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ABSTRACT

Rehearsal-based continual learning (CL) aims to mitigate catastrophic forgetting
by maintaining a subset of samples from previous tasks and replaying them. The
rehearsal memory can be naturally constructed as a coreset, designed to form a
compact subset that enables training with performance comparable to using the
full dataset. The coreset selection task can be formulated as bilevel optimiza-
tion that solves for the subset to minimize the outer objective of the learning
task. Existing methods primarily rely on inefficient probabilistic sampling or
local gradient-based scoring to approximate sample importance through an iter-
ative process that can be susceptible to ambiguity or noise. Specifically, non-
representative samples like ambiguous or noisy samples are difficult to learn and
incur high loss values even when training on the full dataset. However, exist-
ing methods relying on local gradient tend to highlight these samples in an at-
tempt to minimize the outer loss, leading to a suboptimal coreset. To enhance
coreset selection, especially in CL where high-quality samples are essential, we
propose a coreset selection method that measures sample importance using re-
ducible loss (ReL) that quantifies the impact of adding a sample to model per-
formance. By leveraging ReL and a process derived from bilevel optimization,
we identify and retain samples that yield the highest performance gain. They
are shown to be informative and representative. Furthermore, ReL requires only
forward computation, making it significantly more efficient than previous meth-
ods. To better apply coreset selection in CL, we extend our method to address
key challenges such as task interference, streaming data, and knowledge dis-
tillation. Experiments on data summarization and continual learning demon-
strate the effectiveness and efficiency of our approach. Our code is available at
https://github.com/RuilinTong/CSReL-Coreset-CL.

1 INTRODUCTION

Continual learning (CL) aims to learn novel knowledge from a non-stationary stream of data con-
taining different tasks, while maintaining the learned knowledge (Ring, 1997; Rebuffi et al., 2017).
Models tend to forget previously learned tasks when they are trained on new ones, a phenomenon
known as catastrophic forgetting (McCloskey & Cohen, 1989). A straightforward and effective way
for countering forgetting is experience replay (ER) (Buzzega et al., 2020; Lopez-Paz & Ranzato,
2017; Chaudhry et al., 2019), which maintains a small rehearsal memory to store a subset of pre-
vious data and replay it during training on new tasks to mitigate forgetting. It is also convenient to
incorporate ER with other types of CL methods, e.g. parameter isolation-based methods (Yan et al.,
2022; Wang et al., 2022a) and regularization-based methods (Kirkpatrick et al., 2017). Early meth-
ods for ER often selected old data randomly (Vitter, 1985; Lopez-Paz & Ranzato, 2017; Chaudhry
et al., 2018b; Buzzega et al., 2020; Riemer et al., 2018). However, this indiscriminate approach may
not yield optimal results, as selecting an informative subset of data for memory storage is crucial for
the effectiveness of experience replay.

∗D. Gong is the corresponding author.
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A natural way to enhance ER is to select a coreset for memory, which is a small subset of the dataset
designed to allow a model trained on it to achieve performance comparable to one trained on the full
dataset. The coreset selection can be formulated as a bilevel optimization problem that solves for the
subset over the full dataset to minimize the outer training objective. Greedy Coreset (Borsos et al.,
2020) iteratively adds samples into the coreset through an approximation of the implicit gradient as
an indicator of the sample importance and a greedy solver of the bilevel problem. PBCS (Zhou et al.,
2022b) formulates the coreset with probabilistic masks on samples and solves the coreset selection
problem from a global perspective, which relies on inefficient sampling process. BCSR (Hao et al.,
2024) learns probabilities while preserving the nested structure of bilevel optimization.

Bilevel coreset selection methods usually treat all samples equally in the outer loss. However, non-
representative samples, such as ambiguous or noisy ones that are common in real-world data, are
often not well learned, even when training on the full dataset. This suggests that these samples
are not valuable to be represented by coreset. In the bilevel selection framework, these samples
heavily impact the outer loss due to their high loss values. In methods that rely on an incremental
coreset expansion process with approximate implicit gradients (Borsos et al., 2020), these samples
are often assigned high scores for reducing the outer loss and tend to be selected into the coreset.
Selecting ambiguous or noisy samples hinders the improvement of model performance after training
on coreset. Additionally, previous bilevel coreset selection methods are computationally expensive.
The computation of inverse Hessian matrix is computationally expensive (Borsos et al., 2020; Hao
et al., 2024). PBCS (Zhou et al., 2022b) relying on policy gradient requires a large number of
sampling iterations, and reducing sampling numbers degrades performance significantly.

