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In the supplementary material (SM), we first show two additional results including the correspon-1

dence between TNs and graphs and the coding efficiency of the proposed method mentioned in2

the manuscript. After that, in section 2, we give the proofs for our theoretical results given in the3

manuscript and SM. Last, additional results and details about the experiments are introduced.4

1 Additional discussion5

Table 1 illustrates the correspondence between graphs and the TN models. As shown in Table 1,6

different TN models correspond to different graphs in general. For instance, the TT model corresponds7

to a path graph PN , while the TR model corresponds to a cycle graph CN . Furthermore, we observe8

that the number of vertices |V | indicates the order of the TN, since all the cores are assumed to to9

external, i.e., all the cores own “free-legs”, which corresponds to the tensor modes. We can also10

observe that the maximum degree ∆G0
is independent from |V | in the models of TT, TR and PEPS.11

It implies that the cores in these TNs have a bounded tensor order, which is independent from the12

order of the TNs.13

Below, we give the coding efficiency of our proposed method on coding the graph-constrained TN14

structures.15

Corollary (Coding efficiency). With the assumption in Proposition 9 and a discrete uniform distribu-16

tion on HG0,R. Let Lmin be the minimum lossless code length on HG0,R, then the gap between Lmin17

to the proposed method satisfies18

Lours − Lmin ≤ O (|V | log(|V |)) .

The proof is given at the end of Section 2. As shown in the corollary, the coding redundancy by our19

method is upper-bounded by O (|V | log(|V |)). It is because the random-key trick allows multiple20

codes in the key space to correspond to the same permutation. However, such the redundancy also21

helps to solve the irregularity issue mentioned in the manuscript.22

2 Proofs23

Proof of Lemma 5. According to the isomorphism relationship given in Definition 3 about the24

topology-constrained TN structures, we know that there exists a permutation matrix P such that the25

“unweighted form” of H satisfying Hu = PH0P
>, where H0 denotes the adjacency matrix of G0.26

We then have its weighted form satisfying H = lR
(
PH0P

>), where lR( · ) represents the weighting27

function on each non-zero entries of the adjacency matrix. Since the permutation matrix corresponds28

to a bijective mapping of indices of a matrix, we can rewrite the above formula by29

H = PHw
0 P
> = PΨ−1 (G0, fR)P>, (1)

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



Table 1: Graphs corresponding to different tensor networks (TNs). In the table, |V | |E0|, |Aut(G0)|
denotes the number of vertices, edges and automorphisms of G0 respectively, and ∆G0

denotes the
maximum degree of G0. The last row illustrates examples of graphical diagrams for each TN model.
For brevity, we omit the “free-legs” from the tensor diagram.

TNs TT [11, 13] T-Tree [19] TR [23, 7] PEPS [15, 16] CTN [24]

Graphs G0 Path PN Tree TN Cycle CN Lattice Lm,n Complete KN

|V | N N N mn N

|E0| N − 1 N − 1 N (m− 1)(n− 1) N(N − 1)/2

|Aut(G0)| 2 1 to (N − 1)! 2N ≤ mn N !

∆G0 2 [2, N − 1] 2 2, 3, 4 N − 1

Examples

where Hw
0 denotes the adjacency matrix of G0 weighted by fR, which with Ψ is defined in Lemma30

2 and can be constructed by lR. Let FR be the set containing all fR under G0, we then construct a31

bijective mapping g : F → (ZR)
|E0|, in which we sequentially put the weight on each edge in E032

into each entry of a vector in (ZR)
|E0| following a following a subtraction by one. It is apparent that33

the mapping g is bijective. Therefore we have34

H = PΨ−1 (G0, fR)P> = PΨ−1
(
G0, g

−1(z)
)
P>, (2)

where z ∈ Z|E0|
R . Since both the Ψ and g are biejctive, their composition Ω: z 7→ Ψ−1

(
G0, g

−1(z)
)

35

is also bijective. The result is therefore proved.36

Proof of Proposition 6. The idea to prove the first claim is based on the fact that the adjacency37

matrices of isomorphic graphs are the same up to permutation. Let H0 be the adjacency matrix of G0.38

