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In this supplementary material, we provide,

1. More details of OW-DFI in Section 1.

2. Details of comparison methods in Section 2.

3. Visualization of our proposed DIN in Section 3.
4. Conclusion in Section 4.

1 DETAILS OF OW-DFI

To address the evolving challenges posed by Artificial Intelligence
Generated Content (AIGC) in open-world settings, we introduce
a new task with corresponding benchmarks, named Open World
Deepfake Interpretation (OW-DFI). The objective of this task is to
enhance the interpretation capabilities for evolving deepfakes by
providing extensive benchmarks. The OW-DFI benchmarks com-
prise 11,499 genuine images and 14,319 artificial images, sourced
from 24 distinct AIGC methods across four disparate datasets. In
Figure 1, we provide a visualization of the diverse range of ma-
nipulated objects. These include human features such as hair, face,
eyes, mouth, nose, eyebrows, and eyeglasses, as well as background
elements like bedrooms, churches, natural scenes, and animals.
This visualization emphasizes the extensive nature of manipula-
ble semantics, underscoring the necessity for precise localization
and addressing complex semantic interference in forgery detection.
Moreover, Figure 2 shows the application of different forgery tech-
niques to the same object. This example demonstrates the advanced
capabilities of AIGCs to execute intricate forgeries, emphasizing
the increasing necessity for interpretation models that can not only
detect but also localize and attribute forgeries effectively.

2 DETAILS OF COMPARISON METHODS

To assess the effectiveness of our proposed Deepfake Interpretation
Network (DIN) within the OW-DFI framework, we compare it
against three state-of-the-art (SOTA) methods: LVNet [3], POP
[1], and OW-DFA [4]. The comparisons encompass a spectrum of
approaches, ranging from the conventional deepfake interpretation
technique to those that are specifically tailored for open-world
scenarios.

LVNet. LVNet [3] is designed to localize and verify artifacts by
integrating RGB and SRM noise modalities through an advanced
fusion process. The architecture of LVNet comprises a feature en-
coder for modality fusion, complemented by distinct localization
and classification modules to facilitate comprehensive interpreta-
tion. Originally, as the classification module of LVNet is configured
for binary classification, we extend the classifier to support attri-
bution across 25 distinct classes. During the evaluation process,
attributions are first executed based on the K known classification
weights, and then these results are combined with binary localiza-
tion outcomes to produce pixel-level interpretations. For unknown
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Figure 1: The visualization of the manipulated images with
corresponding masks, encompasses a diverse range of ma-
nipulable objects. The manipulated regions are indicated by
white pixels in even columns and are maintained across sub-
sequent figures.
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Figure 2: The visualization of images manipulated by various
forgery techniques.

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

116



117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

ACM MM, 2024, Melbourne, Australia

forgery detection, we calculate the unknown confidence score using
the Maximum Softmax Probability (MSP). This score is integrated
with the binary localization results to produce pixel-level interpre-
tations. LVNet was initially trained on the base set with a batch
size of 16 and a learning rate of le-4 using the Adam optimizer.
Training continued until no further reduction in loss was observed
within three epochs. During the incremental learning phase, with a
limited number of training classes, we fine-tuned the classification
weights over 50 epochs.

POP. POP[1] aims to learn orthogonal prototypes to discern
regions associated with novel classes without affecting old classes
in an open-world environment. To localize each known class, the
relevant prototype is projected onto the entire feature map to gener-
ate class-specialized features, which are then processed by a shared
binary classifier. During the base training phase, POP was trained
with a batch size of 16 for 50 epochs at a learning rate of le-3,
utilizing the SGD optimizer. In the incremental learning phase,
the system was specifically focused on adapting novel class proto-
types to be orthogonal to existing prototypes, extending over an
additional 50 epochs.

OW-DFA. OW-DFA[4] is designed to identify unseen categories
within mixed datasets that include both labeled and unlabeled data.
The training protocol employs 7 base categories as labeled data,
while the data from the remaining 17 categories is treated as unla-
beled. This model is trained over 50 epochs with a batch size of 128,
using the Adam optimizer. The initial learning rate is set at 2e-4
and is systematically reduced by 20% every 10 steps in accordance
with the StepLR schedule.

The final comparative results highlight the superiority of our
proposed DIN, demonstrating a significant reduction in the False
Positive Rate (FPR)—by at least 35.05%—in localizing unknown
forgeries. Additionally, there is at least a 5.25% improvement in the
Intersection over Union (IOU) for localizing novel known categories
after the third incremental session. These outcomes affirm the ef-
fectiveness of our approach in eliminating non-causal semantics
by leveraging purified semantic priors from Large Visual Models
(LVMs).

3 VISUALIZATION OF DIN

t-SNE Visualization of open-world deepfake interpretation.
To enable a more intuitive comparison of our Deepfake Interpreta-
tion Network (DIN), we conducted t-SNE visualization [2], contrast-
ing it with OW-DFA [4], as illustrated in Figure 3. Our observations
reveal that DIN creates a more distinct feature space, enabling it to
more effectively differentiate natural images (marked in black) from
forgeries (represented in various colors). This enhanced separation
is advantageous for analyzing inter-forgery relationships, which is
crucial for subsequent few-shot incremental learning.

t-SNE Visualization of few-shot incremental learning. To
provide a more intuitive evaluation of our Deepfake Interpretation
Network (DIN) under the evolving AIGCs, we utilize t-SNE visual-
ization [2] to illustrate the network’s performance before and after
few-shot incremental learning (FIL). These stages are depicted in
Figure 4, with novel categories highlighted by red circles. The visual-
ization clearly shows that DIN can effectively discern novel features
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Figure 3: The t-SNE Visualization of feature distribution. This
figure illustrates the feature space learned from 24 forgery
categories after training on 7 forgery methods. For this vi-
sualization, 500 samples from the 7 base categories and 50
samples from unseen forgeries within the test dataset were
randomly selected. This sampling configuration is consis-
tently maintained across subsequent figures.
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Before FIL After FIL

Figure 4: The t-SNE Visualization of Feature Distribution
before and after Few-Shot Incremental Learning (FIL). Before
FIL, the 7 base categories are represented in various colors,
while the unknown categories are depicted in gray, as shown
in the left panel of the figure. After FIL, known categories
are distinguished by different colors and encircled in red, as
illustrated in the right panel.

from just 5-shot training samples in an incremental learning setting.
This result confirms the efficacy of the Correlation-based Incremen-
tal Module (CIM) in leveraging inherent inter-forgery correlations
and the Semantic-prior Orientation Module (SOM) in mitigating
non-causal semantics.

Visualization of interpretation results with diversely ma-
nipulated objects. We present visualization results of our DIN ap-
plied to images manipulated by STGAN, encompassing five types of
manipulations: hair, nose, mouth, face, and eyes. The corresponding
results, depicted in Figure 5, illustrate DIN’s capability to accurately
localize the forged regions and attribute the specific AIGC tech-
nique. These outcomes underscore the significance of eliminating
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Figure 5: Visualization of interpretation results for forgeries with diversity manipulated objects.
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