To enhance coreset selection, especially in CL where high-quality samples are essential, we propose
a coreset selection method that measures sample importance using reducible loss (ReL) (Minder-
mann et al., 2022), named CSReL. We study how the model’s performance changes when a sample
is added to the training dataset and quantify this based on ReL. The CSReL can effectively highlight
an informative sample while excluding ambiguous or noisy ones according to the model’s status.
We assert that samples with high performance gains are representative and contribute relatively new
knowledge compared to the already selected samples. Our method integrates the greedy incremental
framework from bilevel optimization with ReL. In the incremental process, ReL is computed as the
difference between the losses on the remaining samples computed by a holdout model trained on the
full dataset, and a current model trained on the selected subset. Samples with the highest ReL are
selected into the coreset for maximizing performance gain. ReL only requires forward computation
(Mindermann et al., 2022), without the need for backward computation, making it significantly more
efficient than other methods. To better adapt coreset selection to rehearsal-based CL, we extend our
method to address the unique challenges of CL, including task interference, streaming data, and
knowledge distillation. Our main contributions are:
• We address the issue of selecting ambiguous or noisy samples in previous bilevel coreset selection

methods by proposing a coreset selection approach based on ReL reflecting the performance gain.
We show that samples with high performance gain are both representative and informative, and
our selection criterion effectively prevents the inclusion of ambiguous or noisy samples.

• We propose an efficient coreset selection approach based on ReL, which is well-suited to be
extended for addressing the unique challenges of CL: 1) Reducing task interference, 2) Selecting
coresets from streaming data, and 3) Selecting coresets for knowledge distillation.

• We demonstrate the effectiveness and efficiency of our method through extensive experiments on
data summarization and CL tasks. Additionally, we show the effectiveness and compatibility of
our method by enhancing the performance of existing CL methods.

2 RELATED WORK

Coreset selection. Coreset selection aims to select the most informative subset from full dataset.
Previous coreset selection methods are designed for k-means (Feldman & Langberg, 2011), Gaus-
sian mixture model (Lucic et al., 2018), logistic regression (Huggins et al., 2016) and Bayesian
inference (Campbell & Broderick, 2019). These methods are only suitable for traditional methods,
while cannot be applied in deep neural networks. Greedy Coreset (Borsos et al., 2020) extended
coreset selection to deep neural networks by formulating coreset selection problem as a bilevel opti-
mization problem. PBCS (Zhou et al., 2022b) selects globally with probabilistic masks. BCSR (Hao
et al., 2024) considers nested nature based on PBCS (Zhou et al., 2022b). Previous bilevel selection
methods may select ambiguous or noisy samples in an effort to reduce the outer loss. Additionally,

2



Published as a conference paper at ICLR 2025

these methods are computationally expensive. Our coreset selection approach effectively prevents
the selection of ambiguous and noisy samples while being more efficient.

Continual learning. Continual learning aims to adapt learning agent to sequence of tasks, and pre-
vious tasks is not available once learnt, including regularization-based methods (Kirkpatrick et al.,
2017; Zenke et al., 2017; Chaudhry et al., 2018a; Ritter et al., 2018; Li & Hoiem, 2017; Nguyen
et al., 2017; Ebrahimi et al., 2019; Yan et al., 2022; Jha et al., 2023), parameter isolation based
methods (Yan et al., 2021; Wang et al., 2022a; Zhou et al., 2022a; Jin et al., 2023; Ostapenko et al.,
2021; Wang et al., 2024) and rehearsal-based methods (Lopez-Paz & Ranzato, 2017; Rebuffi et al.,
2017; Chaudhry et al., 2018b; Riemer et al., 2018; Aljundi et al., 2019c; Chaudhry et al., 2019;
Borsos et al., 2020; Zhou et al., 2022b; Yoon et al., 2021; Aljundi et al., 2019a; Isele & Cosgun,
2018; Buzzega et al., 2021; Caccia et al., 2021). In this work, we focus on rehearsal-based methods
and sample selection for maintaining high-quality memory.

Coreset for continual learning. Selecting samples for memory plays a crucial role in the perfor-
mance of rehearsal-based CL. Previous works, such as Aljundi et al. (2019c); Sun et al. (2022b);
Bang et al. (2021); Wiewel & Yang (2021); Hurtado et al. (2023), are primarily based on heuristic
insights. Wang et al. (2022b) proposes compressing memory data to store more samples, while OCS
(Yoon et al., 2021) and GCR (Tiwari et al., 2022) select coresets through gradient matching. Greedy
Coreset (Borsos et al., 2020), BCSR (Hao et al., 2024), and PBCS (Zhou et al., 2022b) apply core-
set selection directly to single-task datasets for memory. We investigate effective coreset selection
method and the application of it for CL, while considering task interference, streaming scenarios,
and knowledge distillation, in CL.