Since the graph or its complement is not complete, there is a pair of indices (ik, jk), ik 6= jk, i, j ∈39

[N ], k = 1, 2 such that H0(i1, j1) = 0 and H0(i2, j2) 6= 0. Because of the definition of HG0,R we40

know that all the isomorphisms of G0 are contained in HG0,R. Thus there is a permutation mapping41

π : [N ] → [N ] and its corresponding H1 ∈ HG0,R such that H1(i1, j1) = H1(π(i2), π(j2)) =42

H0(i2, j2). In this case, nz(H0 + H1) 6= 0 > nz(H0 6= 0), where X 6= 0 represents the logic43

operation to check if the entries of X equal zero, and nz( · ) denotes the function to have the number44

of non-zero entries of a matrix. It can be infered from the inequality that the number of edges of45

the graph G induced by H0 + H1 is larger than G0. Then G is not isomorphic to G0. Therefore46

H0 + H1 /∈ HG0,R. The proof for the first claim is complete.47

The basic idea to prove the second claim is to have the joint probability of the perturabtion and the48

element from HG0,R such that their addition is not in HG0,R. In particular, assuming we draw the49

elements from HG0,R at a uniform random distribution we have50

Pr ({B ∈ B,H ∈ HG0,R|B + H /∈ HG0,R})
≥ Pr ({B ∈ B,H ∈ HG0,R−1|B + H /∈ HG0,R}) .

(3)

The inequality is held since we shrink the size of the event. By some basic rules on probability we51

further have52

Pr ({B,H ∈ HG0,R−1|B + H /∈ HG0,R})
= Pr (H ∈ HG0,R−1)Pr ({B|B + H /∈ HG0,R} |H ∈ HG0,R−1)

=

(
1− 1

R

)|E0|
1−

(
1

2

) |V |2−|V |−2|E0|
2

 .

(4)
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Suppose the graph G0 is (k,l)-sparse, we have |E0| = k|V | − l. By that we get53

Pr ({B ∈ B,H ∈ HG0,R|B + H /∈ HG0,R})

≥
(

1− 1

R

)k|V |−l
1−

(
1

2

) |V |2−(1+2k)|V |+2l
2

 (5)

The above inequality gives a lower-bound of the probability that the perturbation is not closed, and54

can be simplied as the result given in the manuscript for a sparse G0 with a large R. The proof is55

therefore completed.56

Proof of Lemma 7. First, we know from the proof of Lemma 5 that for all H ∈ HG0
it can be57

decomposed as H = fR
(
PA0P

>), where P denotes the permutation matrix and fR denotes the58

edge weighting function on adjacency matrices. Assume Hi = fR,i

(
PiA0P

>
i

)
, i = 1, 2, and59

P1A0P
>
1 6= P2A0P

>
2 . It implies P1, P2 are not in the same automorphism. In this case we have60

H1 6= H2 if and only if fR,1 6= fR,2. Hence |HG0
| = |FR|

|S|V ||
|Aut(G0)| = R|E0| |V |!

|Aut(G0)| . The result61

is proved.62

Proof of Proposition 8. The results can be obtained by combining of Lemma 7 and the results given63

in Table 1. For the Tucker model, we can see its corresponded graph is a complete K-partite, i.e.,64

K1, N , where the left subset of vertices (only one vertex) corresponds to the internal core. We then65

know the size of graph automorphisms for the Tucker model equaling N !.66

Proof of Proposition 9. According to Lemma 7, we have67

log (HG0,R) ≥ |E0| log(R) + log (|V |!)− log (|V |)− log (∆G0 !)− (N −∆G0 − 1) log (∆− 1)

= |E0| log(R) + log ((|V | − 1)!)− log (∆G0
!)− (N −∆G0

− 1) log (∆− 1)

≥

(
1

2

∑
v∈V

deg (v)

)
log(R) + log ((|V | − 1)!)− log (∆G0

!)− (N −∆G0
− 1) log (∆− 1)

