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ABSTRACT
The rapid advancement of generation methods has sparked signif-
icant concerns about potential misuse, emphasizing the urgency
to detect new types of forgeries in open-world settings. Although
pioneering works have explored the classification of open-world
deepfakes (OW-DF), they neglect the influence of new forgery
techniques, which struggle to handle a greater variety of manipu-
lable objects and increasingly realistic artifacts. To align research
with the evolving technologies of forgery, we propose a new task
named Open-World Deepfake Interpretation (OW-DFI). This task
involves the localization of imperceptible artifacts across diverse
manipulated objects and deciphering forgery methods, especially
new forgery techniques. To this end, we leverage non-casual se-
mantics from large visual models (LVMs) and eliminate them from
the nuanced manipulated artifacts. Our proposed model includes
Semantic Intervention Learning (SIL) and Correlation-based Incre-
mental Learning (CIL). SIL enhances the inconsistency of forgery
artifacts with refined semantics from LVMs, while CIL combats
catastrophic forgetting and semantic overfitting through an inter-
forgery inheritance transpose and a targeted semantic intervention.
Exploiting LVMs, our proposed method adopts an unconventional
strategy that aligns with the semantic direction of LVMs, mov-
ing beyond just uncovering limited forgery-related features for
deepfake detection. To assess the effectiveness of our approach in
discovering new forgeries, we construct an Open-World Deepfake
Interpretation (OW-DFI) benchmark and conduct experiments in
an incremental form. Comprehensive experiments demonstrate
our method’s superiority on the OW-DFI benchmark, showcasing
outstanding performance in localizing forgeries and decoding new
forgery techniques. The source code and benchmark will be made
publicly accessible on [website].

KEYWORDS
Deepfake Detection, Interpretation, Open-world, No-casual Elimi-
nation, LVM

1 INTRODUCTION
As the realm of Artificial Intelligence Generated Content (AIGC)
evolves, the creation and alteration of arbitrary objects become
more feasible. Unfortunately, such technological advancements

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: The proposed OW-DFI task vs. existing deepfake
detection tasks. OW-DFI covers a wider array of forgeries,
crafted using a more sophisticated and varied range of
forgery technologies, incorporating 24 AIGC forgery meth-
ods based on CNN, GAN, Diffusion, etc. Moreover, acknowl-
edging the advancements in generative capabilities, OW-DFI
offers a more comprehensive assortment of forgery subjects
compared to its predecessor, OW-DFAandDFD. This enhance-
ment is not limited to the entire facial area but also includes
specific face-related objects like eyeglasses, and extends to
non-facial elements such as animals and backgrounds.

also provide malicious entities with tools to manipulate images for
nefarious purposes, such as swaying public opinion or fabricating
evidence. Thus, the development of robust forgery detection tech-
nologies becomes essential to provide expert testimony and protect
information security, public sentiment, and societal trust.

Current methods in forgery detection [14, 23] show promise in
identifying falsified images with considerable accuracy. However,
they often fall short in offering nuanced interpretations of subtle
forgeries. This gap has led to the increased focus on Deepfake
Attribution (DFA) [38] and Deepfake Localization (DFL) [31, 51],
methodologies acclaimed for their ability to detail the "how" and
"where" behind digital manipulations. The prevalent approaches for
deepfake interpretation generally presuppose a static environment,
assuming identical forgery distributions across training and testing
datasets. With AIGC technology’s continuous evolution, adapting
detection mechanisms to uncover novel forgery techniques in real-
world scenarios becomes crucial.

Until now, the exploration into open-world deepfake (OW-DF)
detection has been relatively limited. A significant development is
the introduction of open-world deepfake attribution (OW-DFA) [38],
which aims to identify undisclosed forgery methods used on unla-
beled facial imagery. While this pioneering work establishes a basis
for comprehending OW-DF, its emphasis on classification tends to
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marginalize the intricate visual manipulations brought about by
emerging forgery techniques. Our study delves into two pivotal
dimensions of these evolving visual effects: an extensive range
of manipulable objects and increasingly nuanced forgery
signatures. This expansion in manipulable objects is made possi-
ble by the advanced capabilities of AIGCs to inpaint any subject
with specific content or modify backgrounds with ease [33, 40].
However, OW-DFA [38] primarily focuses on facial characteristics,
such as identity and expressions, hence overlooking an extensive
spectrum of manipulable elements, ranging from particular body
parts to accessories and animals. Pertaining to the challenge of
detecting nearly invisible forgery traces, it introduces a critical
inquiry: "Where exactly is the forgery located? Given these consider-
ations, the setting of OW-DFA is deemed insufficient in interpreting
forgeries amidst the continually progressing visual effects in an
open-world context. To bridge this gap, we propose the novel Open-
World Deepfake Interpretation (OW-DFI) task, aimed at enhancing
OW-DF by providing a comprehensive interpretation of a wide
array of realistically manipulable objects, as illustrated in Figure
1. This interpretation process entails the precise localization of all
forgery regions and trustworthy attributing both known and newly
discovered forgery methods. Furthermore, considering the substan-
tial visual gap between old and advanced forgeries, our OW-DFI
task is devised to operate in an incremental manner, addressing the
continual evolution of AIGCs within the open-world paradigm.