3 CORESET SELECTION WITH REDUCIBLE LOSS

3.1 BILEVEL OPTIMIZATION FOR CORESET SELECTION

Coreset selection aims to select a subset from a given dataset D so that the model trained on coreset
could achieve comparable performance as the model trained on D. The selection can be achieved
via weighing the samples. Let loss function on the i-th sample be ℓ(xi, yi;θ) with θ being model
parameters. Coreset selection can be formulated a bilevel optimization problem (Borsos et al., 2020):

min
w∈R|D|

+ ,∥w∥0≤m

L(θ∗(w)) :=
∑|D|

i=1
ℓ(xi, yi;θ

∗(w)),

s.t. θ∗(w) ∈ argmin
θ

L̂(θ) :=
∑|D|

i=1
wiℓ(xi, yi;θ)),

(1)

where wi is selection weight for sample (xi, yi), w is corresponding selection vector, θ∗(w) is
solution for inner optimization problem, |D| denotes the number of samples in D. Coreset size is
constrained by ∥w∥0 ≤ m.

Although the problem in Eq. (1) is known to be NP-hard, it can be heuristically solved using first-
order approaches (Borsos et al., 2020). The first-order optimality condition for the minimizer θ∗(w)

of L̂(θ) implies that the gradient of L̂(θ) with respect to (w.r.t.) θ evaluated at θ∗(w) must vanish,
i.e., ∂L̂(θ∗(w))

∂θ∗(w) = 0. This reflects that, at the optimal results, the gradient of the loss w.r.t. θ

vanishes. Relying on the implicit function theorem, we can obtain the gradient of θ∗(w) w.r.t. w,
i.e., the implicit gradient, enabling us to compute the gradient of outer loss function L(θ∗(w)) w.r.t.
the selection weights w. Focusing on the importance of each sample, the gradient w.r.t. each wi is
derived as follows:

∇wiL(θ∗(w)) = −∇θL(θ∗(w))TH−1∇θℓ(xi, yi;θ
∗(w)), (2)

where H denotes Hessian matrix of L̂(θ∗(w)). The irrelevant items are dropped in Eq. (2); and
more details are in Appendix D.

To solve for w with the coreset size constraint, Greedy Coreset (Borsos et al., 2020) integrates the
first-order method into a cone constrained generalized matching pursuit approach (Locatello et al.,
2017). This method iteratively selects samples into the coreset before reaching the size constraint.
At each iteration step, given a S, new sample with the largest negative implicit gradient among the
remaining samples is selected. Considering that θ∗(w) is trained on S in the greedy process, we use
a concise notation θS in place of θ∗(w). Through the connection between the bilevel optimization
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task and influence functions (Koh & Liang, 2017), Eq. (2) can be rewritten as

∇wi
L(θS) = −∇θL(θS)TH−1ℓ(xi, yi;θS) = ∇θL(θS)T∇wi

θS , (3)

where ∇wi
θS represents the optimal parameter change when (xi, yi) is added to S and the model is

retrained (Borsos et al., 2020). Eq. (3) shows that the gradient of wi can be expressed as the inner
product between the outer loss gradient ∇θL(θS) and the optimal parameter change ∇wi

θS .

Despite the above progress, non-representative samples, such as ambiguous or noisy samples, may
exhibit large loss values, contributing significantly to L(θS). Including such samples in the coreset
can reduce L(θS), leading to a negative inner product in Eq. (3) and significant parameters changes.
According to the gradient-based sample importance score as in Eq. (2) and (3), a sample causing
large changes in parameters and gradients can have a high likelihood of being selected into S, which
may not be helpful for optimizing the real learning objective. The related effect has been observed
in the coreset selection process of Greedy Coreset (Borsos et al., 2020), with detailed experiments
and results provided in Appendix H.

3.2 MAXIMIZE PERFORMANCE GAIN IN CORESET SELECTION WITH REL

Selecting ambiguous or noisy samples into coreset can lead to ineffectiveness in ensuring the per-
formance of the model trained on it or even degrading it, which can be more crucial in CL with only
restricted memory size for reply. To address these issues, we propose a coreset selection method
by incorporating the reducible loss (Mindermann et al., 2022) into the greedy incremental selection
scheme derived from bilevel optimization. To alleviate the issue caused by gradient-based score, we
try to directly capture the reduction of outer objective in Eq. (1) as the selection objective. It aims to
select samples that lead to the maximum reduction in the outer objective when added to the coreset,
S, and can also been seen as rephrase the gradient-based score relying on Eq. (2) and (3) with the
original objectives. Specifically, when adding (xi, yi) into S, we consider the following gain:

Gi = log p (y|x;S ∪ (xi, yi))− log p (y|x;S) , (4)

where (x,y) denotes all samples in D and (xi, yi) ∈ D\S . Eq. (4) is not tractable to (xi, yi) and
selecting samples with maximum performance gain requires training models on every S ∪ (xi, yi),
which is impractical. Following Mindermann et al. (2022), we apply Bayes rule and conditional
independence to make computation of Gi tractable to (xi, yi) as

log p (y|x;S ∪ (xi, yi)) = log
p (yi|xi;D ∪ S) p (y|x, xi;S)

p (yi|xi,x;S)
= log

p (yi|xi;D ∪ S) p (y|x;S)
p (yi|xi;S)

log p (y|x;S ∪ (xi, yi))− log p (y|x;S) = log p (yi|xi;D ∪ S)− log p (yi|xi;S) .
(5)

