA), and Ref.-blocks are
from the reference control adapter (RCA). ⊕ repre-
sents the element-wise add operation.

linear projection layer Proj(·). Due to the function of the RCA extracting information from the
reference image according to the LQ input, the RCA requires the information of the LCA branch
as input. At the same time, RCA needs to provide the extracted information back to LCA in
reverse. Therefore, we designed a dual-way interaction mechanism for RCA and LCA, as shown
in Figure 5. In this design, RCA runs in parallel with LCA. At each scale, the LQ block in LCA
first processes the fused information of both two branches and then hands the intermediate features
to RCA. RCA performs feature extraction and processing based on these intermediate results and
reference conditions and finally uses the same operation to apply the processing results to the next
layer of LCA processing. Finally, the output of each scale of LCA is applied to the corresponding
position of the UNet decoder. RCA directly affects LCA and, therefore, also affects the calculation of
UNet. Since then, we have had a dual-control adapter that can accept multiple control inputs.

3.3 NEGATIVE SAMPLES AND PROMPT

Classifier-Free Guidance (CFG) Ho & Salimans (2022) introduces a novel control mechanism utilizing
negative prompts to delineate unwanted content for the model. This feature can be leveraged to
inhibit the generation of low-quality images by the model and to enhance the precision of facial detail
reconstruction. Throughout the inference phase, at each step of diffusion, three distinct predictions
are generated: one employing the positive prompt pos, another using the negative quality prompt
nq, and a third via the negative attribute prompt na (the negation sentence described by pos). We
combine the results generated from these different prompts to form the final output:

z̃t−1 = zpost−1 + λnq × (zpost−1 − znqt−1) + λna × (zpost−1 − znat−1), (1)

where λna and λnd is the hyperparameters, zpost−1 = Eθ(zt, zlq, zref , t, pos), znqt−1 =
Eθ(zt, zlq, zref , t, nq), znat−1 = Eθ(zt, zlq, zref , t, na). pos represents a standard description of a
facial attribute. nq is the negative words of quality, e.g., “oil painting, cartoon, blur, dirty, messy, low
quality, deformation, low resolution, over-smooth”. na is used for a negative description of a facial
attribute, implying complete negation. Accurate prediction in both positive and negative directions is
essential for the CFG technique. The lack of negative-quality samples and prompts in our training
might cause the model to misinterpret negative prompts, leading to artifacts. To resolve this, we
generated 16K images with negative-quality prompts using the original SD generative model and
included these low-quality images in our training to enable the model to learn the concept of negative
quality. Figure 9 (a) shows an example of the negative quality sample and prompt.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets. Our two-stage training method requires different datasets for training. For the first stage,
we mainly train the model’s ability to restore HQ images and process text prompts. Therefore,
we need HQ images with text annotations for training. We synthesize training image pairs using
the FFHQ dataset Karras et al. (2019b). FFHQ contains 70,000 high-resolution face images, and
we resize these images to 512 × 512 for training. In the second stage, in addition to requiring
HQ face images to create training image pairs, we also need to assign HQ reference images with
consistent identities but different details to each image. Although there are some datasets proposed
for reference face restoration Liu et al. (2015); Yi et al. (2014), the resolution and quality of these
datasets cannot meet the current requirements. In this work, we collect a new dataset for referenced
face restoration called Reface-HQ. Reface-HQ contains 23,500 high-quality and diverse images of
over 5,250 identities. Additional details of Reface-HQ can be found in the Appendix A. To synthesize
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Figure 6: The MGFR model demonstrates a remarkable capacity for restoring LQ images. Upon integrating the
reference image, particularly in instances of severe degradation, the model significantly enhances the restoration
of facial details and overall image quality.

Input DiffBIR CodeFormer w/o Reference Ours Reference

Figure 7: In the qualita-
tive comparison of real-
world low-quality (LQ)
images, MGFR demon-
strates success in recover-
ing facial details without
false illusion and preserv-
ing identity from. Please
zoom in for a better view.

LQ images, we follow the degradation model and setting used in Wang et al. (2023b). Our test data
also involves multiple sources, including CelebA-Test Liu et al. (2015), Reface-Test, and real-world
LQ images collected from the Internet. Specifically, CelebA-Test contains 3,000 testing images from
the CelebA-HQ dataset. Reface-Test contains 1,800 images of 380 identities split from the proposed
Reface-HQ dataset. The LQ images for testing are synthesized within the same degradation range as
the training setting.

Negative Quality Samples

“A low quality, low 
resolution, over smooth 
and deformation image”

Facial Attribute Prompt

Facial Attribute Detector  &  LLM

“A old man who has big nose, 
grey hair…”

(a) (b)

Multi-Modal LLM

Chubby, old, man, big nose, 
double chin, no beard

old, man, big nose, grey 
hair…

Figure 9: Training Data Composition. Initially, neg-
ative quality samples are incorporated into the training
to enhance the clarity and quality of the restored image.
Furthermore, large language models coupled with a fa-
cial attribute classifier are employed to extract attribute
texts for integration into the training.

Attribute Prompt. Text prompts are impor-
tant for us to control face attributes and improve
quality. In our method, a total of three types of
prompts are introduced. Two attribute prompts
describe the face attributes, and the last one de-
scribes the negative quality of the image. For
attribute prompts, pos contains positive descrip-
tions of face attributes, while na describes at-
tributes that do not exist in this image to provide
negative prompts of attributes. To obtain these
descriptions, we first use a pre-trained face at-
tribute detector He et al. (2017) to extract the
presence of each attribute in the face. We con-
sidered 28 different attributes in this work. For attributes that have high confidence to exist, we add
them to the pos positive attributes. For the remaining attributes with low confidence, we classify
them as na negative attributes. At this time, these attributes are still separate words. We use a large
language model to organize the separated words into natural language to facilitate the understanding
of the CLIP text encoder. Thus, each face image is associated with two attribute prompts detailing
existing and non-existing attributes. For the negative quality prompt, nq involves “low quality, low
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Input No Prompt Add: ‘lipstick’ Input No Prompt Add: ‘earrings’ Input No Prompt Add:‘big eyes’

Figure 8: MGFR demonstrates capability of face image restoration facilitated by text prompts. It possesses the
capacity to artificially modulate specific aspects of the restoration outcomes, such as determining the presence of
accessories like lipstick or glasses (Cases 1 & 2), and orchestrating the restoration process in alignment with
facial attributes (Case 3).