OW-DFI typically focuses on learning representative semantic
features to identify out-of-distribution (OOD) data and classify ob-
jects that are introduced incrementally. OW-DFI faces unique chal-
lenges in identifying forgery traces, as the embeddings of subtle ar-
tifacts involved in forgeries are susceptible to being overshadowed
by more dominant semantic features. The distinction highlights
the specialized nature of OW-DFI in dealing with the intricacies
of forgery detection. This limitation arises from the inadequacy
of training samples to comprehensively represent the diversity of
manipulable objects, potentially resulting in overfitting to common
semantic features such as "hair". To tackle this challenge, we pro-
pose a Deepfake Interpretation Network (DIN), tailored to eliminate
non-causal semantics within OW-DFI. Specifically, we propose a
semantic intervention learning that harnesses the rich semantics
from LVMs. By adaptively refining semantic-invariant channels
within the overall feature space derived from an arbitrary LVM,
our proposed semantic purification module effectively removes
ambiguous information without introducing additional parameters.
Furthermore, we introduce a semantic-prior intervention module to
inhibit the model’s acquisition of non-causal semantics. To fortify
lifelong learning capacities, we integrate correlation-based incre-
mental learning to consider the inheritance between old forgery
technologies and advanced ones. Additionally, to mitigate overfit-
ting to semantics with few samples, we propose a semantic-prior
orientation module to dispel coherence with semantics within the
confines of each unique novel class. In summary, our contributions
are three-fold:

• We present a novel task called Open-World Deepfake Interpreta-
tion (OW-DFI), tailored to tackle the challenges of interpreting
and identifying new forgeries in an incremental framework. This
task is devised to counteract the sophisticated visual effects and

the expanded variety of manipulable objects that arise with the
advent of new forgeries in open-world environments.

• We propose a Deepfake Interpretation Network (DIN) to localize
deepfakes and investigate the specific forgery method. In scenar-
ios involving previously unseen forgeries, DIN distinguishes it
from the known ones. The proposed network harnesses the intri-
cate semantic representations from large visual models and con-
sists of a semantic purification module as well as a semantic inter-
vention module to suppress the learning of non-causal semantics.
In its incremental learning phase, DIN adopts a correlation-based
incremental module, facilitating knowledge transfer across var-
ious forgeries, and incorporates a semantic-prior orientation
module to counteract semantic overfitting.

• Through comprehensive experiments conducted on 24 forgery
methods collected from 4 diverse datasets, including ForgeryNet,
HiFi-IFDL, Dolos, and FF++, we demonstrate the outperforming
performance of our approach to localize deepfakes and discover
novel forgeries, which provides reliable interpretation.

2 RELATEDWORK
2.1 Forgery Interpretation
To combat the abuse of AIGC, there is an escalating demand for
forgery detection methods that can effectively identify manipulated
images. With the advancement of AIGCs, several approaches[30,
43, 45] have been developed to extract universal forgery features
across different forgery methods. For example, DFIL [30] refines
forgery features from emerging samples to execute generalized
binary classification within a continuous learning paradigm. As
AIGC-generated artifacts grow increasingly indistinguishable from
genuine content, there is a heightened demand for more nuanced in-
terpretation. Existing forgery interpretationmethods can be broadly
categorized into two categories: forgery attribution, which seeks
to ascertain the source model of counterfeit images, and forgery
localization, which aims to identify the manipulated region.

Forgery attribution. Previous studies [46] have largely con-
centrated on attribution within fully synthesized GAN models by
applying intricate tactics to identify unique ’fingerprints’ left by var-
ious network architectures. For instance, DNA-Det [46] enhances
the discrepancy between various forgery techniques through de-
tailed patch-level contrastive learning. Facing the rapid progression
of GAN technologies, Open-world GAN [12] undertakes the catego-
rization of both recognized and newly emerging GAN methods for
attribution purposes. Additionally, CPL [38] extends fully synthe-
sized images with facial region manipulation, facilitating actions
like identity swapping and expression transferring. Nonetheless,
the increasing diversity of manipulable objects accompanying the
evolution of AIGCs has not garnered adequate attention. Therefore,
solely focusing on the question of "What constitutes image forgery"
is insufficient.

Forgery Localization. Initial efforts [13, 39] in localizing ma-
nipulated pixels have targeted detecting inconsistencies in texture.
For example, TurFor [13] merges the original RGB modality with a
noise-sensitive fingerprint to amplify the inconsistency of manipu-
lated regions. SAFL [39] aims to distinguish patches sharing identi-
cal semantics within an image to highlight semantic-independent in-
consistencies. However, these methods are mainly effective against
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manual editing like copy-move and splicing, potentially struggling
against advanced generation techniques that yield uniform textures.
To pinpoint CNN-based forgeries, LVNet[35] proposes a multi-stage
modality fusion model that incorporates multi-scale information for
forgery localization. DADF [19] employs a multi-scale adapter to
capture both short-range and long-range forgery contexts from pre-
trained LVMs. However, while these localization methods prove
effective in controlled environments, their adaptability to novel
forgery techniques and the broadening spectrum of manipulable
objects in an open-world setting remains uncertain.

2.2 Open-World Settings
The concept of Open-world [2] refers to a model that performs trust-
worthy classification and incrementally learns to identify newly
introduced classes. Benefiting from its resemblance to real-world
scenarios, research on open-world problems has significantly in-
creased [3, 10, 25]. In the forgery domain, the recent emergence of
OW-DFA [38] marks the first framework with open-world forgery
attribution. However, OW-DFA focuses solely on exploring new
forgery categories within the open classification space, neglect-
ing the interpretation of open visual effects, which encompass a
wider array of realistic and diverse manipulable objects. Consider-
ing this, we propose OW-DFI with the aim of providing pixel-level
trustworthy forgery attributions and achieving novel forgery dis-
covery under the challenging few-shot incremental setting. Unlike
the learning of salient semantics in other visual tasks, the sub-
tle nature of forgery traces introduces two key challenges that
increase the complexity of OW-DFI. During the feature learning
phase, forgery features are prone to being overshadowed by more
prominent semantic features. Some methods [14, 23, 39] attempt to
isolate semantic features by training additional semantic models for
fixed categories, presuming uniform semantics across training and
testing objects. Nonetheless, the occurrence of arbitrarily forged
objects in the open world poses significant challenges. To address
these issues, we propose exploiting the extensive semantic infor-
mation encapsulated in LVMs such as CLIP [32] and DINO [29].
During the incremental learning phase, a prevalent strategy [3, 10]
involves employing prototype-based metric learning to mitigate
catastrophic forgetting. However, the subtle discrepancies between
forgery methods pose challenges in explicitly retaining the forgery
knowledge of the model. In the field of OW-DF, limited attention
has been paid to incremental few-shot learning [30, 47], which
lacks interpretability as it primarily updates the binary classifica-
tion space, neglecting the nuanced relationships between forgery
methods. In OW-DFI, we investigate the knowledge transmission
from established forgeries to more advanced ones, thereby devel-
oping an attribute space to improve interpretability.