The fist line in Eq. (5) is obtained by Bayes rule and conditional independence. The second line
indicates Gi = log p (yi|xi;D ∪ S)− log p (yi|xi;S).
From the conclusion in Liu et al. (2019), a vanilla neural network is a special case of a Bayesian
neural network with a uniform prior distribution and a Dirac-Delta posterior distribution. Predictive
distribution in Eq. (5) could be approximated by vanilla neural network, and the performance gain
of vanilla neural network is

Gi = log p (yi|xi;θD∪S)− log p (yi|xi;θS) = ℓ(xi, yi;θS)− ℓ(xi, yi;θD∪S), (6)

where θD∪S and θS denote parameters of model trained on D ∪ S and S respectively. Based on
the fact that loss in classification task is negative log-probability, Gi can be approximated by loss
difference, i.e., ReL. A detailed derivation is shown in Appendix A.. Since S ⊂ D and |S| ≪ D,
we approximate θD∪S by θD and refer the model trained on D as holdout model.

Using ReL as the selection criterion, we construct the coreset in a greedy, incremental manner.
Initially, we train a holdout model on D and start with an empty set S. In each step, we initialize
and train the model on the current S to obtain θS . Samples with the maximum ReL are selected into
S until the subset reaches the predefined size. We refer to our coreset selection method as CSReL,
and detailed coreset selection procedure is shown in Alg. 1.

3.3 DISCUSSION ON REL AND CSREL

We demonstrate in Appendix B that ReL in Eq. (6) is an proportional approximation of the negative
sample-weight implicit gradient with mild assumptions. Both ReL and implicit gradients have large
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values on representative and informative samples. For ReL, a sample (xi, yi) is representative if
ℓ(xi, yi;θD) is low and informative if ℓ(xi, yi;θS) is high, indicating new information to S. From
the implicit gradient perspective, adding such samples to S reduces loss on multiple samples after
training model on S ∪ (xi, yi), resulting in a high absolute implicit gradient value for this sample.

Algorithm 1: The proposed CSReL
Input: Dataset D, coreset size m, steps tout
Result: Coreset C
Train holdout model θD = argminθ L(θ);
Initialize S0 = ∅; select size of one step
n = m/tout;

for k = 1 to tout do
Train model on current subset
θS = argminθ L̂(θ);

Compute ReL
Gi = ℓ(xi, yi;θS)− ℓ(xi, yi;θD),
(xi, yi) ∈ D\Sk;

Select top-n samples Tk by ReL and
update current coreset
Sk+1 = Sk ∪ Tk;

C = Sk

One advantage of our CSReL method is its
robustness against non-representative samples,
such as ambiguous or noisy ones. In ReL, these
samples tend to have high loss values on both θD
and θS , leading to lower ReL values. Compared
to implicit gradient, ReL excludes ambiguous
or noisy samples from the indication of holdout
model, even if these samples have large loss val-
ues on θS . Since ReL approximates performance
gain, we can conclude that samples with high per-
formance gain are representative and contribute
relatively new knowledge, rather than being am-
biguous or noisy. Another advantage of ReL is
that ReL only requires one forward pass without
any backward computation, making it more ef-
ficient. In comparison, the implicit gradient ne-
cessitates computing the inverse Hessian matrix,
which is computationally expensive.

ReL was first introduced in Mindermann et al. (2022) for training data scheduling. In our work, we
show that ReL is well-suited for the coreset selection task and can effectively address the issue of
selecting ambiguous or noisy samples in previous coreset selection methods. A detailed discussion
comparing CSReL with other related works is provided in Appendix C.

4 CORESET SELECTION FOR CONTINUAL LEARNING

4.1 APPLYING CORESET SELECTION TO CONTINUAL LEARNING

Continual learning seeks to adapt a CL model to a sequence of tasks with no shared classes between
tasks, where data from previous tasks is unavailable during the training of the current task. In this
work, we denote the dataset of the t-th task as Dt. We focus on the challenging class-incremental
setting, where the model has a single classification head, and task identity is not provided during
inference. Rehearsal-based methods apply a memory buffer M to store part of the previous data
and replay the stored data during training the CL model to prevent forgetting previous tasks.

We aim to summarize an informative subset as memory for rehearsal-based CL and a natural ap-
proach is to select coresets from each task as memory, as proposed in Greedy Coreset (Borsos
et al., 2020) and PBCS (Zhou et al., 2022b). We introduce our CSReL continual learning method
(CSReL-CL), which selects a coreset from each task using Alg. 1 and equally assign memory size
to previous tasks. Detailed algorithm is shown in Appendix E. We illustrate the overview of our
CSReL-CL approach in Appendix Q to facilitate a clear understanding of our method.

