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In this supplementary, we present detailed information on the architectural design, evaluation metrics,1

cross-identity evaluation, component ablations, and a more comprehensive parameter analysis.2

Additionally, we include video results demonstrating same-identity reconstruction and cross-identity3

animation, which can be found in the provided files under the name "scorr_animation.mp4". To4

facilitate understanding and further research, we are also sharing the code files, with our core module5

implementation available in "modules/scorr.py".6

Architecture details: Our system mainly consists of a keypoint detector, a dense motion module,7

the source and driving structure encoders, a flow updater, and an image generator. The keypoint8

detector and dense motion modules are implemented using blocks similar to those used in previous9

works [5, 8]. In contrast, we provide architecture details of our source and driving structure encoders10

and image generator in Figure A1. All the modules are included in our provided codes for easy11

reference and implementation.12

Evaluation metrics: We mainly introduce four metrics that utilized third-party models for evaluation.13

• Average Keypoint Distance (AKD [6]). This metric computes the average keypoint distance14

between generated and ground-truth images. It is designed to evaluate the pose quality of the15

generated images. We use existing detectors [2] to extract the facial landmarks.16

• Average Euclidean Distance (AED [6]). This metric is designed to assess the identity quality of17

generated images based on specific feature representations, that extracted from a pre-trained facial18

identification network [1]. The average Euclidean distance between generated and ground-truth19

video frames is computed.20

• Average Rotation Distance (ARD [3]). We use the toolbox py-feat [4] to extract the Euler angles of21

the head poses, and then compute the average Euler angles distance between the generated and22

driving images. This metric evaluates the head pose quality.23

• Action Units Hamming distance (AUH [3]). This metric measure the quality of facial expression, it24

computes the average Hamming distance between action units of generated and driving images.25

We use the toolbox py-feat [4] to extract facial action units.26

Table A1: Cross-identity evaluation on the Voxceleb1 dataset.
FOMM MRAA LIA DAM DaGAN TPSM FNeVR Ours

ARD 3.122 2.678 3.883 2.669 3.090 2.724 2.755 2.399
AUH 0.850 0.729 0.772 0.717 0.751 0.668 0.751 0.625

Cross-identity animation evaluation: In the cross-identity scenario, we do not have ground-truth27

label videos, so we use the ARD and AUH metrics to evaluate the facial expression and head pose28

quality. Table A1 illustrates that our method surpasses others by a significant margin in both metrics,29

indicating its efficacy in capturing finer motions with good precision.30

Component ablations: We conducted a thorough examination of the inputs and outputs of our31

non-prior based motion refinement module through detailed ablations. Specifically, we explored the32

impacts of the model variants of the source structure encoder without the input of a source image, the33
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Table A2: Component ablations of the inputs and outputs of the proposed non-prior based motion
refinement module. We present results on the Voxceleb1 dataset.

L1 PSNR LPIPS AKD AED
w/o occlusion 0.0354 25.53 0.151 1.177 0.108

w/o flow 0.0361 25.40 0.155 1.190 0.117
w/o warped source feature 0.0355 25.48 0.153 0.183 0.113

w/o source image 0.0355 25.51 0.151 1.180 0.109
Ours full 0.0353 25.51 0.152 1.176 0.107

Table A3: Analysis on the different setting of r. We present results on the Voxceleb1 dataset. Our
method is generally robust to the pyramid levels and the patch radius.

L1 PSNR LPIPS AKD AED
P = 0, r = 2 0.0355 25.48 0.151 1.185 0.109
P = 0, r = 3 0.0354 25.52 0.151 1.174 0.107
P = 0, r = 4 0.0351 25.54 0.151 1.185 0.111
P = 1, r = 2 0.0354 25.51 0.151 1.186 0.110
P = 1, r = 3 0.0353 25.51 0.151 1.176 0.107
P = 1, r = 4 0.0353 25.51 0.151 1.183 0.109
P = 2, r = 2 0.0355 25.52 0.151 1.173 0.106
P = 2, r = 3 0.0355 25.49 0.152 1.184 0.109
P = 2, r = 4 0.0355 25.43 0.152 1.192 0.112

flow updater without the input of warped source features, and the flow updater without the output34

of occlusion or flow (i.e. only updating either occlusion or flow and keeping the other the same as35

in the initialization process). The results are presented in Table A2. It is noteworthy that both the36

warped source feature and the source image play an important role in the motion refinement process37

as demonstrated by the decreased AKD and AED metric values on the w/o warped source feature38

and w/o source image variants. Importantly, if we solely update the occlusion map without updating39

the motion flow, a significant decrease in AKD and AED metrics occurs, validating the significance40

of our motivation to refine the coarse motion flow estimated by prior-based motion models. We do41

observe a slight performance decrease when not updating the occlusion map, further demonstrating42

the importance of refining motion flow.43

Parameter analysis: In the main paper, we examined the sampled patch radius r in the structure44

correlation volume. Here we continue to explore this parameter along with the pyramid levels45

we utilized for the correlation volume, as both of these parameters can expand the the search46

space of the structure correlation volume, resulting in the expanded correlation feature dimensions.47

Specifically, we pool the structure correlation volume C ∈ Rh×w×h×w in the last two dimensions48

to obtain the pyramidal structure correlation volume {Ci ∈ Rh×w×h/2i×w/2i}Pi=0, In the main49

paper’s experiments, we set P to 1. Note that in each iteration, we sample patch correlation features50

on all Ci’s in the pyramid, as the pyramid design aims to capture more rich motion features of51

different scales, which is inspired by the optical flow method RAFT [7]. As presented in Table A3,52

when we increased the pyramid levels, we observed no significant performance improvements. This53

indicates that the single level pyramid provided sufficient motion information for our motion flow54

refinement. In summary, we empirically set P = 1, r = 3 in our primary experiments to demonstrate55

our approach’s generality, even though we could potentially achieve even better performance with56

other parameter choices.57
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Figure A1: Detailed architectures of the driving structure encoder, the source structure encoder, and
the image generator.
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