3 OPEN-WORLD DEEPFAKE
INTERPRETATION TASK

The OW-DFI task aims to address challenges posed by both an
open classification space and the increased diversity of realistic
manipulable objects resulting from the evaluation of AIGCs. Its
pipeline involves the comprehensive interpretation of known forg-
eries and the discovery of novel ones, supplemented by incremental
few-shot learning for continuous assessment. Initially, the pipeline

Categories Method Source Objects Num. samples

Train Val Test

CNN

Faceshifter[21] ♠♣ 1 1500 300 600
Deepfakes ♥♣ 1 2800 554 880
Face2Face[42] ♥ 1 2950 586 568
NeuralTextures[41] ♥ 1 5 0 578
FaceSwap ♥ 1 5 0 582

GAN

FirstOrderMotion[36] ♠ 1 1485 300 300
STGAN[24] ♣ 6 1017 900 900
MaskGAN[20] ♠ 6 1482 300 900
SC-FEGAN[17] ♣ 1 5 0 300
FSGAN[28] ♣ 1 5 0 300
ATVG-Net[4] ♠ 1 5 0 300
Talking-headVideo[11] ♠ 1 5 0 300
StyleGAN2[18] ♠ 1 5 0 300
STarGAN[7] ♣♠ 2 5 0 600
DiscoFaceGAN[9] ♣ 1 5 0 300
DSS[15] ♣ 1 5 0 300
HiSD[22] ♠ 1 5 0 300

Diffusion

repaint-p2[6] ♦ 5 3000 600 1200
pluralistic[48] ♦ 5 5 0 600
DDPM[16] ♣ 3 5 0 300
DDIM[37] ♣ 3 5 0 300
GLide[27] ♣ 1 5 0 300
D-latent[33] ♣ 3 5 0 300
ldm[33] ♦ 5 5 0 600

Table 1: Specification of the OW-DFI benchmark. It outlines
24 forgery methods and describes their types, originating
datasets, categories of manipulated objects, and the num-
ber of samples. The source datasets are denoted as ♥ :=FF++,
♣ :=HiFi-IFDL, ♠ :=Forgerynet, and ♦ :=Dolos. These meth-
ods are organized into base sets and incrementally joint sets
across Session 1 , Session 2 , Session 3 , and Session 4 , re-
flecting their chronological order of public availability.

utilizes a base dataset 𝐷𝑖𝑛 = 𝐷𝑖𝑛0 , 𝐷𝑖𝑛1 , 𝐷𝑖𝑛2 , ..., 𝐷𝑖𝑛
𝑁
, comprising a

set of real images 𝐷𝑖𝑛0 and 𝑁 base forgery methods with suffi-
cient annotations. Additionally, 𝐷𝑜𝑢𝑡 = 𝐷𝑜𝑢𝑡1 , 𝐷𝑜𝑢𝑡2 , ..., 𝐷𝑜𝑢𝑡

𝑀
repre-

sents 𝑀 subsequent forgery methods collected over time as new
forgery technologies emerge. Following training on 𝐷𝑖𝑛 as the
initial deepfake interpretation task, the model undergoes incre-
mental updates through sequential training with few-shot anno-
tations from 𝐷𝑜𝑢𝑡 . Let 𝑖 denote the 𝑖th task with known forgeries
𝐷𝑖 = {𝐷𝑖𝑛0 , 𝐷𝑖𝑛1 , 𝐷𝑖𝑛2 , ..., 𝐷𝑖𝑛

𝑁
, 𝐷𝑜𝑢𝑡1 , ..., 𝐷𝑜𝑢𝑡

𝑖
}. The model incremen-

tally learns from 𝐷𝑖 to 𝐷𝑖+1 as new forgeries 𝐷𝑜𝑢𝑡
𝑖+1 emerge, aiming

to interpret updated known methods and discover more advanced
ones.

To simulate the diverse manipulation styles exhibited by various
forgery methods, we establish the OW-DFI benchmark based on 4
widely utilized forgery localization datasets, including ForgeryNet
[15], HiFi-IFDL [31], Dolos [51], FF++ [34]. These datasets offer ex-
tensive data coverage and encompass a wide range of manipulation
methods. As shown in Table 1, the OW-DFI benchmark encom-
passes 24 forgery technologies spanning 6 types of forgery objects,
including the entire face, nose, mouth, eyebrows, hair, and even ani-
mals like cats. These technologies are categorized into three forgery
categories, each further subdivided into base methods, which have
sufficient samples, and novel methods (highlighted in colors), which
have limited samples and are designated for incremental learning.
To replicate the evolutionary progression of forgery technologies,
we partition the 17 novel methods into 4 sessions based on their

3
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Figure 2: The architecture of our Deepfake InterpretationNetwork (DIN). It is designed to adapt to and evolve with advancements
in forgery technologies, encompassing two main phases: 1) Step 1 (depicted by orangeish arrows) is dedicated to conducting
known forgery interpretation and unveiling novel forgeries. 2) Step 2 (depicted by greenish arrows) addresses the adaptation to
forgery technologies through the proposed correlation-based few-shot incremental learning. Additionally, we purify semantics
from LVMs and utilize them to eliminate non-causal semantics through two distinct modules: the semantic-prior intervention
module for Step 1, and the semantic-prior orientation module for Step 2.

public release times, each represented by different colors. Addi-
tionally, we integrate a randomly sampled pool of 11,499 real faces
sourced from the authentic sets of these four datasets.