4.2 CONSIDERING PREVIOUS TASKS WHILE UPDATING MEMORY

Only to summarize single task data Dt for memory may result in interference between tasks, since
there may be samples that represent Dt but interfere other previous tasks. We aim to select samples
from Dt to represent both the current task data and the previous data, so that the optimal subset
can represent Dt while minimizing interference with the previous data. This approach helps to
avoid selecting these harmful samples. Since previous data is not available, we use memory data to
represent the previous data. We modify performance gain for selecting i-th sample as

GPrv
i = log p (y1:t|x1:t;St ∪ (xi, yi))− log p (y1:t|x1:t;St) , (7)

where (x1:t,y1:t) denotes all samples in D ∪ M and (xi, yi) denotes the i-th sample in Dt. St is
current selected subset from Dt. Following derivation in Section 3, the ReL is

GPrv
i = ℓ(xi, yi;θSt)− ℓ(xi, yi;θDt∪M). (8)
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The holdout model is trained on both current task data and memory. In practice, since |M| ≪ |Dt|,
we resample memory data for training holdout model. We use the abbreviation CSReL-CL-Prv to
denote our CL method that considers previous tasks, detailed algorithms are shown in Appendix F.

4.3 SELECTING CORESET FROM STREAMING DATA

Previous summarization methods require the availability of all current data, which may not be prac-
tical for large datasets or privacy-related datasets. Reservoir sampling (Vitter, 1985) is an effective
method for updating samples from a stream of data without needing the full dataset. Our key idea
is to scale up selection probability in reservoir sample so that sample with higher ReL could have
higher probability to be selected, while keeping the streaming nature of reservoir sampling.

Since Dt is not available and the CL model is trained on Dt ∪M, we approximate θDt∪M by the
CL model in Eq. (8) and modify ReL for reservoir sampling as

GRS
i = ℓ(xi, yi;θSt

)− ℓ(xi, yi;θcnt), (9)

where θcnt is parameters of the CL model, St is selected subset of current task and (xi, yi) denotes
i-th sample in current batch. ReL in Eq. (9) acts as a scaling factor on the update probability.
The selected samples randomly replace existing samples in the memory. We refer to our modified
reservoir sampling method as CSReL-RS. The detailed algorithm is provided in Appendix G.

4.4 CORESET SELECTION FOR KNOWLEDGE DISTILLATION

Knowledge distillation (KD) (Hinton et al., 2015) is an effective and widely used method for
rehearsal-based CL. In these methods (Buzzega et al., 2020; Yan et al., 2022), the previous sam-
ples’ logits from the previous models are also save in memory, and a KD loss is applied to regularize
the model to produce similar logits for the previous samples.

We claim that coreset selection should take into account both label prediction and KD. When select-
ing samples in task t, we use (xi, yi, oi) to denote the i-th sample in Dt, where oi is the logit of this
sample provided by the current CL model. Based on Section 3, we define the performance gain as

GKD
i = log p (o1:t|x1:t;S ∪ (xi, oi))− log p (o1:t|x1:t;S) , (10)

where (x1:t,o1:t) denote all sample-logit pairs in D ∪ M. To make the probability of the logit
tractable, we assume the probability of the predicted logit follows a Multivariate Gaussian Distribu-
tion with an identity covariance matrix. Following Section 3, we can compute ReL for KD as

GKD
i = ℓMSE(xi, oi;θS)− ℓMSE(xi, oi;θDt∪M), (11)

where ℓMSE is mean square error (MSE). To apply objective in Eq. (11) to reservoir sampling, we
assume the CL model is trained on Dt ∪ M, as the logits are provided by the CL model and the
MSE of this model is 0. Linearly combined ReL (ReL-cmb) with factors αs and βs is

Gcmb
i = αsG

RS
i + βsG

KD
i . (12)

5 EXPERIMENTS

5.1 DATA SUMMARIZATION

We evaluate our CSReL selection method on MNIST (Deng, 2012), CIFAR-10 (Krizhevsky et al.,
2009) and more challenging CIFAR-100 (Krizhevsky et al., 2009). For MNIST and CIFAR-10, to
make a fair comparison, we follow the settings of Borsos et al. (2020). For CIFAR-100, we use
ResNet-18 (He et al., 2016) as backbone.

We compare our method with competitive baselines: Greedy Coreset (Borsos et al., 2020), PBCS
(Zhou et al., 2022b), we also use uniform sampling as the worst-case. The evaluation metric is the
test accuracy of the model trained from scratch on the selected data. Detailed model and training
setting are shown in Appendix W.