Real-SR(×4) Real-SR(×8) Real-SR(×16)Method LPIPS ↓ ManIQA ClipIQA MUSIQ LPIPS ↓ ManIQA ClipIQA MUSIQ LPIPS ↓ ManIQA ClipIQA MUSIQ

PSFRGAN 0.2938 0.5927 0.5702 73.39 0.3315 0.6015 0.5956 73.08 0.3788 0.5739 0.6274 71.76
GPEN 0.2828 0.6596 0.6430 69.25 0.3217 0.6754 0.6299 68.63 0.3831 0.6618 0.5897 66.61
VQFR 0.2951 0.2875 0.2490 62.95 0.3277 0.4163 0.2363 61.92 0.3761 0.6513 0.2148 60.49

CodeFormer 0.2927 0.5803 0.5179 75.47 0.3193 0.5970 0.6235 75.09 0.3821 0.5803 0.5877 70.85
DR2 0.3264 0.5749 0.4441 63.43 0.3580 0.5246 0.4494 59.46 0.3796 0.5160 0.5035 70.31

DiffBIR 0.2611 0.6068 0.7681 74.27 0.3017 0.6058 0.7439 73.87 0.4238 0.5361 0.7164 67.41
BFRffusion 0.3258 0.5477 0.5572 45.32 0.3739 0.4404 0.5298 42.84 0.3735 0.4204 0.5098 43.16

Ours w/o Reference 0.2925 0.6854 0.8244 76.22 0.3227 0.6776 0.8083 75.94 0.3760 0.6729 0.7944 75.76

Table 1: Quantitative Comparison in CelebA-Test. Results in red and blue signify the highest and second
highest, respectively. The ↓ indicates metrics whereby lower values constitute improved outcomes, with higher
values preferred for all other metrics.

resolution, over-smoothed and distorted images”, as shown in Figure 9 (a). See Appendix B for
comprehensive details on the training and inference procedures involving attribute prompts.

Implementation. The training involved fine-tuning based on Stable Diffusion v2.1 Rombach et al.
(2022), with the control adapter structure adhering to Zhang et al. (2023). The Adam optimizer
Kingma & Ba (2014) was employed, featuring a learning rate of e−5. The initial training stage
spanned 15 days, while the subsequent stage lasted 5 days, utilizing 4 Nvidia A100 GPUs with a
batch size of 4. For testing purposes, the hyperparameters were set as T = 500, λna = 0.5 and λnq =
0.5.

Metrics. For quantitative comparison, followed by many previous works Lin et al. (2023); Yu et al.
(2024), the selected metrics include full-reference metrics PSNR, SSIM, and LPIPS Zhang et al.
(2018), as well as non-reference metrics ManIQA Yang et al. (2022), ClipIQA Wang et al. (2023a),
and MUSIQ Ke et al. (2021). Furthermore, the Arcface identity distance Deng et al. (2019) (ID) is
utilized to assess the similarity of identity information.

4.2 COMPARISONS WITH STATE-OF-THE-ART METHODS

MGFR is qualitatively and quantitatively compared with state-of-the-art methods in FR. Notably, the
model trained in the initial stage, which is a restoration model solely guided by attribute prompts,
already achieves superior visual results. The non-reference prior-based methods selected include
PSFRGAN Chen et al. (2021), GPEN Yang et al. (2021a), VQFR Gu et al. (2022), CodeFormer Zhou
et al. (2022), DR2 Wang et al. (2023b), BFRffusion Chen et al. (2024) and DiffBIR Lin et al. (2023),
along with reference prior-based methods ASFFNet Li et al. (2020b) and DMDNet Li et al. (2023).
Particularly, to ensure contrastive fairness during the inference stage, the description text, containing
restricted attributes, is obtained through low-resolution processing. In practical applications, however,
users can freely set attribute prompts, enabling more precise and comprehensive guidance. For
qualitative results comparing ASFFNet and DMDNet, please refer to the Appendix.

Comparison on Synthetic Degradations. Firstly, a quantitative comparison of our model without
reference images on the synthetically degraded CelebA-Test dataset is conducted without reference
image guidance. According to Table 1, our model achieves the best results on all non-reference
metrics, indicative of the superior image quality of the results. Due to space limitation, values of
SSIM and PSNR of Table 1 are shown in Appendix C.1. Additionally, the method’s limitations on
full-reference metrics are also noted. This phenomenon, preliminarily demonstrated by experiments
in Yu et al. (2024); Jinjin et al. (2020), necessitates a reevaluation of the reference value of indicators
like PSNR, SSIM, LPIPS, and the proposal of more effective methods to assess advanced FR methods,
particularly as quality improves. More qualitative comparison results of our model can be found
in Appendix C. Subsequently, Figure 6 and Figure 1 (a) present a qualitative comparison of the
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Input No Prompt ‘No beard, young’ ‘young, woman
blonde hair’

Figure 10: Attribute prompts that manifestly contra-
vene low-resolution inputs prove ineffectual and result
in distortions and artifacts within the restored image.

Input High Blur Face Swap Reference

Figure 11: Face Swapping: MGFR is capable of lever-
aging the reference map to alter the comprehensive
components of the face.

(a) User Study on compared methods (b) User study on using Reference image

Figure 12: The results of
our user study. We ran-
domly select face images
under multiple test datasets
for user study. Our model
achieves excellent recovery
quality, which can be further
enhanced with high quality
reference image and identity
information guidance.

MGFR method applied to the Reface-Test dataset. Even in cases of severe degradation, our method
successfully produces highly superior facial details guided by the reference image. In addition, we
provide a comparison between our model without reference images and MGFR, with a particular
focus on FR tasks involving features like double eyelids, pupil color, and finer facial details, such as
wrinkles and moles, which cannot be accurately captured without reference image guidance. This
further demonstrates the superiority of utilizing reference image guidance in the FR task. Finally,
Table 2 offers quantitative comparison results, indicating that our method significantly surpasses
other state-of-the-art methods in perceived quality.