≥ 1

2
|V |δG0 log(R) + log ((|V | − 1)!)− log (∆G0 !)− (N −∆G0 − 1) log (∆− 1)

≥ 1

2
|V |δG0 log(R) +

1

2
log(2π) +

(
|V |+ 1

2

)
log(|V |)

− |V | − 1−
(

∆G0
+

1

2

)
log(∆) + δG0

− (|V | −∆G0
− 1) log(∆G0

− 1)

≈ O (|V | log(R) + |V | log(|V |))

,

(6)
where δG0 denotes the minimum degree of G0. Note that the first inequality holds due to Theorem 268

in the work [6], the second inequality holds by the Handshaking lemma, and we obtain the fourth69

inequality by the Stirling’s approximation.70

Proof of the coding efficiency corollary. We give the code length by the proposed method. First,71

we have the length corresponding to the rank aspect equalling Lrank = |E0| log(R). Then the code72

length of the permutation aspect by the random key trick can be given by Lp = C|E0|, where C73

denotes a constant w.r.t. the quantization accuracy on each random number. We therefore have the74

total code length as75

Lours = Lrank + Lp = |E0| log(R) + C|E0| ≤ |E0| log(R) +
1

2
|V |∆G0,RC, (7)

where the inequality holds due to the handshaking lemma. On the other side, assume the discrete76

uniform distribution on HG0,R, which obeys the principle of maximum entropy, we then know Lmin,77

the entropy on HG0,R, equals the logarithm of the cardinality of HG0,R known from Proposition 9.78

Therefore, the coding efficiency of our method is obtained as follows.79

Lours − Lmin ≤ O (|V | log(|V |)). (8)

Compared to Proposition 9, the term |V | log(R) is eliminated because Lours also contains the same80

term as known from Eq. (8) and (6).81

3



3 Additional details of the experimental results82

3.1 Structure search on synthetic tensor.83

3.1.1 Structure search on data in TR format84

Configuration of GA. In GA, throughout the synthetic data experiments, the maximum number85

of the generations is set to be 30. The population in each generation are set to be 150 under all86

settings. To balance the scale between the compression ratio and RSE, the trade-off parameter λ in87

the fitness score is set to be 200. During each generation in GA, 36% of the individuals with the worst88

fitness scores are eliminated and we adopted the reproduction trick in [] and set the reproduction89

number to be 2. Meanwhile, to calculate the selection probability of the recombination operation,90

we choose the hyper-parameter α = 20, β = 1. Moreover, we deploy a chance of 24% for each gene91

to mutate after the recombination is finished. We follow the differentiable programming approach92

[9] for computation of the RSE. Concretely, for each individual, we initialize the core tensors with93

Gaussian distribution of zero mean and 0.1 standard deviation, and apply the Adam optimizer [5]94

with a learning rate of 0.001 to carry out the gradient descent steps. we repeat the decomposition 495

times under different initialization for each individual so as to avoid the local minima during the TN96

decomposition, then select the smallest RSE for fitness evaluation.97

Discussion on additional results. In this section, the GA-based algorithm that only learns the ranks98

by our coding method is also implemented termed as TRGA-R. The parameter setting of this algorithm99

is the same as our method and the experimental results are reported in Table 2. From the result we100

can see that TRGA-R fail dealing with the permutation on tensor-modes and these results indicate101

the fact that there is no TR decomposition which can perfectly learn the TR decomposition with102

permutation on tensor-modes and this demonstrates the importance of learning the permutation of the103

TR decomposition.104

Moreover, we also attempt to search the optimal TR structure for an order-20 tensor in TR format.105

The aim is to evaluate the effectiveness of the methods in the high-order case. To generate the data,106

we first let the dimension of each tensor mode equal 2. Then, we randomly generate the TR-ranks107

at discrete uniform distribution on {1, 2, 3} and the cores at Gaussian distribution N(0, 0.3), and108

randomly permute the tensor modes after contracting the cores. In GA, the maximum number of109

the generations is set to be 50 and the TR-ranks bound R be equal to 3. The trade-off parameter110