We plot test accuracy against selected subset size in Figure 1, the results demonstrate that our method
performs on par with Greedy Coreset on MNIST dataset and outperforms all baseline methods
on CIFAR-10 and CIFAR-100 datasets. Notably, our method performs better with larger coreset
sizes. Further comparisons and explanations are shown in Appendix V. Analysis on difficulty of
selected samples by our method and Greedy Coreset in Appendix I demonstrate that our method
could identify discriminative samples while avoiding selecting ambiguous or noisy samples.
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(a) CNN on MNIST
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(b) ResNet-18 on CIFAR-10

25 50 75 100 125 150 175 200

Subset size

2

3

4

5

6

7

8

9

Te
st

 a
cc

ur
ac

y

Greedy coreset
Our method
Uniform
PBCS

(c) ResNet-18 on CIFAR-100

Figure 1: Performance comparisons in data summarization task show that our method performs
on par with Greedy Coreset on the MNIST dataset, while outperforming all other baselines on the
CIFAR-10 and CIFAR-100 datasets.
Table 1: Final average accuracy, with red and blue indicating the top and second-best values. Our
memory construction method performs on par with Greedy Coreset on the MNIST dataset and con-
sistently outperforms other baselines on more complex datasets.

Methods Split MNIST Split CIFAR-10 Split CIFAR-100 Perm MNIST

Uniform sampling 93.60±0.66 37.05±3.06 13.82±1.31 78.38±0.82
k-means of features 93.56±1.24 35.78±0.56 14.31±0.54 78.08±0.53
k-center of embeddings 94.03±1.22 36.78±4.05 14.59±0.32 77.93±0.32
Hardest samples 87.26±2.50 27.80±1.20 12.19±0.05 77.04±0.60
iCaRL’s selection 94.32±0.20 35.38±3.12 14.43±0.51 78.87±0.23
OCS 84.86±2.69 37.12±1.94 13.27±0.45 75.07±0.91
Greedy Coreset 95.73±0.19 37.68±2.63 15.04±0.48 79.23±0.37
GCR 93.22±1.04 37.59±1.29 13.54±1.06 78.73±0.13
PBCS 94.22±0.61 38.37±1.01 16.20±0.27 76.30±0.81
BCSR 93.81±0.91 38.14±3.64 15.11±1.24 78.30±0.81
CSReL-CL 95.68±0.35 38.97±2.61 17.48±0.21 79.59±0.38
CSReL-CL-Prv 95.55±0.13 39.82±0.83 18.47±0.17 80.02±0.12

5.2 CONTINUAL LEARNING

We conduct experiments on different CL settings to evaluate our methods, and use the final average
accuracy as evaluation metric, which reflects average accuracy across all tasks after training model
on the last task. All of our experimental results are obtained from multiple runs with different
random seeds. We selecte hyperparameters with a focus on both performance and robustness.

5.2.1 CORESET SELECTION FOR CONTINUAL LEARNING

We evaluate CSReL-CL and CSReL-CL-Prv on Split MNIST (Zenke et al., 2017), Perm MNIST
(Goodfellow et al., 2013), Split CIFAR-10 and CIFAR-100. To make a fair comparison, we follow
the setting of Borsos et al. (2020) and Zhou et al. (2022b). We set 100 memory size for Split MNIST
and Perm MNIST and 200 memory size for Split CIFAR-10 and Split CIFAR-100. For Split-CIFAR-
100 dataset, we split totally 100 classes into 10 disjoint tasks, and use ResNet-18 (He et al., 2016)
as backbone. Detailed experiment settings and hyperparameters are shown in Appendix X.1.

Baselines include: uniform sampling, k-center clustering in last layer embedding (Sener & Savarese,
2017) and feature space (Nguyen et al., 2017), iCaRL’s selection (Rebuffi et al., 2017), hardest-to-
classify samples (Aljundi et al., 2019b), Greedy Coreset (Borsos et al., 2020), GCR (Tiwari et al.,
2022), OCS (Yoon et al., 2021), PBCS (Zhou et al., 2022b) and BCSR (Hao et al., 2024).

The average accuracies in Table 1 show that our method performs comparably to Greedy Coreset on
the Split MNIST dataset and outperforms all other baselines on the remaining datasets, highlighting
the superiority of our approach. Additionally, the experimental results indicate that considering
previous tasks can further enhance CL performance. We further demonstrate the effectiveness of
our method compared to most recent baselines by conducting additional experiments under the same
settings as BCSR, as detailed in Appendix M. The scalability and effectiveness of our method with
complex backbone models are further demonstrated in Appendix T.

7



Published as a conference paper at ICLR 2025

Table 2: Final average accuracy with red and blue indicating the top and second-best values. Summa-
rizing data with our CSReL-RS consistently improves the performance of existing continual learning
methods, particularly in knowledge distillation scenarios.