4 DEEPFAKE INTERPRETATION NETWORK
4.1 The Architecture
Figure 2 illustrates the architecture of our proposed Deepfake In-
terpretation Network (DIN), comprising two primary components
dedicated to deepfake interpretation: a forgery feature encoder
Θ and an interpreter 𝑓 . To address the requirements for general-
ity in localization and discrimination in attribution, we partition
the classifier into two sequential branches, including the localiza-
tion branch 𝑓𝑙 and the attribution branch 𝑓𝑎 . Formally, given an
input image 𝑋 ∈ R3×𝐻×𝑊 , the encoder Θ extracts forgery fea-
tures 𝑥𝑒 ∈ R𝐶×𝐻×𝑊 through stacked convolution layers. Then 𝑓𝑙
processes 𝑥𝑒 to produce localization results 𝑌𝑙 ∈ R𝐻×𝑊 = 𝑓𝑙 (𝑥𝑒 ),
which classify each pixel as real or forged. For attribution, tradi-
tional learnable classifiers are less effective as they tend to allocate
all feature space to known forgeries and may fail to detect novel
types. Instead, we employ a metric-based approach [3, 10] to deter-
mine forgery type based on similarity to open method prototypes
𝑓𝑎 . We start by incorporating a dimension reduction layer to de-
rive class-specific features 𝑥𝑎 ∈ R𝐶′×𝐻×𝑊 from 𝑥𝑒 . Considering
the semantic locality of forgery, we further divide the localized

forgery into distinct local regions using Sobel edge division [10].
DIN then produces attributions for each local region by assess-
ing the cosine similarity between the average-pooled region fea-
tures 𝑥𝑟 ∈ R𝐾×𝐶′

and the momentum-updated forgery prototypes
𝑃𝑡 = {𝑝𝑘 ∈ R1×𝐶′ |𝑘 ∈ 𝐷𝑡 }.

To optimize, weminimize the localization lossL𝑙𝑜𝑐 (𝑌𝑙 , 𝑌 ), which
guides the generation of pixel-level forgery localization, and the
classification loss L𝑐𝑙𝑠 (𝑌𝑎, 𝑌 ) for subsequent attribution. Addition-
ally, to address the challenge of emerging novel forgeries across
a broader array of objects, we focus on minimizing semantic in-
terference in an incremental setting. To achieve this, we conduct
LVM-based semantic intervention learning in the first interpreta-
tion step (depicted by orangeish arrows), elaborated in Section 4.2,
and correlation-based incremental learning in few-shot incremental
steps (depicted by greenish arrows), detailed in Section 4.3.

4.2 Semantic Intervention Learning
With the development of AIGC, depictions of complex visual effects
now encompass both realistic and arbitrarily faked objects, which
may hinder the learning of subtle forgery features embedded in
salient semantics. To address this issue, we implement Semantic
Intervention Learning (SIL) to disentangle and eliminate non-causal
semantics by leveraging semantics derived from LVMs. Compared
with previous methods [30] with semantic networks specifically

4
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tailored to the training set, SIL not only obviates the necessity for
additional parameters but also enhances the efficiency in learning
the semantics of arbitrary objects.

Semantic Purification Module. Considering that LVMs are
developed using diverse strategies and poses an inherently black-
box nature, their feature space encompasses both semantic and
ambiguous elements. Consequently, we propose a semantic pu-
rification module (SPM) to facilitate the process of intervening
in forgery learning. Unlike prior approaches [19] that sought to
unearth forgery features within LVMs, our SPM adopts an uncon-
ventional strategy by aligning with the common semantic training
objectives across various LVMs.

Given a set of 𝑁 images, the extracted LVM features are denoted
as 𝑥𝑠 ∈ R𝑁×𝐷 , where 𝐷 represents the total number of channels.
Our objective is to employ a purifier 𝑃 ∈ R𝐷 to isolate channels
that are particularly relevant to semantics through the operation
𝑥𝑠 = 𝑃 ·𝑥𝑠 . This selection process focuses on incorporating channels
into 𝑃 that are: 1) invariant to semantic-preserving disruptions, thus
discarding ambiguous information, and 2) rich in semantic content.

To fulfill the first criterion, we generate semantic-preserving
samples that vary only in their forgery characteristics. Drawing on
the Fourier transformation (FT) decomposition attributes [26, 44],
where the phase component P(𝑋 ) retains high-level semantics and
the amplitude component A(𝑋 ) encompasses low-level statistics
such as forgery details, we modify amplitude information while
maintaining phase information, as shown in Figure 2. Specifically,
we perform linear interpolation between the amplitude components
of different samples 𝑋𝑛 and 𝑋𝑚 , which are manipulated by distinct
forgery methods, as represented as Equation 1.

Â(𝑋𝑛) = (1 − 𝜆)A(𝑋𝑛) + 𝜆A(𝑋𝑚), (1)

where 𝜆 ∼ 𝑈 (0, 1). Following this, we recombine the modified am-
plitude component with the original phase component to produce
a disrupted image 𝑋𝑚𝑛 via the inverse FT as shown in Equation 2.

𝑋𝑚𝑛 = 𝐴(𝑋𝑛) × 𝑒− 𝑗×P(𝑋𝑛 ) . (2)

To further refine the semantic-relative channels, we aim to re-
move those that demonstrate variability across the disrupted sam-
ples. For the 𝑘th channel, its semantic stability is determined using
the variance criterion 𝑉𝑘 as defined as Equation 3.