λ is set to 100 and elimination rate is set to 10%. Furthermore, the initialization of core tensors is111

according to Gaussian distribution of N(0, 0.3). Other parameters are same to the ones given in the112

above experiment. Table 3 illustrates experimental results obtained by different methods. As shown113

in Table 3, our method achieves the best Eff., yet all the methods cannot learn the structure as good114

as the ground-truth even for ours. The reason is mainly about the extremely huge search space for the115

order-20 tensor.116

3.1.2 Structure search on data in other TN format117

Data Generation. For the synthetic data generation of T-tree (order-7) [19], PEPS (order-6) [15], hi-118

eratical Tucker (H-Tucker, order-6) [3] and multi-scale entanglement renormalization ansatz (MERA,119

order-8) [2, 12], we first let the dimension of each tensor mode equal 3. Then, we randomly generate120

the TN-ranks at discrete uniform distribution on {1, 2, 3, 4} according to the corresponding graphs121

demonstrated in Figure 1. In the Figure, the blue nodes with an outer indices indicate the external122

cores and the orange nodes indicate the internal cores. After that, the cores are generated at Gaussian123

distribution N(0, 0.1), and randomly permute the tensor modes on the blue nodes after contracting124

the cores. Note that in MERA we impose additional cores (the blue ones) for evaluating the proposed125

in a larger search space.126

Coding method on the H-Tucker and MERA model. Unlike T-tree and PEPS, which only contain127

external cores, the coding schemes for H-Tucker and MERA is different. Specifically, for H-Tucker128

and MERA, we fix the permutations of the internal cores, and therefore only use the random key to129

encode the permutation of the external cores.130
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Table 2: Experimental results of searching structures on synthetic data in TR format. In the table, Eff.
denotes the parameter ratio between the structures by different methods and the ground-truths; RSE
in round brackets indicates the relative square error (ignored if smaller than 10−4.) and Gen. in angle
brackets indicates the generation of the reported individual in TNGA, TRGA-R and our method.

Trial Order 4 – Eff.↑ (RSE↓) 〈Gen.↓〉
TR-SVD [23] TR-LM [10] TR-ALSAR [23] Bayes-TR [14] TRGA-R TNGA [8] Ours

A 1.00 1.00 0.21 1.00 1.00 〈006〉 1.00 〈004〉 1.00 〈003〉
B 0.64 1.00 1.00 0.64 1.00 〈004〉 1.00 〈002〉 1.00 〈003〉
C 1.17 1.17 0.23 1.00 1.17 〈006〉 1.17 〈005〉 1.17 〈003〉
D 0.57 0.57 0.32 1.25 (0.10) 0.80 (0.01) 〈007〉 1.00 〈003〉 1.00 〈002〉
E 0.43 0.48 0.40 0.40 0.48 〈001〉 1.00 〈007〉 1.00 〈003〉

Trial Order 6 – Eff.↑ (RSE↓) 〈Gen.↓〉
TR-SVD [23] TR-LM [10] TR-ALSAR [23] Bayes-TR [14] TRGA-R TNGA [8] Ours

A 0.21 0.44 0.14 (2e-3) 0.25 (2e-3) 0.46 (8e-3) 〈026〉 0.82 〈011〉 1.00 〈010〉
B 0.14 0.15 0.14 0.44 (0.40) 0.29 (0.02) 〈021〉 0.90 (6e-3) 〈015〉 1.00 〈009〉
C 0.57 1.00 0.85 0.29 1.00 〈008〉 1.00 〈022〉 1.00 〈012〉
D 0.21 0.39 0.10 0.13 0.55 (0.01) 〈007〉 1.03 〈018〉 1.16 〈010〉
E 0.15 0.30 0.01 (0.02) 0.12 0.27 (1e-3) 〈008〉 1.00 〈016〉 1.00 〈007〉

Trial Order 8 – Eff.↑ (RSE↓) 〈Gen.↓〉
TR-SVD [23] TR-LM [10] TR-ALSAR [23] Bayes-TR [14] TRGA-R TNGA [8] Ours