Methods Split CIFAR-100 Split Tiny ImageNet
200 500 200 500

A-GEM 9.40±0.05 9.42±0.08 8.07±0.08 8.06±0.04
ER 14.18±0.45 21.08±0.16 8.49±0.16 9.99±0.29
FDR 15.32±0.73 22.83±0.73 8.70±0.19 10.54±0.21
CSReL-ER 15.35±0.73 22.65±0.81 8.66±0.06 10.44±0.17
DER 21.58±1.72 35.20±0.84 11.87±0.78 17.75±1.14
DER++ 26.27±2.32 36.00±1.92 10.96±0.17 19.38±1.41
LODE-DER++ 27.96±0.91 39.14±0.74 14.46±0.90 21.15±0.68
CSReL-DER++ 27.79±0.60 39.80±1.45 16.78±0.78 21.22±0.92
CSReL-LODE-DER++ 28.51±0.33 41.96±0.78 17.01±0.43 22.83±0.23

5.2.2 CORESET SELECTION FOR EXISTING CONTINUAL LEARNING METHODS

To further demonstrate the effectiveness and compatibility of our method with other CL approaches,
we replace reservoir sampling in ER (Riemer et al., 2018), DER++ (Buzzega et al., 2020), and
LODE-DER++ (Liang & Li, 2024) with our CSReL-RS, resulting in CSReL-ER, CSReL-DER++,
and CSReL-LODE-DER++. Since DER++ applies knowledge distillation, we apply ReL-cmb for
sample selection for all methods involving DER++. Following settings of the Mammoth framework
(Buzzega et al., 2020), we evaluate our methods on Split CIFAR-100 and Split Tiny ImageNet (Wu
et al., 2017) with memory sizes of 200 and 500. Both datasets are equally split into 10 tasks with
ResNet-18 serving as backbone model. Detailed settings are shown in Appendix X.2.

We compare our methods with other commonly compared rehearsal-based methods including ER,
A-GEM (Chaudhry et al., 2018b), FDR (Benjamin et al., 2018), DER (Buzzega et al., 2020), DER++
and LODE-DER++. The results are presented in Table 2, with baseline method results on Split Tiny
ImageNet taken from Buzzega et al. (2020) and Liang & Li (2024).
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Figure 2: Average loss on the full
dataset and test accuracy of models
trained on subsets show that coreset se-
lected by our method could better repre-
sent full dataset and achieve higher ac-
curacy.

The results in Table 2 show that summarizing the core-
set using our CSReL-RS effectively enhances existing
continual learning methods, particularly when apply-
ing knowledge distillation. Combining CSReL-RS with
LODE-DER++ consistently outperforms other methods
across all datasets. These findings highlight both the ef-
fectiveness and compatibility of our approach. Addition-
ally, we evaluate the scalability of our method on a 500-
class subset of ImageNet-1K in Appendix N.

5.3 ABLATION STUDY

Analysis on representing full dataset. Both Greedy
Coreset (Borsos et al., 2020) and our method minimize
loss on the full dataset of model trained on coreset. A
lower loss indicates that coreset better represents the full
dataset. To evaluate this, we train models on the selected
subsets and compute the average loss on the full dataset
as a metric to assess how well the selected data represents
the full dataset. We conduct experiments on CIFAR-10 by selecting 2,000 samples from a pool of
10,000 with our method and Greedy Coreset. Models are trained on subsets with different sizes
during the selection process, and we evaluate the trained models based on both the average loss on
the full dataset and test set accuracy.

We plot test accuracy and average loss on full dataset against subset size in Figure 2, The results
indicate that models trained on subsets selected by our method achieve a greater reduction in average
full dataset loss, especially when the subset size is small. This suggests that our method selects
samples with higher performance gains and thus better represent the full dataset. The corresponding
test accuracy is consistent with the loss curve, demonstrating the effectiveness of our method.
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Figure 4: Test accuracy under different noise ratios shows that the performance of our method drops
only slightly as the noise ratio increases and outperforms other baselines in noisy condition.
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Figure 3: Performance and time cost w.r.t. step size. Select-
ing more samples within one step will degrade performance
while reducing time cost, indicating that a trade-off should
be made between performance and efficiency.

Data summarization under label
noise. To demonstrate the robustness
of our method under noisy condi-
tion, we test data summarization per-
formance under label noise case on
MNIST, CIFAR-10 and CIFAR-100
dataset, with the same experiment
setting and evaluation method as ex-
periments in Section 5.1. Specif-
ically, we randomly corrupt sam-
ples at different ratios and then use
this corrupted dataset as the selection
pool to select the coreset of 200 sam-
ples. We compare our method with
Greedy Coreset (Borsos et al., 2020) and PBCS (Zhou et al., 2022b). No clean holdout set is pro-
vided, namely, holdout model in our method is trained on noisy dataset, outer loss of Greedy Coreset
and PBCS is computed on noisy dataset.