We also conduct a user study with a total of 40 participants, comparing MGFR to other approaches.
Participants were asked to select the best quality recovery result from these test techniques for each
pair of comparison images, or if no reference image was provided, the result that came closest to the
Ground Truth. Section 4.2 presents the results, which demonstrate that our method outperforms the
state-of-the-art methods in terms of recovery quality. Furthermore, the reconstruction effect can be
further enhanced by using the reference image guidance.

Degradation Method PSNR SSIM LPIPS ↓ ManIQA ClipIQA MUSIQ ID ↓

ASFFNet 23.43 0.6811 0.2452 0.5685 0.6215 71.66 0.7053
DMDNet 23.85 0.7062 0.2667 0.5023 0.6023 72.31 0.6964

DR2 23.58 0.6581 0.2532 0.5340 0.5956 69.00 0.7957
CodeFormer 23.88 0.6904 0.2912 0.4959 0.5823 74.80 0.6579

DiffBIR 24.12 0.6717 0.2785 0.5547 0.7474 73.73 0.6379

×8

MGBFR(Ours) 23.10 0.6248 0.2688 0.6535 0.8147 75.51 0.5166

ASFFNet 21.70 0.6472 0.3013 0.5803 0.6221 71.57 0.9361
DMDNet 22.37 0.6761 0.3179 0.4579 0.4727 67.27 0.9270

DR2 22.28 0.6720 0.3269 0.5233 0.5693 66.39 0.8676
CodeFormer 21.88 0.6124 0.3400 0.5547 0.5855 71.30 0.8658

DiffBIR 21.51 0.5939 0.3944 0.4937 0.7144 67.42 0.8876

×16

MGBFR(Ours) 21.75 0.6033 0.2989 0.6524 0.8046 75.06 0.7401

Table 2: Quantitative Comparison in Reface-Test. Quantitative com-
parison of guided recovery results based on reference images. DR2,
CodeFormer, and DiffBIR do not use reference images.

Comparison on Real-world
Degradations. Additionally, our
method was tested on real-world
LQ images, which involved col-
lecting degraded face images of
publicly available images along-
side reference images. The qual-
itative results, presented in Fig-
ure 12, demonstrate that the re-
sulting images possess realistic
visual effects with minimal facial
illusions. More quantitative and
qualitative results are presented
in Appendix C.

4.3 CONTROLLING RESTORATION WITH ATTRIBUTES PROMPTS

Our method facilitates targeted image restoration guided by attribute prompts. As illustrated in Fig-
ure 8, the comparison between the first and second cases reveals that the integration of supplementary
attribute prompts facilitates the manipulation of subtle facial attributes absent in the original image.
This includes the addition of glasses, earrings, and accessories. In scenarios of severe degradation,
exemplified by the third case, reconstructing facial features like eyes poses a significant challenge
without external prompts. More results are shown in Appendix E.1.
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Input w/o Negative Prompt Use Negative
Quality Prompt

Use Negative
Attribute Prompt GT

Figure 13: Negative quality
prompts engender restoration
outcomes characterized by high
definition, whereas negative at-
tribute prompts yield results
with enhanced detail.

Real-SR(×8) SSIM PSNR LPIPS ManIQA ClipIQA MUSIQ

w/o Link-UL 0.6372 22.17 0.3275 0.5931 0.7082 71.33
w/o Link-LR 0.6659 23.86 0.2873 0.6152 0.6645 65.70

MGBFR(Ours) 0.6248 23.10 0.2688 0.6535 0.8147 75.51

Table 3: Ablation study of additional information ex-
change in the MGBFR model. ’w/o Link-LR’ means
that the upward flow of information from LCA to RCA
is removed.

Prompts
pos nq na

LPIPS ↓ SSIM PSNR ManIQA ClipIQA MUSIQ

0.3264 0.6858 25.15 0.4782 0.2568 49.97
✓ 0.2690 0.6484 24.43 0.6441 0.7008 73.26
✓ ✓ 0.2930 0.6066 23.27 0.6656 0.7999 75.34
✓ ✓ 0.2702 0.6511 24.49 0.6437 0.7029 73.11
✓ ✓ ✓ 0.3227 0.5904 22.34 0.6776 0.8083 75.94

Table 4: Ablation study of attribute prompts and nega-
tive prompts

However, it is imperative to acknowledge that attribute prompts do not invariably yield efficacy.
As demonstrated in Figure 10, our model is capable of control tuning through attribute prompts.
However, prompts that starkly contradict LQ inputs, like “blonde hair”, are found to be ineffective.
This ensures the model’s adherence to the provided LQ inputs. Furthermore, as illustrated by the
input of an LQ male face in Figure 10, when the input attribute is “Female”, the model subtly
incorporates the attribute label “Female” into the image. This is achieved through modifications like
the addition of an earring and the removal of the beard while remaining faithful to the LQ input. Such
modifications further underscore the efficacy of attribute text in guiding the restoration process. This
outcome is not unexpected. On the contrary, excessive control capability might lead to a reduction in
the restoration effectiveness, countering the fundamental intent of image reconstruction efforts and
thereby demonstrating the robustness of the proposed method.

4.4 ABLATION STUDY

Attribute Prompt and Negative Samples. Figure 13 displays qualitative results under various
settings, aligning with the strategies outlined in Section 3.3. It can be seen that incorporating a
negative quality prompt significantly enhances restoration quality, while the addition of a negative
attribute prompt yields images with finer details. Quantitative results under various settings are also
presented in Table 4. Adding either positive attribute prompts or negative quality prompts is observed
to improve the perceived quality of the images significantly. Utilizing both types of prompts in
conjunction with the negative attribute prompt achieves the most favourable perceived effect. The
impact of hyperparameters on the results was also explored, revealing that settings of λna = 0.5 and
λnq = 0.5 yield the best perceptual outcomes, balancing sharpness and definition. Please refer to
Appendix G for detailed qualitative results in different hyperparameters.

Face Swapping. MGFR can facilitate face-swapping operations involving the processing of highly
degraded LQ images to obscure identities, as shown in Figure 11. Face images and identity informa-
tion from different identities are utilized as guides to achieve face swapping and identity replacement.
Besides proposing an additional application for the model, this experiment further illustrates the
method’s efficacy in utilizing identity information and reference images for guidance.