𝑉𝑘 =
1
𝑀

𝑀∑︁
𝑚=0

(𝑥𝑚𝑠𝑘 − 𝑥𝑠
𝑘
)2, 𝑥𝑠

𝑘
=

1
𝑀

𝑀∑︁
𝑚=0

𝑥𝑚
𝑠
𝑘 . (3)

In addition, the sufficiency of semantic information for the 𝑘th

channel is assessed through its L1-normalization score, serving as
the sufficiency criterion 𝑆𝑘 . Furthermore, to evaluate the semantic
richness of the 𝑘th channel, we assess its L1-normalization score,
serving as the semantic sufficiency criterion 𝑆𝑘 . After calculating
these metrics, we combine 𝑉 and 𝑆 to finalize the channel’s value,
expressed as 𝑃𝑘 = 𝑉𝑘 − 𝑆𝑘 . We then select the top-𝑄 channels with
the smallest 𝑃𝑘 values as the purified semantics, denoted as 𝑥𝑠 .
This procedure effectively purifies the feature space by eliminating
superfluous and ambiguous channels, thereby enhancing the ex-
traction of relevant semantic features from the LVM-encoded data.

Semantic-prior Intervention Module. Upon deriving the pu-
rified semantics, our objective shifts to curbing the non-causal se-
mantic features within the forgery detection space. Inspired by con-
trastive learning [39], we propose to reduce the affinity of learned
forgery features to purified semantics.

Intuitively, we begin by computing the forgery feature 𝑓 𝑎 from
𝑥𝑎 using masked average pooling guided by forgery mask 𝑌 . Our
methodology seeks to bring imagesmanipulated by identical forgery
methods closer together, thus prioritizing forgery-specific features
over semantic content. This involves compiling a set of samples
into the positive set 𝑃 (𝑋𝑎) = {𝑋𝑖 |𝑌𝑖 = 𝑌𝑎}, which share the same
forgery label as the anchor image 𝑋𝑎 . Concurrently, our strategy
includes pushing samples altered by divergent methods away, par-
ticularly those exhibiting similar semantics. For this purpose, we
identify a corresponding negative sample �̃�𝑖 for each 𝑋𝑖 within
𝑃 (𝑋𝑎) with the highest semantic similarity to 𝑋𝑖 . The essence of
our approach is to adjust the cosine similarity between the anchor
sample 𝑋𝑎 and each positive sample 𝑋𝑖 , ensuring it surpasses that
between the anchor and its corresponding negative sample �̃�𝑖 by a
margin𝑚, as calculated in Equation 4.

L𝑠𝑖𝑙 =
1

|𝑃 (𝑋𝑎) |
∑︁

𝑋𝑖 ∈𝑃 (𝑋𝑎 )
𝑚𝑎𝑥 (0, 𝑐𝑜𝑠 (𝑓 𝑎𝑎 , 𝑓 𝑎𝑖 ) − 𝑐𝑜𝑠 (𝑓 𝑎𝑎 , 𝑓 𝑎𝑖 ) +𝑚) .

(4)
By minimizing L𝑠𝑖𝑙 , we enhance the development of a forgery

feature space that is not only discriminative but also semantically
distinct, thereby improving the precision of forgery attribution.

4.3 Open-World Deepfake Interpretation
In the open world, enhancing the capabilities of few-shot incremen-
tal learning is essential for effectively identifying evolving forgeries
and uncovering new ones. Given the subtle nature of forgeries
and the variability of objects that can be manipulated, few-shot
incremental learning faces significant challenges in acquiring novel
forgery embeddings. This process is often compromised by the
interference of prominent semantic features, as few-shot training
samples may not fully represent the diverse range of manipulated
objects found in real-world scenarios. To address these challenges,
we proceed with correlation-based incremental learning that lever-
ages the inherited relationships among forgery techniques to miti-
gate semantic overfitting. Furthermore, to minimize semantic dis-
turbances in the learning process, we introduce a Semantic-prior
Orientation Module (SOM) by locally diminishing the alignment of
forgery attributes with semantics.

Correlation-based Incremental Module. During the develop-
ment of AIGCs, researchers often craft novel techniques inspired by
existing methodologies. Therefore, we propose to exploit the corre-
lation between AIGCs to initialize the learning of novel forgeries.
Inspired by the optimal transport (OT) mechanism in information
transmission [50], we employ the relationship between traditional
and emerging classes as a cost function C, facilitating the transfer-
ence of prior knowledge to new prototypes. In the 𝑖th session, the
training dataset 𝐷𝑜𝑢𝑡 𝑖 comprises few-shot samples manipulated by
innovative forgery methods. The cost function C calculates the pair-
wise Euclidean distance between the previously established forgery
prototypes 𝑃𝑖−1 and the features of novel classes in𝐷𝑜𝑢𝑡 𝑖 . Formally,
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the correlation score from the 𝑛-th old prototype 𝑝𝑛 ∈ 𝑃𝑖−1 to the
𝑖-th novel forgeries is calculated as in Equation 5.

𝐶𝑛,𝑖 = (𝑝𝑛 −
∑ |𝐷𝑖 |
𝑘=1 I(𝑌𝑘 = 𝑖)𝑥𝑎

𝑘∑ |𝐷𝑖 |
𝑘=1 I(𝑌𝑘 = 𝑖)

)2, (5)

where a higher score implies a lesser transmission of old informa-
tion to the novel forgery. By using older prototypes to initialize the
prototype of the novel forgery method, we aim to counteract the se-
mantic overfitting typically resulting from directly averaging novel
features, which may otherwise exhibit closely related manipulated
semantics.

Semantic-prior OrientationModule. During incremental learn-
ing, the intertwining of non-causal semantics with learned forgery
features presents a substantial challenge, further exacerbated by
the scarcity of training samples. Traditional methods of disentan-
glement in the global feature space might compromise the distinc-
tiveness of existing forgery prototypes. Drawing inspiration from
orientation distribution learning, we propose Semantic-Prior Ori-
entation Loss (SOL), which fine-tunes the distribution of forgery
features locally to diverge from the purified semantic features of
LVMs.