A 0.10 0.16 0.03 (0.20) 0.03 0.16 (3e-3) 〈027〉 0.48 〈017〉 1.00 〈019〉
B 0.09 0.43 0.06 (0.02) 0.06 (7e-4) 0.34 (2e-3) 〈013〉 0.29 (2e-3) 〈020〉 1.02 〈015〉
C 0.03 0.31 0.02 (0.01) 0.02 0.37 (3e-3) 〈007〉 0.49 〈015〉 1.11 〈025〉
D 0.20 0.53 0.02 (0.07) 0.02 (0.02) 0.53 〈014〉 0.32 〈027〉 1.06 〈013〉
E 0.33 0.33 0.02 (0.02) 0.02 (3e-3) 0.33 〈006〉 0.23 〈023〉 0.88 〈010〉

Table 3: Experimental results of searching structures on an order-20 synthetic tensor in TR format.
In the table, Eff. denotes the parameter ratio between the structures by different methods and the
ground-truths; RSE in round brackets indicates the relative square error and Gen. in angle brackets
indicates the generation of the reported individual in our method.

Order 20 – Eff.↑ (RSE↓) 〈Gen.↓〉
TR-SVD [23] TR-LM [10] TR-ALSAR [23] Bayes-TR [14] Ours

0.16 (0.23) 0.25 (0.23) 0.19 (0.49) 0.46 (1.00) 0.64 (0.22) 〈032〉

3.2 Benchmarks on real-world data131

3.2.1 Image compression132

Data Preprocessing. In the experiment, we randomly select 14 natural images from the BSD500 [1].133

We use the Matlab commands to “resize” and “rgb2gray” to turn these into grayscaled images of size134

256× 256, and then these grayscaled images is rescaled to [0, 1], following tensorization of the size135

4× 4× 4× 4× 4× 4× 4× 4. The images used in this experiment are demonstrated in Figure 2.136

Configuration of GA. For our method, we spawn a group of individuals with population 300 in137

each generation, and set the maximum number of generations, elimination rate to be 30 and 10%,138

respectively. In addition, the bound of TR-ranks is set to 14, and we set λ = 5 and the learning139

rate of the Adam optimizer to be 0.01. Moreover, we set the reproduction number to be 1, the140

chance of mutation to be 30%. We initialize the core tensors with Gaussian distribution of N(0, 0.1).141

Meanwhile, to calculate the selection probability of the recombination operation, we choose the142

hyper-parameter α = 25, β = 1.143

Additional results. The compression ratio (CR, in log form) and RSE (in round brackets) of 14144

natural images by the prposed methods and TR-SVD, TR-LM, TR-ALSAR, Bayes-TR and TRGA-R145
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T-Tree PEPS H-Tucker MERA
Figure 1: Illustration of the TN structures applied in the synthetic experiment.

Figure 2: Illustration of the employed images in image compression experiment.

are demonstrated in Table 4. In the table we also report the permutations learned by our method. For146

TRGA-R the parameter λ is manually adjust to meet the RSE obtained by our method and the other147

parameters is set as the same.148

3.2.2 Image completion149

Data Preprocessing. In the experiment, 8 images from USC-SIPI [18] are chosen. We use the150

Matlab command “resize” to turn those into images of size 256× 256× 3, and then these images are151

further rescaled to [0, 1], following VDT to get its tensorized form of the size 48 × 3. The images152

used in this experiment are demonstrated in Figure 3.153

To generate image with missing data, we firstly use Matlab command "randperm" to generate random154

integer sequence with length equal to number of image elements. Based on the missing rate, we155

select a subset of this sequence to generate a 0− 1 mask tensor with size equal the image and using156

this mask we can generate the missing image.157

Configuration of GA. For our method, we spawn a group of individuals with population 300 in158

each generation, and set the maximum number of generations, elimination rate to be 30 and 10%159

respectively. In addition, the bound of TR-ranks is set to 14, and we set λ which balance the scale160

between compression ratio and the observed values RSE to be 1.5, 0.0008, 0.0007 for missing rate161