Additional Information Exchange. Unlike Zhang et al. (2023), we have integrated an additional
information flow exchange link (Link-UL) from the U-net model to LCA, and a bidirectional
information flow link (Link-LR) between LCA and RCA. Table 3 displays the quantitative test results
for the presence of the aforementioned information exchange links. Notably, ‘w/o Link-UL’ refers to
results obtained with a single information flow from LCA to U-net model. It is evident that additional
information flow exchanges result in improved perceived quality.

Arcface Identity Embedding. Our model is able to leverage identity information to guide the image
restoration process, aiming to mitigate the deficit in facial identity information substantially. As
demonstrated in Figure 15, our model employs the identity encoding formulated by the identity
information extractor to mitigate the deficiency of facial identity information in the restored image.
After losing arcface identity embedding, the recovered results still have high quality but there is a
false illusion of face identity information.

Different expressions and poses reference images. In previous studies, reference image-based
face restoration has been widely explored, but its efficacy is constrained by the need for strict

9
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(a) LQ Ours GT Reference (b) LQ Ours GT Reference

Figure 14: Face restoration results with reference images with different expressions and poses. When there
are differences in pose and expression between the reference image and the low-quality input image, our model
can still achieve a good restoration effect without the generation of artifacts.

(a) LQ Ours w/o ID Ours w/ ID GT (b) LQ Ours w/o ID Ours w/ ID GT

Figure 15: Ablation experiments about arcface identity embedding (ID). The additional identity embedding
can greatly reduce the false illusion of identity information in the recovery results.

alignment between the reference image and the low-quality (LQ) input. As shown in Figure 21,
the recovery results of ASFFNet and MDMNet exhibit severe distortions when the reference image
and the LQ input are slightly misaligned. However, our method completely resolves this issue, as it
imposes no strict requirements on the expression, pose, or other variations of the reference image.
As demonstrated in Figure 14, even when there are discrepancies between the reference image and
the LQ input, such as face orientation, labeling, makeup, or pose, our model consistently achieves
high-quality restoration without any artifacts.

4.5 LIMITATIONS AND DISCUSSION

Although this represents an initial foray into attribute text-guided face image restoration, the flexibility
of its text input is somewhat constrained due to the nature of the training samples. The model
struggles to fully comprehend freely composed attribute description sentences, tending instead to
rely on attribute labels embedded within fixed template text prompts, which limits its applicability in
broader contexts. Furthermore, when users input attribute labels unseen during training, these do not
effectively guide the recovery process. These limitations highlight the importance and necessity of
utilizing high-quality data on a larger scale.

Moreover, we believe that allowing excessive free facial attribute control in FR tasks is undesirable due
to the potential risk of model abuse. Our model can still recover well without attribute text prompts,
thus incorporating additional multimodal information marks our initial effort to enhance recovery
performance without increasing task complexity. Regarding the reference image, we disregard its
potential to ”edit” the restored results. As with previous studies, we aim for the reference image to
further enhance the facial details of the restored face image. In summary, we remain committed to
the core objective of the restoration task, ensuring that the output remains faithful to the low-quality
input. Moreover, given that individuals typically have multiple reference images, leveraging a broader
range of reference information may result in more precise facial detail restoration. Additionally, we
acknowledge that high-quality reference images may not always be available, thus the potential of
utilizing multiple low-quality reference images for co-guidance is left for future investigation.

5 CONCLUSION

We introduce MGFR as a pioneering method in real-world face restoration, at the cutting edge
of face image restoration technology, capable of using multi-modal information for guidance to
achieve realistic visual effects. Simultaneously, MGFR extends the possibilities of face restoration
by controlling text prompts with attributes. The proposed Reface-HQ dataset also offers significant
potential for advancing the development of face restoration models based on reference images. As
the first multi-modal face image restoration model, MGFR establishes a new benchmark for future
technological advancements.
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APPENDIX

A REFACE-HQ DATASET

Dataset Number of ID Image Size Synthesized

CASIA-WebFace 10575 494414 256×256 %

Celeba 10,177 202599 178×218 %

IDiff-Face - - 128×128 !

VggFace2 - HQ 1200 24000 512×512 %

CelebRef-HQ 1000 10000 512×512 %

Reface-HQ 5250 23500 512×512 %

Table 5: Datasets Comparison.

The bulk of prior reference-based face
restoration methodologies commonly fo-
cus on training and testing with 256 ×
256 images. This is primarily due to
the limitations of existing datasets such
as CelebA Liu et al. (2015), VggFace2
Cao et al. (2018), and CASIA-WebFace Yi
et al. (2014), which offer reference images
mainly for face or attribute recognition but
do not include high-quality images suitable
for training at higher resolutions, like 512 × 512 or 1024 × 1024, thereby limiting their practical
applications. Additionally, high-definition datasets recently introduced, such as CelebRef-HQ Li et al.
(2022) and VggFace2-HQ, face challenges in maximizing the potential of models due to their limited
number of images and narrow range of identities.

To address this challenge, we have created a new real-world dataset named Reface-HQ, as shown in
Figure 16. The Reface-HQ dataset encompasses high-definition facial images of celebrities, which
have been collected from the Internet. Initially, images with inadequate resolution (minimum 512),
low quality and outliers lacking facial features were eliminated. Subsequently, identities represented
by fewer than two images were excluded, and face image crop alignment was conducted. Each
identity was also manually inspected to eliminate discrepancies in age and makeup. Additionally, to
enhance the fairness and inclusiveness of the algorithm, we meticulously review the dataset to ensure
it includes samples from all races and skin colors. We strive to ensure the diversity of the training
data, thereby minimizing algorithmic bias and discrimination, and further enhancing the algorithm’s
fairness and inclusiveness. In summary, Reface-HQ encompasses 5,250 identities, totaling 23500
images with a resolution of 512, subsequently partitioned into three segments: 4870 identities for
the training set and 380 for the Reface-Test. The comparison of datasets available for special face
restoration tasks is shown in Table 5. IDiff-Face Boutros et al. (2023) is a composite dataset with an
indefinite number of images.

Identity 1 Identity 2 Identity 3 Identity 5 Identity 6Identity 4

Figure 16: Demonstration of the Reface-HQ dataset.