As shown in the left corner of Figure 2, the procedure begins by
selecting a sample pair 𝑋𝑎 and 𝑋𝑟 from the new dataset 𝐷𝑜𝑢𝑡 𝑖 , with
𝑋𝑎 serving as the rotation anchor and 𝑋𝑟 as the reference. For each
reference𝑋𝑟 , we identify an additional sample𝑋 ′

𝑟 sharing the closest
semantic resemblance. We then calculate the forgery vectors rela-
tive to the anchor for both the reference and its semantically similar
counterpart as ®𝑣𝑎𝑎𝑟 = 𝑥𝑎𝑎 − 𝑥𝑎𝑟 and ®𝑣𝑎

𝑎𝑟 ′ = 𝑥𝑎𝑎 − 𝑥𝑎
𝑟 ′ , respectively. The

goal is to orient the vector ®𝑣𝑎
𝑎𝑟 ′ towards a semantically-weighted

reverse distribution compared to ®𝑣𝑎𝑎𝑟 , achieved by minimizing Equa-
tion 6.

L𝑓 𝑠𝑖 =
1
𝑀

|𝐷𝑜𝑢𝑡
𝑖

|∑︁
𝑖=0

∑︁
𝑟≠𝑖,𝑝

𝑐𝑜𝑠 (𝑥𝑠𝑝 , 𝑥𝑠𝑟 ) (1 + 𝑐𝑜𝑠 (®𝑣𝑎𝑎𝑟 , ®𝑣𝑎𝑎𝑟 ′ )) . (6)

This strategy ensures that feature embeddings predominantly align
in directions that contradict semantics, facilitating the disentangle-
ment of non-causal semantics. Moreover, SOL specifically targets
samples affected by identical forgery methods, enabling seman-
tic removal within distinct novel class spaces without disrupting
pre-existing knowledge.

5 EXPERIMENTS
5.1 Implementation Details
We implement the proposed approach using PyTorch. Our feature
extractor is based on DeeplabV3+ [5], following the setup outlined
in [10]. This setup includes the addition of two convolutional layers
designated as 𝑓𝑙 for pinpointing the forgery region and another
convolutional layer, 𝑓𝑎 , to extract forgery attributes for the purpose
of attribution. In the preprocessing stage, for images containing
faces, we utilize Retinaface [8] to extract the face area, which we
resize to 1.3 times the size of the face. Subsequently, we resize all
input images to 224× 224 pixels. Our experiments are conducted on
a single RTX 3090 GPU and adopt SGD optimization with a batch
size of 64. The initial learning rate is set at 0.1 and is methodically
reduced following a power schedule of 0.9 with the PolyLR strategy.

Method Unknown Known

AUROC↑ AUPR↑ FPR↓ mACC↑
LVNet (MM′23) [35] 19.62 29.95 97.59 87.32
POP (CVPR′23) [25] 22.56 29.78 97.30 88.05
OW-DFA (ICCV′23) [38] 75.64 68.05 70.58 86.42
CLIP-DIN (ours) 85.86 72.10 37.39 89.37
DINOv2-DIN (ours) 87.96 75.76 35.53 89.42

Table 2: The performance comparison for forgery interpreta-
tion. All models are trained on the base set and evaluated on
forgeries manipulated by both 7 seen and 17 unseen meth-
ods. CLIP-DIN and DINO-DIN represent the utilization of
pre-trained models CLIP and DINOv2, respectively. The best
result is marked in bold, and the second-best result is under-
lined. This notation is maintained across subsequent tables.

For generating semantic features, we engage CLIP [32] equipped
with a ResNet50 architecture and Dinov2 [29] using the ViT-L archi-
tecture. The foundational loss functions comprise the FocalTversky
Loss [1] as the localization loss (L𝑙𝑜𝑐 ) and the cross-entropy loss
for classification (L𝑐𝑙𝑠 ). The margin 𝑚 used in Equation 4 is set
to 0.4. The loss function tailored for the first step is computed as
𝐿𝑏𝑎𝑠𝑒 = L𝑙𝑜𝑐 +L𝑐𝑙𝑠 +𝜆𝑠𝑖𝑙 ∗L𝑠𝑖𝑙 . To accommodate 5-shot incremen-
tal learning in successive sessions, the loss formula is modified to
𝐿𝑏𝑎𝑠𝑒 = L𝑙𝑜𝑐 + L𝑐𝑙𝑠 + L𝑓 𝑠𝑖 .

5.2 Benchmark Evaluation
The evaluation of the proposed DIN encompasses two key aspects,
including the open-world deepfake interpretation and the few-shot
incremental setting.

Results of open-world deepfake interpretation. We first eval-
uate our proposed DIN for open-world forgery localization and at-
tribution. All methods are trained on 𝐷𝑖𝑛 , which includes 7 forgery
methods, and are tested across all 24 forgery methods. As for eval-
uation metrics, AUROC, AUPR, and FPR scores assess the model’s
ability to distinguish unknown forgeries by comparing the attri-
bution results of known and unknown forgeries, whereas ACC
provides a measure of pixel-level attribution accuracy for known
forgery methods. The experimental results are reported in Table 2,
where it is compared with several state-of-the-art (SOTA) methods.