0.5, 0.7, 0.9. The learning rate of the Adam optimizer to be 0.001. Moreover, we set the reproduction162

number to be 1, the chance of mutation to be 24%. We initialize the core tensors with Gaussian163

distribution of N(0, 0.1). Meanwhile, to calculate the selection probability of the recombination164

operation, we choose the hyper-parameter α = 25, β = 1.165

Additional results. The RSE of predicting the missing values of 8 color images under different166

missing rate by the proposed method and TTSGD, TRLRF, TRALS, TRWOPT are demonstrated167

in Table 5. In these methods, we search the TR ranks from 2 to 14 and the TT ranks from 2 to 18168

for each image to obtain the best results. Visual comparison of different methods in recovering 90%169

missing images are shown in Figure 4.170

3.2.3 Reparameterization of tensorial Gaussian process171

Datasets. In this task, we choose three univariate regression datasets from the UCI and LIBSVM172

archives. The Combined Cycle Power Plant (CCPP)1 dataset consists of 9569 data points collected173

1https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
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Table 4: Experimental results of images compression. In the table, log CR denotes the compression
ratio in the log form; RSE in round brackets indicates the relative square error and Permutation in
brace indicates the permutations learned by our method. We highlight the results if the both CR and
RSE achieve the best.

Images Trivial – log CR↑ (RSE↓) {Permutation}
TR-SVD [23] TR-LM [10] TR-ALSAR [23] Bayes-TR [14] TRGA-R Ours

0 0.7616 (0.1549) 0.7452 (0.1539) 1.4563 (0.2587) 0.9031 (0.1556) 1.0771 (0.1572) 1.1045 (0.1549) {12348765}
1 0.9891 (0.1428) 0.8388 (0.1349) 1.2317 (0.1556) 1.1530 (0.1356) 1.3006 (0.1360) 1.3428 (0.1338) {15678432}
2 0.8497 (0.1539) 0.8201 (0.1549) 1.2549 (0.1803) 0.9591 (0.1661) 1.2660 (0.1568) 1.3162 (0.1559) {12348765}
3 0.9417 (0.1738) 0.9300 (0.1783) 1.3268 (0.1865) 1.0834 (0.1949) 1.3207 (0.1712) 1.3675 (0.1706) {15678432}
4 0.7571 (0.1806) 0.7549 (0.1792) 1.3988 (0.2553) 0.9591 (0.1871) 1.0513 (0.1806) 1.0658 (0.1780) {12567843}
5 1.2680 (0.0825) 1.2749 (0.0812) 1.1664 (0.0806) 1.6369 (0.0804) 1.7373 (0.0825) 1.7673 (0.0800) {13487562}
6 1.0942 (0.1000) 1.1722 (0.0995) 1.2953 (0.1179) 1.4028 (0.0985) 1.4421 (0.0975) 1.4717 (0.0959) {15678432}
7 1.1846 (0.1196) 1.1568 (0.1233) 1.3274 (0.1245) 1.4028 (0.1166) 1.5216 (0.1183) 1.5670 (0.1179) {13487652}
8 0.6712 (0.1673) 0.6712 (0.1673) 1.1895 (0.2223) 0.9031 (0.1694) 1.0998 (0.1676) 1.1154 (0.1676) {12348765}
9 0.7555 (0.1606) 0.8001 (0.1600) 0.3518 (0.2083) 0.9591 (0.1649) 1.1778 (0.1622) 1.1928 (0.1597) {12348765}

10 1.1005 (0.1043) 1.1151 (0.1026) 1.2943 (0.1024) 1.5051 (0.1054) 1.5680 (0.1039) 1.5789 (0.1025) {12348765}
11 0.9687 (0.1113) 0.9687 (0.1113) 1.5526 (0.1620) 1.2285 (0.1162) 1.3070 (0.1149) 1.3517 (0.1105) {12348765}
12 1.0896 (0.1337) 0.9694 (0.1258) 1.8113 (0.1552) 1.4028 (0.1291) 1.4480 (0.1257) 1.4877 (0.1245) {15678432}
13 1.0579 (0.1092) 1.0238 (0.1095) 1.6091 (0.1535) 1.2285 (0.1065) 1.3274 (0.1063) 1.3291 (0.1063) {18765432}