A.1 ABLATION EXPERIMENT

For diffusion models and adapter structures, both the quality and quantity of training data are critical
factors affecting the model’s final performance. Table 6 presents the quantitative comparison results
of our proposed model under various training data volumes. It is evident that the model’s performance
significantly decreases with only 10,000 training data samples.

Real-SR(×8) SSIM PSNR LPIPS ManIQA ClipIQA MUSIQ
10K Training Samples 0.6254 23.46 0.2535 0.6388 0.7424 72.23
20K Training Samples 0.6248 23.10 0.2688 0.6535 0.8147 75.51

Table 6: Ablation Experiment about training.
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B ATTRIBUTE PROMPT

Row 1 Row 2 Row 3 Row 4
Black Hair Blond Hair Blurry Brown Hair

- Eyeglasses Gray Hair Heavy Makeup
Mouth Slightly Open Mustache Big Eyes No Beard

Receding Hairline Sideburns Smiling Straight Hair
Wearing Earrings Wearing Hat Male Wearing Necklace

Big Nose - Wearing Lipstick Young
Wavy Hair Big Lips Bald Bangs

Table 7: Face Attribute.

This section provides a supplementary note
on the attribute text prompts utilized in
MGFR. For the training data, attribute la-
bels are first extracted from the FFHQ or
Reface-HQ dataset’s face images using a
facial attribute classifier. The 28 types of at-
tributes included are listed in Table 7, while
labels with binomial characteristics (such
as Male and Female, no beard and beard,
etc.) are not repetitively shown. Regarding the classification threshold, attributes with a probability
greater than 0.6 are considered positive, those with a probability less than 0.4 as negative, and the
rest as uncertain in describing facial features. LLM is utilized to embed the attribute labels into a
descriptive sentence template, thereby enhancing the model’s understanding. To augment the model’s
grasp of negative attribute descriptions, two sentences of prompt text are provided for each image,
as illustrated in Figure 17. Both descriptions offer a positive portrayal of the face, with Prompt B
specifically focusing on the negative attributes.

In the inference stage, following the approach detailed in Section 3.3, we apply positive attribute
prompts (pos), negative quality prompts (nq), and negative attribute prompts (na) in each iteration.
For example, in restoring a LQ image, if it is assumed to contain attributes like ’smiling, man, black
hair, eyeglasses,’ the corresponding text for image restoration can be generated as follows:

• Positive Prompt: A high quality, high resolution, realistic and extremely detailed image in
the description of a smiling man who has black hair and eyeglasses.

• Negative Attribute Prompt: A high quality, high resolution, realistic and extremely detailed
image not in the description of a smiling man who has black hair and eyeglasses.

• Negative Quality Prompt: A low quality, low resolution, over smooth and deformation
image.

The underlying premise is to prevent our model from generating low-quality images and images with
mismatched facial attributes. Extensive experiments demonstrate the effectiveness of our proposed
attribute prompts.

Prompt A : A high quality, high resolution, realistic and extremely detailed image in the
description of a smiling young woman who has big nose. she is wearing lipstick and she is
no beard.

Prompt B : A high quality, high resolution, realistic and extremely detailed image not in the 

description of a old man who has bangs, big lips, black hair, blond hair, brown hair,
eyeglasses, gray hair, straight hair, wavy hair.

Figure 17: Attribute prompts composition in training.
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C MORE QUALITATIVE COMPARISONS FOR OUR MODEL WITHOUT
REFERENCE IMAGES.

WebPhoto-Test ManIQA ClipIQA MUSIQ
DR2 0.4868 0.6184 64.36

DiffBIR 0.4068 0.6858 55.73
Ours 0.5901 0.8397 72.52

Table 8: Quantitative comparison with other
diffusion model-based methods on real-world
degradations in WebPhoto-Test.

This section presents qualitative comparisons experimen-
tal results of our model without reference images, focusing
on attribute text-guided face recovery. Importantly, for a
fair comparison, the attribute during the inference phase
are derived from the LQ input, which means the model’s
maximum potential is not fully realized. We assert that
in practical scenarios, users will be able to supply more
precise attribute text for enhanced recovery guidance. Al-
though, our model demonstrates the most superior visual effects and details when compared to other
state-of-the-art methods.

Figure 18 and Figure 19 display the qualitative comparison results of our model against other advanced
models under conditions of mild and moderate degradation of LQ input, respectively. It is evident
that the previous methods exhibit severe facial illusion, whereas our model attains the best visual
outcomes. Notably, as shown in Figure 20 and Figure 21, our model demonstrates a remarkable ability
to recover severely degraded input images with high quality and fidelity. Finally, Figure 22 shows
the effect of restoration on real-world LQ inputs and Table 8 presents the quantitative comparison
results between our model and the principal comparison methods using real-world LQ inputs from
the WebPhoto-Test dataset.

LR PSFRGAN GPEN DR2 VQFR DiffBIR CodeFormer Ours w/o Ref. GT
Figure 18: More qualitative comparisons for our text-guided baseline model on synthetic dataset under mild
degradation in CelebA-Test dataset. Zoom in for best view.

LR GPEN DR2 VQFR DiffBIR CodeFormer Ours w/o Ref. GT
Figure 19: More qualitative comparisons for our text-guided baseline model on synthetic dataset under moderate
degradation in CelebA-Test dataset. Zoom in for best view.

LR GPEN DR2 VQFR DiffBIR CodeFormer Ours w/o Ref. GT
Figure 20: More qualitative comparisons for our text-guided baseline model on synthetic dataset under severe
degradation in CelebA-Test dataset. Zoom in for best view.
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LR ASFFNet MDMNet DR2 CodeFormer DiffBIR Ours w/o Ref. GT
Figure 21: More qualitative comparisons for our text-guided baseline model on synthetic dataset under severe
degradation in Reface-Test dataset. Zoom in for best view.

LR DR2 CodeFormer DiffBIR Ours w/o Reference
Figure 22: More qualitative comparisons for our model without reference images on real world images. Zoom in
for best view.

C.1 ADDITIONAL SUPPLEMENT TO TABLE 1

Due to space limitation, for the quantitative comparison results of our model without reference
images, Table 1 does not show the numerical values of PSNR and SSIM, and we supplement them in
Table 9, Table 10 and Table 11.