The first row presents the interpretation results of LVNet [35] us-
ing the Maximum Softmax Probability (MSP) to identify unknown
forgeries. It demonstrates robust performance on known forgeries
(mACC: 87.32%) but shows a significant drop in accuracy for unseen
forgeries. This suggests that conventional deepfake interpretation
methods struggle to differentiate unseen forgeries from authentic
or previously known forgery techniques. We also conduct compar-
isons with other open-world oriented methods such as POP [25]
and OW-DFA. POP, which relies on specialized binary classifiers for
different forgery techniques, exhibits inferior performance in iden-
tifying unseen forgeries, thus highlighting the importance of un-
derstanding interconnections between different forgery techniques.
OW-DFA achieves an AUROC of 75.64, whereas our DIN attains
87.96. DIN excels in detecting regions of novel forgery, achieving
a 12.32% improvement in AUROC over OW-DFA, thereby empha-
sizing its strength in distinguishing between unknown and known
forgeries. Additionally, our DIN also obtains a 35.05% reduction in
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Method
Session1 Session2 Session3

Known Unknown Known Unknown Known Unknown

IOUnovel IOUold IOUreal FPR ↓ IOUnovel IOUold IOUreal FPR ↓ IOUnovel IOUold IOUreal FPR ↓
LVNet (MM′23) [35] 0.60 17.74 58.97 97.82 1.02 7.78 56.72 84.11 5.61 5.86 55.10 62.52
POP (CVPR′23) [25] 0.60 1.98 55.03 44.16 2.26 1.63 57.27 48.07 5.43 1.45 58.51 47.56
CLIP-DIN (ours) 3.92 21.37 59.82 53.48 6.65 14.21 60.63 57.89 9.83 11.10 59.63 76.31
DINOv2-DIN (ours) 4.04 21.92 59.83 49.68 5.67 13.58 58.10 53.05 10.86 11.12 58.94 80.57

Table 3: The performance comparison under the few-shot incremental setting.

Method GLide DDPM D-latent DDIM Pluralistic repaint-p2 Mean
LVNet[35] 15.87 7.01 0.00 0.00 0.00 8.52 5.23
POP[25] 16.06 1.05 10.47 6.88 0.00 1.19 5.94
CLIP-DIN 15.39 9.39 10.25 18.89 0.31 18.42 12.11
DINO-DIN 26.68 6.31 12.42 13.18 2.65 16.12 12.89

Table 4: Results of the interpretation (by IOU) for known
diffusion manipulated forgeries after Session 3 under the
Few-shot incremental setting.

False Positive Rate (FPR). These superior results underline DIN’s
enhanced capability in interpreting both known and novel forg-
eries, benefitting significantly from its analysis of inter-forgery
relationships and leveraging LVM-based semantic interventions.

We further explore DIN’s adaptability across different Large
Visual Models (LVMs), utilizing semantic features derived from
models such as CLIP[32] and DINOv2[29], as detailed in the last
two rows of Table 2. DIN consistently outperforms other methods
when applied to various LVMs, demonstrating the effectiveness of
our approach in leveraging purified semantic features across diverse
self-training strategies and model architectures. This adaptability
highlights DIN’s robust capability to harness advanced semantic in-
sights, enhancing its performance in open-world deepfake detection
and interpretation tasks.

Results under the few-shot incremental setting. To ensure
a comprehensive assessment suitable for real-world scenarios, we
evaluated the proposed DIN against several state-of-the-art meth-
ods in the context of few-shot incremental setting. We utilize both
IOUnovel and IOUold to gauge incremental learning capabilities,
and employ IOUreal and FPR to assess the ability to identify novel
forgeries. The results are revealed in Table 3, where traditional
methods (fine-tuned LVNet[35] as well as POP[25] in first two
rows) generally struggle to maintain consistent performance when
learning new forgery technologies and detecting novel forgeries.
Among these, POP [25] achieves the best average FPR in unknown
forgeries but falls short in accurately localizing and attributing
known forgeries. In contrast, our DIN demonstrates superior per-
formance across most metrics, showcasing exceptional proficiency
in recognizing newly added forgeries and generalizing the detec-
tion of unknown forgeries by leveraging inherent correlations and
eliminating non-causal semantics.

To further evaluate the superiority of our proposed DIN in inter-
preting prevalent diffusion-based AIGCs, we list the IOU results for
attribution and localization of seven diffusion techniques in Table 4.
Our DIN surpasses competing methods in most categories, achiev-
ing the highest mean IOU with an average improvement of 6.95% by
integrating DINOv2. These exceptional performances underscore

LVM SIM SPM Unknown Known

AUROC↑ AUPR↑ FPR↓ mACC↑
Baseline-DIN × × 84.46 71.24 42.58 87.09

DINO ✓ × 86.04 74.31 42.71 87.95
✓ ✓ 87.96 75.76 35.53 89.42

CLIP ✓ × 83.81 71.01 47.79 89.69
✓ ✓ 85.86 72.10 37.39 89.37

Table 5: Ablation study on the effect of SPM and SIM with
various LVMs.
DIN’s effectiveness in leveraging a correlation-based incremen-
tal module and a semantic-prior orientation module, mitigating
semantic overfitting in OW-DFI.

5.3 Ablation Study
The effectiveness of SPM and SIM for interpretation. We ex-

plore the impact of SPM and SIM on open-world interpretation and
present the results in Table 5. Initially, DIN operates without SPM
and SIM, as shown in the first row, where autonomously learned
features struggle to differentiate between known and unknown
forgeries due to the entanglement of forgery and non-causal seman-
tics. Subsequently, incorporating comprehensive features derived
from DINOv2 for semantic intervention (DINO+SIM) results in
notable improvements of 1.58%, 3.07%, and 0.86% in AUROC, AUPR,
and mACC, respectively. These results underscore the effectiveness
of using LVM as a prior intervention to enhance the detection of un-
known forgeries and improve the discrimination of known forgery
techniques. Further integration of SPM (DINO+SIM+SPM) to refine
and purify the semantics from the raw LVM features leads to ad-
ditional improvements of 1.92%, 1.45%, and 1.47% in these metrics,
alongside a significant 7.18% reduction in FPR. This underscores
the inherent ambiguity in the LVM feature space and demonstrates
the efficacy of SPM in refining semantics.