Images VDT – log CR↑ (RSE↓) {Permutation}
TR-SVD [23] TR-LM [10] TR-ALSAR [23] Bayes-TR [14] TRGA-R Ours

0 0.8871 (0.1679) 0.9191 (0.1738) 1.6716 (0.2902) 0.9591 (0.1751) 1.0975 (0.1682) 1.0906 (0.1676) {13456782}
1 1.1281 (0.1411) 1.0513 (0.1367) 1.4022 (0.1838) 1.1005 (0.1351) 1.2948 (0.1338) 1.2799 (0.1334) {18765432}
2 1.1281 (0.1664) 1.0621 (0.1622) 0.3208 (0.1581) 1.0597 (0.1662) 1.3207 (0.1597) 1.2974 (0.1581) {18765432}
3 1.0787 (0.1783) 1.0968 (0.1758) 1.2645 (0.1808) 1.4151 (0.1885) 1.3806 (0.1749) 1.3619 (0.1741) {12345768}
4 0.8559 (0.2015) 0.8382 (0.1931) 0.6981 (0.2490) 1.0430 (0.2149) 1.0658 (0.1884) 1.0752 (0.1892) {17865432}
5 1.7106 (0.0837) 1.6222 (0.0812) 0.0260 (0.0831) 1.6211 (0.0789) 1.7657 (0.0800) 1.7330 (0.0787) {18765432}
6 1.2349 (0.1000) 1.2487 (0.1015) 1.3656 (0.1225) 1.3223 (0.1020) 1.4213 (0.0995) 1.4248 (0.1000) {13287654}
7 1.2232 (0.1221) 1.0427 (0.1187) 1.0985 (0.1319) 1.4028 (0.1220) 1.4836 (0.1196) 1.4756 (0.1204) {18765432}
8 0.8852 (0.1780) 0.8673 (0.1766) 1.4055 (0.2324) 1.0430 (0.1936) 1.0812 (0.1744) 1.0860 (0.1764) {18675432}
9 0.9860 (0.1842) 0.8478 (0.1787) 1.1949 (0.2215) 0.9664 (0.1846) 1.1302 (0.1738) 1.1062 (0.1720) {12345678}

10 1.2675 (0.1036) 1.2450 (0.1020) 1.1537 (0.1086) 1.4028 (0.1043) 1.5555 (0.1049) 1.5137 (0.1020) {12876543}
11 1.1334 (0.1123) 1.1695 (0.1197) 1.4298 (0.1571) 1.2285 (0.1166) 1.2964 (0.1086) 1.3184 (0.1118) {18765432}
12 1.1309 (0.1226) 1.1313 (0.1234) 1.3845 (0.1459) 1.2285 (0.1236) 1.3668 (0.1200) 1.3916 (0.1225) {12345678}
13 1.0292 (0.1284) 1.0138 (0.1410) 1.2870 (0.1759) 1.1530 (0.1331) 1.2431 (0.1281) 1.2254 (0.1261) {13456872}

from a power plant over six years (2006-2011), where the response is the hourly electrical energy174

output (EP) and 4 features are hourly average ambient variables Temperature (T), Ambient Pressure175

(AP), Relative Humidity (RH) and Exhaust Vacuum (V). The Protein2 data contain 45730 instances176

with 9 attributes and a single response. The MG3 data have 1385 data points with 6 features. For177

all the datasets, we standardize responses and features by removing the mean and scaling to unit178

variance, then randomly choose 80% of the data for training and the rest for testing, which is the179

same with settings in TTGP [4].180

Task. In this experiment, we aim to demonstrate that our GA method is capable of searching more181

efficient structures of given TT representations in machine learning tasks, such as Gaussian process182

(GP). Specifically, tensorial Gaussian process (TTGP) [4] trains a GP by tensorizing and representing183

the variational mean vector of the inducing points with TT format. However, TTGP are restriced184

to TT format and the TT-ranks are treated as hyper-parameters and pre-defined. To learn more185

compacted structures, we firstly train a TTGP with given TT-ranks (we choose 10 here) and get186

the TT representation of the variational mean. Then we use the proposed GA method to search for187

alternative TN structures of the variational mean. Finally, we plug the learned variational mean into188

the original TTGP model for inference. We evaluate the results by mean squared error (MSE) on189

2https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+
Tertiary+Structure

3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html#mg
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Figure 3: Illustration of the employed images in image completion experiment.