Real-SR(×4)Method LPIPS PSNR SSIM ManIQA ClipIQA MUSIQ
PSFRGAN 0.2938 23.72 0.6522 0.5927 0.5702 73.39

GPEN 0.2828 24.78 0.7056 0.6596 0.6430 69.25
VQFR 0.2951 23.81 0.6878 0.2875 0.2490 62.95

CodeFormer 0.2927 24.56 0.6809 0.5803 0.5179 75.47
DR2 0.3264 23.74 0.6827 0.5749 0.4441 63.43

DiffBIR 0.2611 24.49 0.6778 0.6068 0.7681 74.27
BFRffusion 0.3258 24.87 0.7014 0.5477 0.5572 45.32
MGFR(Ours) 0.2925 23.25 0.6104 0.6854 0.8244 76.22

Table 9: Quantitative Comparison in CelebA-Test. Results in red and blue signify the highest and second
highest, respectively. The ↓ indicates metrics whereby lower values constitute improved outcomes, with higher
values preferred for all other metrics.

D TRAINING AND INFERENCE CONSUMING ANALYSIS

In terms of training consumption, the proposed MGFR model employs a two-stage training strategy
for the dual-control adapter, leading to a moderate increase in training cost. However, for the diffusion-
based image restoration model, this additional training time remains relatively short. Nonetheless, this
investment is justified, as the proposed MGFR model demonstrates excellent recovery performance.
Additionally, the dual-control adapter’s specialized design enables superior restoration results depend
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Real-SR(×8)Method LPIPS PSNR SSIM ManIQA ClipIQA MUSIQ
PSFRGAN 0.3315 22.85 0.6232 0.6015 0.5956 73.08

GPEN 0.3217 23.88 0.6822 0.6754 0.6299 68.63
VQFR 0.3277 23.16 0.6683 0.4163 0.2363 61.92

CodeFormer 0.3193 21.81 0.5799 0.5970 0.6235 75.09
DR2 0.3580 23.26 0.6725 0.5246 0.4494 59.46

DiffBIR 0.3017 23.47 0.6442 0.6058 0.7439 73.87
BFRffusion 0.3739 23.72 0.6718 0.4404 0.5298 42.84
MGFR(Ours) 0.3227 22.34 0.5904 0.6776 0.8083 75.94

Table 10: Quantitative Comparison in CelebA-Test. Results in red and blue signify the highest and second
highest, respectively. The ↓ indicates metrics whereby lower values constitute improved outcomes, with higher
values preferred for all other metrics.

Real-SR(×16)Method LPIPS PSNR SSIM ManIQA ClipIQA MUSIQ
PSFRGAN 0.3788 21.27 0.5899 0.5739 0.6274 71.76

GPEN 0.3831 22.22 0.6541 0.6618 0.5897 66.61
VQFR 0.3761 21.72 0.6413 0.6513 0.2148 60.49

CodeFormer 0.3821 21.19 0.5717 0.5803 0.5877 70.85
DR2 0.3796 21.06 0.6225 0.5160 0.5035 70.31

DiffBIR 0.4238 21.21 0.5654 0.5361 0.7164 67.41
BFRffusion 0.3735 23.67 0.6716 0.4204 0.5098 43.16
MGFR(Ours) 0.3760 20.54 0.5452 0.6729 0.7944 75.76

Table 11: Quantitative Comparison in CelebA-Test. Results in red and blue signify the highest and second
highest, respectively. The ↓ indicates metrics whereby lower values constitute improved outcomes, with higher
values preferred for all other metrics.

on the guidance of multimodal information. Our experiments (Figure 32) confirm that employing
a single traditional adapter structure for multimodal input often results in redundancy between the
reference image and the low-quality input, as well as color inconsistencies in the recovered output.
This observation, however, does not preclude further exploration in this area. Our future work
will focus on employing a specially designed single-transformer adapter to replace the dual-control
adapter, aiming to reduce the model’s complexity.

In addition, Table 12 presents the average inference time, memory consumption, parameter count,
and FLOPs statistics. Notably, the CFG strategy is compatible with all LDM-based recovery models.
Results are presented separately to reflect the CFG strategy’s influence during inference. Without the
CFG strategy, our model exhibits slightly higher time and memory consumption compared to DiffBIR
Lin et al. (2023). DR2 Wang et al. (2023b) and BFRfusion Chen et al. (2024) exhibit faster inference
times; however, their recovery performance is suboptimal. Furthermore, SUPIR’s large-scale model
design results in significantly higher training and testing costs compared to other methods, including
MGFR. However, MGFR outperforms SUPIR Yu et al. (2024) on the face image restoration task
while incurring lower costs (see Appendix I). It should be noted that efficiency is not the primary
focus of this work. Moreover, we believe that the development of efficient lightweight models is
grounded in the superior performance of large-scale models. Our future iterations will explore model
compression techniques, such as quantization and pruning, to enhance inference speed and reduce
parameter counts while maintaining MGFR’s superior performance on the face recovery task.

Method Average time (s) Memory consuming (M) #Params (M) FLOPs (G)
DiffBIR 5.1 11260 1716.7 897.5

DR2 2.6 3144 93.56 388.94
BFRffusion 3.2 8338 1197.4 784.5

SUPIR 47.6 54318 3870.0 11950
Ours(w/o CFG) 6.9 15351 2029.3 890.5
Ours (w/ CFG) 12.5 15351 2029.3 2672.4

Table 12: Inference consuming compared with other diffusion model-based methods.
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Input No Prompt ‘old, woman’ Input No Prompt ‘eyeglasses’

Input No Prompt ‘earrings’ Input No Prompt ‘lipstick’

Input No Prompt ‘mouth slightly open’ Input No Prompt ‘big eyes’

Figure 23: Influences of attribute prompts.