Additionally, we conduct an ablation study on the parameter 𝜆sil
during optimization to explore the effect of SIM. We observe that
by increasing 𝜆sil from 0.5 to 1.5 with a step of 0.5, DIN obtains the
best experimental results under the 1.0 setting (85.86 of AUROC
and 72.10 AUPR) compared to the 0.5 (84.86 AUROC and 70.94
AUPR) and 1.5 (85.52 AUROC and 71.26 AUPR) settings. This shows
that SIM effectively improves the discriminative ability to detect
unknown counterfeits. However, a more discriminant feature space
caused by larger 𝜆sil may be less in the relationships between forg-
eries, resulting in a slightly reduced effect of uncovering unknowns.

The robustness to different LVMs. To assess the robustness
of our model to different LVMs, we conduct experiments using
DINOv2 and CLIP, as shown in Table 5. Both DINOv2 and CLIP
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CIM SOM Known Unknown

IOUnovel IOUold IOUreal FPR ↓
Session1

× × 0.00 21.42 61.39 62.66
✓ × 4.10 21.42 59.83 62.77
✓ ✓ 3.92 21.37 59.82 53.48

Session2
× × 0.00 8.75 61.80 58.46
✓ × 6.32 13.34 60.31 59.68
✓ ✓ 6.65 14.21 60.63 57.89

Session3
× × 0.00 2.02 61.57 77.12
✓ × 8.89 10.58 59.64 77.83
✓ ✓ 9.83 11.10 59.63 76.31

Table 6: Ablation study on the effect of CIM and SOM under
few-shot incremental setting.

demonstrate advanced semantic perception capabilities through
their respective self-supervised learning paradigms. Without the
Semantic Purification Module (SPM), relying on raw CLIP features
significantly enhances the interpretation of known forgeries but
slightly impairs the distinction of unknown forgeries. We attribute
this to CLIP’s limited fine-grained alignment capability, as it is
primarily designed to correlate entire images with text descriptions
[49]. In contrast, DINOv2 is trained to identify both image-level and
patch-level resemblances, thus enhancing its utility for semantic
interventions in Open-World Deepfake Interpretation (OW-DFI)
with more small manipulated objects. Finally, the integration of
SPM to refine semantic features significantly improves the detec-
tion of novel forgeries in CLIP, evidenced by a significant 10.4%
reduction in FPR. These enhancements verify that our proposed
DIN can effectively purify semantics from different LVM features,
irrespective of their distinct training paradigms.

The effectiveness of CIM and SOM. We investigate the impact
of the proposed CIM and SOM under the few-shot incremental
setting, as detailed in Table 6. Initially, the model uses basic loss
functions, including localization loss L𝑙𝑜𝑐 and attribution loss L𝑐𝑙𝑠
as outlined in Section 4.1, to integrate new forgery knowledge. How-
ever, the baseline model struggles to capture nuanced features from
limited samples, leading to suboptimal performance. The integra-
tion of CIM significantly enhances the transfer of existing forgery
knowledge to new techniques, as evidenced by a 6.43% increase in
IOUnovel across three sessions. The addition of SOM further refines
our approach by disentangling non-causal semantics, resulting in
the most favorable outcomes: a 4.22% decrease in False Positive
Rate (FPR) and a 0.37% improvement in IOUnovel. Notably, with the
introduction of SOM, there is a significant 8.99% reduction in FPR
during the first session, although IOU experienced a slight decline.
However, across the incremental sessions, SOM achieves overall
enhancements in all metrics. These results demonstrate that SOM
can effectively minimize the model’s overfitting to non-causal se-
mantics, which is especially critical in densely populated category
spaces, thus improving the robustness and accuracy of the model
in recognizing and adapting to new forgeries.

Figure 3: The visualization of interpretation results, includ-
ing forgery localization and attribution, based on the LVM
feature (w/o SPM) and refined LVM semantics (w/ SPM), re-
spectively. Deep blue signifies novel forgeries, green denotes
the real regions, and other colors depict various recognized
forgery categories.

5.4 Visualization
To assess the efficacy of our proposed Semantic Purification mod-
ule (SPM), we visualized the interpretation results by comparing
the original and purified features from DINOv2, as depicted in
Figure 3. In the w/o SPM columns, the identified forgery regions
appear less precise and more dispersed, frequently extending into
non-manipulated areas, which indicates a higher incidence of false
positives. Conversely, the SPM-enhanced columns show significant
improvements in both localization and attribution, particularly in
detecting new types of forgeries. These findings underscore the
effectiveness of SPM in enhancing OW-DFI by emphasizing the
importance of LVM semantic purification and the removal of irrele-
vant semantics.

6 CONCLUSION
In this paper, we propose a novel task, Open-World Deepfake In-
terpretation (OW-DFI), designed to enhance the interpretability
of deepfakes in dynamic open-world scenarios. It encompasses a
wider variety of manipulated objects beyond just faces, addressing
the complexities introduced by advanced forgery techniques. Our
Deepfake Interpretation Network (DIN) leverages semantic insights
from LVMs to mitigate reliance on spurious semantic patterns in a
non-parametric manner. Moreover, a semantic-prior intervention
strategy is developed to proactively exclude semantic priors from
the deepfake identification process. In the incremental learning
phase, we explore the relationships among different forgery tech-
nologies and enhance the distinction between semantic and forgery
embeddings, which facilitates the minimization of semantic over-
fitting with limited training samples. Overall, our approach offers
an innovative solution for deepfake detection by harnessing the
fruitful semantic potential of LVMs and adapting to the dynamic
advancements in forgery techniques within open-world contexts.
Experimental results validate the SOTA performance of our method
across 24 forgery methods, underscoring its capability to gener-
ate reliable interpretations and uncover novel forgeries as forgery
techniques evolve.
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