Table 5: images completion results under different missing rates

Images 50% missing

TTSGD [22] TRLRF [21] TRALS [17] TRWOPT [20] Ours

0 0.2963 0.2280 0.2332 0.2242 0.2121
1 0.1288 0.0751 0.0795 0.0839 0.0704
2 0.1864 0.1345 0.1452 0.1452 0.1309
3 0.1888 0.1537 0.1590 0.1583 0.1527
4 0.1178 0.0770 0.0845 0.0888 0.0772
5 0.1858 0.1363 0.1468 0.1396 0.1294
6 0.1343 0.0942 0.1039 0.1055 0.0961
7 0.0800 0.0565 0.0534 0.0596 0.0503

Images 70% missing

TTSGD [22] TRLRF [21] TRALS [17] TRWOPT [20] Ours

0 0.3029 0.2724 0.2521 0.2360 0.2352
1 0.1320 0.0814 0.0850 0.0851 0.0762
2 0.1853 0.1422 0.1484 0.1514 0.1395
3 0.1978 0.1646 0.1633 0.1682 0.1603
4 0.1176 0.0902 0.0899 0.0916 0.0819
5 0.1888 0.1407 0.1520 0.1574 0.1345
6 0.1351 0.1030 0.1060 0.1072 0.0983
7 0.0831 0.0691 0.0561 0.0649 0.0556

Images 90% missing

TTSGD [22] TRLRF [21] TRALS [17] TRWOPT [20] Ours

0 0.3227 0.4536 0.3679 0.3540 0.3203
1 0.1310 0.1392 0.1152 0.1286 0.1139
2 0.1960 0.2064 0.1884 0.2011 0.1775
3 0.2036 0.2113 0.2004 0.2028 0.2056
4 0.1301 0.1691 0.1330 0.1311 0.1203
5 0.1971 0.1960 0.1992 0.2078 0.1835
6 0.1471 0.1425 0.1389 0.1421 0.1250
7 0.0840 0.0917 0.0700 0.0741 0.0697

the test datasets. The results show that our method achieves almost the same MSE with the original190

TTGP by using fewer parameters, which reveals the potential of structure searching in machine191

learning tasks.192

Configuration of GA. For our method, we spawn a group of individuals with population 150, 190,193

300 in each generation for the TT variational mean of CCPP, MG and Protein regression task,194

respectively. Furthermore, we set the maximum number of generations, elimination rate to be 30195

and 30% respectively. In addition, for these tasks, the bound of TR-ranks is set to 14, and we196

set λ = 1 × 107, 1 × 107, 1 × 103, respectively. Moreover, we set the learning rate of the Adam197

optimizer to be 0.001 and set the reproduction number to be 1. The chance of mutation is set to be198

8



Figure 4: Visual completion results of eight color images. Original images, 90% missing images,
images recovered by TTSGD, TRLRF, TRALS, TRWOPT and the proposed method are demonstrated
from the top row to the bottom row correspondingly.

30%. We initialize the core tensors with Gaussian distribution of N(0, 0.01), N(0, 0.01), N(0, 0.04),199

respectively. To calculate the selection probability of the recombination operation, we choose the200

hyper-parameter α = 20, β = 1.201

3.3 Implementation202

In the experiments, we implement our GA on graphics processing unit (GPU, Nvidiar V100) clusters203

following a central processing unit (CPU, Intelr Xeonr E5-2690) node. Concretely, we exploit the204

CPU node for receiving the data, employing all genetic operators and assigning the individuals into205

different GPUs, which calculate the TN decomposition under given topology and output the fitness206

value. After the calculation for each generation, the CPU node will collect the fitness values and207

generates new individuals for the next generation.208
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