E CONTROLLING WITH ATTRIBUTES PROMPTS

E.1 CONTROLLING RESTORATION

Our model facilitates guidance through user-defined attribute prompts during testing. Figure 23
exemplifies this with a demonstration of attribute prompt-controlled recovery. Notably, ’No Prompt’
refers to the initial prompt input, ’A high quality, high resolution, realistic, and extremely detailed
image.’ As illustrates, users can employ prompts like ’old’ to define the approximate age in the
restored image, or ’eyeglasses’ and ’earrings’ to add accessories to the image. Furthermore, users can
provide additional attribute prompts to refine unsatisfactory results. For instance, ’lipstick’ can be
used to add lipstick, or ’mouth slightly open’ to adjust the mouth’s appearance. More significantly,
severe illusions, particularly in the eye area, are common in previous methods due to insufficient
information in LQ inputs. This observation underscores the importance of attribute prompts in our
method, as using ’big eyes’ leads to more realistic eye effects. Therefore, we posit that attribute text
holds potential as a versatile tool for controlling face recovery.

E.2 SENSITIVITY ANALYSIS

Moreover, as depicted in Figure 24 case 1 and case 2, with increasing levels of degradation, the
model’s reliance on attribute prompts for control becomes more apparent, leading to greater flexibility.
This observation, a logical experimental outcome, confirms the model’s fidelity to LQ inputs during
recovery. Specifically, attribute prompts that starkly contradict the LQ input do not influence the
effect, which aligns with our expectations. The primary function of attribute labels, we contend,
is to facilitate more efficient and effective image restoration, rather than to focus on image editing
and control. This is intrinsic to the core objective of real-world face restoration. In our method, all
attribute labels listed in Table 7, including ’black hair’, ’brown hair’, and others, do not possess
the ability to control recovery but rather aid the model in interpreting the LQ input. These insights
robustly underscore the effectiveness of our approach.

F USER STUDY

Currently, the relevance and efficacy of metrics such as PSNR, SSIM, and LPIPS require evaluation.
In this study, a User study was conducted as an alternative metric for assessing image restoration
quality. The study concentrated on two primary questions: (1) How does our model without reference
images perform in terms of restoring image quality versus reducing facial illusions compared to
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Not Working Working

Input (× 4) No Prompt ‘no glasses’ Input (× 8) No Prompt ‘no glasses’ Input No Prompt ‘blue eyes’

Figure 24: We investigate the following options for attribute prompt control. First of all, the model becomes
increasingly dependent on attribute prompt as input deterioration increases (case 1 & case 2). Second, the input
attribute tag does not have a control role if it is not present in Table 7 (case 3).

previous methods? (2) Does the addition of reference image and identity information in guiding
restoration result in images that are closer to the Ground Truth compared to the model without
reference images? Two sets of questionnaires were prepared, and the study was conducted with
50 participants. Participants were presented with random, anonymous options for their selection.
For question (1), our model was compared with DiffBIR Lin et al. (2023), VQFR Gu et al. (2022),
and CodeFormer Zhou et al. (2022), focusing on selecting images with better quality and fewer
hallucinations, without providing Ground Truth images. This comparison involved 50 sets of images.
For question (2), a self-comparison approach was adopted. Specifically, ground truth images were
provided, and participants were asked to choose between restoration results with and without reference
images, assessing them based on their proximity and realism to the ground truth. In this experiment,
50 pairs of synthetically degraded images were compared.

Subsequently, the first part of the user study, focusing on the improvement of our model in terms of
image quality and the reduction of facial illusion, is discussed. The results and detailed information
of this study segment are presented in Figure 25 and Figure 26. It was observed that the majority
of the 50 participants favored our model for its superior image quality and minimal facial illusions.
Reflecting on the recovery results of the advanced method CodeFormer, illustrated in Appendix C,
it is noted that while CodeFormer achieves relatively good quality in restored images, considerable
facial illusions persist, particularly around the mouth and eyes. In contrast, our method consistently
produces high-quality, realistic facial images with minimal facial illusion. These findings underscore
the our model’s capability to reduce illusion and enhance image quality through negative prompts.
Specifically, supported by the diffusion model and LR control adapter, our model is adept at generating
realistic high-quality restorations influenced by negative prompts, and it effectively minimizes facial
illusions by utilizing an optimal amount of attribute prompts. The synergy of these elements paves
the way for further exploration in MGFR.

It is noteworthy that our two-part User study also corresponds to the two-stage development process of
the MGFR model. For the second part, the first User study has demonstrated the superior performance
of our model, as shown in the figure. Participants generally agreed that adding a guide to the reference
image would further achieve superior visual effects.

VQFR
6%

CodeFormer
19%

DiffBIR
6%

MGBFR
69%

w/o Reference 
Image
12%

w/ Reference 
Image
88%

Figure 25: Results and question details of user study.

G ABLATION STUDY FOR NEGATIVE PROMPT

For negative prompts, we introduce two hyperparameters, λna and λnq. However, we find that
the changes of the two values tend to have the same effect on the restored images. Thus, we keep
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Reference

Figure 26: Results and question details of user study.

λna = 0.5 and λnq = 0.5 during reasoning. Here we will represent the values of λna and λnq with λ
to show the qualitative comparison results under different hyperparameters in Figure 27.

H IMPACT STATEMENTS

Controlled generation technology, as a pivotal innovation in the field of diffusion models, exerts
a significant impact across multiple sectors of society. In the creative industries, it enables artists
and designers to realize complex visions with unprecedented precision and flexibility, fostering
innovation in digital art, design, and multimedia content creation. In commercial applications,
controlled generation technology enhances marketing strategies by offering more targeted and
dynamic advertising visuals, effectively engaging consumers. Additionally, its influence extends
to education and training, where it can revolutionize teaching methods and materials, especially in
visually-dependent disciplines, by generating customized educational content and simulations.

The work presented in this paper aims to advance machine learning and computer vision. This method
can provide the public with better face processing effects and has greater social value. However, the
technique is designed to process facial information, inevitably involving facial attributes such as race
and privacy risks. We are aware of these risks. Our research uses publicly available data and images
accompanied by captions. We are also wary of potentially discriminatory attribute descriptions in our
research. Our method also provides control over face restoration, which reduces the possibility of our
method outputting harmful information.

I MORE QUALITATIVE COMPARISONS FOR MGFR MODEL

Figure 28 displays the qualitative comparison results between the proposed MGFR model and other
advanced methods. The “w/o Reference Image” represents the restoration results of our model
after initial training. The use of the negative intuition strategy and attribute prompts significantly
reduces the false illusions in face images and substantially enhances overall quality. Subsequently, the
inclusion of additional multi-modal information, such as reference images and identity information,
can achieve superior visual effects.

J SCALABILITY OF MGFR FOR REAL-WORLD VIDEO FACE RESTORATION

The proposed MGFR framework shows significant potential for real-world video-based face recovery
tasks. Unlike single-image restoration, video restoration poses the unique challenge of ensuring
temporal consistency. To address this, our method leverages the recovered output of the previous frame
as a reference for the current frame. This approach aligns seamlessly with our model architecture,
which integrates high-quality continuous frame references into guided restoration. Additionally, as
our model does not require strict alignment between the reference and low-quality inputs, it effectively
handles natural variations in pose and expression commonly found in consecutive video frames,
surpassing previous reference-based face restoration models. By leveraging temporal dependencies
between frames, the proposed method ensures identity consistency and high-quality recovery in video
sequences. Future work could enhance this approach by integrating explicit temporal models or
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Over SharpBlurry

LQ Input 𝝀 = 𝟎. 𝟏 𝝀 = 𝟎. 𝟑 𝝀 = 𝟎. 𝟓 𝝀 = 𝟎. 𝟕 𝝀 = 𝟎. 𝟗

Figure 27: Influence of hyperparameters on recovery effect in CFG. The smaller λ does not get a clear recovery
result and the huge λ causes the recovered image to be over sharp.

constraints, such as optical flow guidance, to better handle motion artifacts and dynamic variations
in video data. Unlike single-image restoration based on reference images, video data offers more
diverse and abundant training samples, which we believe will further unlock the potential of our
proposed model. This will be a key focus of our future work.

      

w/o Reference Image Ours w/ Reference Image Ground TruthReference

DR2

DiffBIR

DR2

DiffBIR

LR

CodeFormer

LR

CodeFormer

      

w/o Reference Image Ours w/ Reference Image Ground TruthReference

DR2

DiffBIR

LR

CodeFormer w/o Reference Image Ours w/ Reference Image Ground TruthReference

DR2 

DiffBIR

LR

CodeFormer w/o Reference Image Ours w/ Reference Image Ground TruthReference

Figure 28: More qualitative comparisons for MGFR with reference image and ID guidance on synthetic dataset
in Reface-Test dataset. Zoom in for best view.
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K MODEL STABILITY

LR Seed 2982 Seed 78 seed 11281 seed 15 seed 424 seed 9168 GT

Figure 29: Model Stability Analysis. The recovery results of MGFR remain consistent across different random
seeds, eliminating the need for selection among multiple input outcomes.

L BRIEF OVERVIEW OF EVALUATION METRICS

For quantitative comparison, the selected image quality evaluation metrics include full-reference
metrics PSNR, SSIM, and LPIPS Zhang et al. (2018). Yu et al. (2024); Jinjin et al. (2020) experiment
initially confirmed that as image restoration quality improves, the reference utility of metrics such
as PSNR, SSIM, and LPIPS needs to be re-evaluated, necessitating the selection of more effective
evaluation indicators. Therefore, we introduce three non-reference metrics—ManIQA Yang et al.
(2022), ClipIQA Wang et al. (2023a), and MUSIQ Ke et al. (2021)—in this work.

A summary of each evaluation metric is provided below.

• SSIM is a key metric for assessing image restoration quality, measuring the similarity
between the restored and original images based on brightness, contrast, and structural
information. It has been widely used in previous face image restoration tasks Lin et al.
(2023); Wang et al. (2023b; 2021a); Yang et al. (2021a); Zhou et al. (2022); Gu et al. (2022);
Yu et al. (2024); Chan et al. (2021); Chen et al. (2021); Li et al. (2023; 2020b;a); Wang et al.
(2021b); Li et al. (2020c); Teng et al. (2022).

• PSNR is a metric derived from the mean square error (MSE), calculated as the logarithmic
ratio of the maximum possible pixel value to the error. The results are expressed in decibels
(dB), where higher values signify better image quality. It has been widely used in previous
face image restoration tasks Lin et al. (2023); Wang et al. (2023b; 2021a); Yang et al.
(2021a); Zhou et al. (2022); Gu et al. (2022); Dogan et al. (2019); Yu et al. (2024); Chan
et al. (2021); Chen et al. (2021); Li et al. (2023; 2020b;a); Wang et al. (2021b); Li et al.
(2020c); Teng et al. (2022).

• LPIPS quantifies image differences by extracting features from deep neural networks and
measuring the distances between these features. This metric better captures perceptual
changes in image details and textures. Previous studies have emphasized image similarity
metrics aligned with human visual perception Lin et al. (2023); Wang et al. (2023b; 2021a);
Yang et al. (2021a); Zhou et al. (2022); Gu et al. (2022); Yu et al. (2024); Chan et al. (2021);
Chen et al. (2021); Li et al. (2023; 2020b;a); Wang et al. (2021b); Li et al. (2020c); Teng
et al. (2022).

• ManIQA maps images into a low-dimensional manifold space and analyzes their feature
distribution and location to assess image quality. This approach demonstrates a high
correlation with perceived quality, and its effectiveness has been validated in Yu et al.
(2024).

• MUSIQ implements a multi-scale feature extraction mechanism designed to capture the
quality characteristics of images across varying resolutions and perceptual scales for effective
image quality evaluation, and its effectiveness has been validated in Yu et al. (2024).

• ClipIQA leverages the robust vision-language priors embedded within the CLIP model. The
focus is on enhancing the capability to evaluate both quality perception (seeing) and abstract
perception (feeling) of visual content. This approach’s effectiveness has been demonstrated
in Yu et al. (2024).
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LR SUPIR Ours w/o Ref. GT
Figure 30: Qualitative comparisons with SUPIR Yu et al. (2024) for our text-guided baseline model on synthetic
dataset under moderate degradation in CelebA-Test dataset. Zoom in for best view.

LR SUPIR Ours w/ Reference GT Reference
Figure 31: Qualitative comparisons with SUPIR Yu et al. (2024) for MGFR on synthetic dataset under moderate
degradation in Reface-Test dataset. Zoom in for best view.

LR Ours w/ SCA Ours w/ DCA GT Reference
Figure 32: Ablation experiments comparing the reception of multi-modal information using a single control
adapter (SCA) versus a dual control adapter (DCA) revealed that SCA led to reduced recovery performance and
increased chromatic aberration.
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