As shown in Figure 4, the performance of our method drops slightly as the noise ratio increases
across all datasets, while the performance of other methods drops significantly. We also count
number of selected noisy samples in Appendix K, showing that our method selects significantly
fewer noisy samples. These results demonstrate the robustness of our method to data noise. Given
that low noise ratios are common in practical scenarios, such as web data, our approach effectively
avoids selecting noisy data for the coreset.

Selection steps in data summarization. In our multi-step selection algorithm, selecting more
samples in one step and using fewer steps can reduce computation costs. However, selecting
more samples in one step may result in redundant samples, as samples with similar ReL may
contain similar knowledge. Therefore, a trade-off should be made between efficiency and per-
formance. We select coresets of 200 samples with different step size on CIFAR-10 and CIFAR-
100 and train models on these coresets. Test accuracy of models and time cost corresponding
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Figure 5: Avg. accuracy and forgetting
under different βs. Increasing βs de-
creases forgetting and the best accuracy
is achieved when βs is set to 0.2.

to step size are shown in Figure 3.

We observe that performance decreases as the step size
increases, while the time cost decreases. These results
verify our claim of a trade-off between time cost and
performance. For CIFAR-10 dataset, performance drops
slightly when the step size is smaller than 10. However,
in the more complex CIFAR-100 dataset, performance
drops significantly as the step size increases.

Effectiveness of considering knowledge distillation. To
verify the effectiveness of considering knowledge distilla-
tion proposed in Section 4.4, we set different MSE factor
βs while fixing all other hyper parameters, αs is set to
1.0 in all the experiments. We conduct experiments on
Split CIFAR-100 with CSReL-RS, and use ReL-cmb in
Eq. (12) for selection. Figure 5 shows the average accuracy and forgetting w.r.t. different βs values.
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As βs increases, forgetting continually decreases, indicating that more emphasis is placed on select-
ing samples that encourage the current model to mimic the output of the previous model, thereby
increasing regularization strength. The best performance is achieved when βs = 0.2, suggesting
that excessive regularization can hinder the learning of new tasks, highlighting the need for balance.
Therefore, using ReL-cmb proves effective for coreset selection.

Holdout model training epochs. In our work, holdout model serves as an indicator for which
sample is worthy of learning and which sample is not learned yet, we test the influence of holdout
model training epochs with respect to the quality of selected samples on CIFAR-10. Specifically, we
train holdout models with different epochs, then select coresets with our method and train models
on selected coresets. We evaluate models with test accuracy. Coreset size is set to 200, backbone
and other hyperparameters are the same as Section 5.1.

Table 3: Performance with respect to
different holdout training epochs in the
data summarization task: Performance
increases as training epochs increase
and then remains stable.

Train epochs Test accuracy

20 32.98±0.75
40 35.13±0.75
60 35.12±0.63
80 37.57±0.78

100 38.74±1.08
120 37.89±0.27

Table 4: Time cost of selecting core-
set with CSReL. The time cost scales
mildly on different datasets.

Dataset Holdout train Selection

MNIST 159.84s 102.70s
CFIAR-10 349.74s 737.68s
CIFAR-100 350.87s 735.85s

From result in Table 3, as holdout model training epochs
increases, quality of selected coreset increases and re-
mains stable after holdout training epochs reaches 80. In-
dicating that quality of holdout model affects quality of
selected data, and holdout model should be well trained
for coreset selection. We also evaluate the impact of hold-
out model training epochs on the continual learning task
using the Split CIFAR-100 dataset, as detailed in Ap-
pendix O. Our results show that continual learning per-
formance remains stable across a wide range of holdout
model training epochs.

Time cost of coreset selection. To demonstrate the
efficiency of our CSReL coreset selection method, we
provide the time costs for coreset selection on different
datasets in Section 5.1, as shown in Table 4. The time cost
of our method scales moderately across different datasets
and backbones, and training the holdout model remains
manageable with larger datasets and backbones. This
demonstrates that our method is well-suited for larger
datasets and more complex backbones.

Both our method and Greedy Coreset (Borsos et al., 2020)
use matching pursuit for coreset selection. However,
Greedy Coreset computes the Neural Tangent Kernel (NTK) (Jacot et al., 2018), which takes over
4000 seconds. In comparison, our CSReL coreset selection method is significantly faster, demon-
strating its efficiency. All our experiments are conducted on NVIDIA RTX3090. Details of back-
bone parameters and time cost is shown in Appendix P.

Further ablation studies. In greedy incremental selection, selected samples are not removed, mean-
ing that samples chosen early may have a lower performance gain as more samples are added to the
coreset. As a result, the selection order can influence the performance of the coreset. We demon-
strate the robustness of our method with respect to selection order in Appendix R. Additionally,
difficult and noisy samples cannot be distinguished solely using the ReL metric. However, in greedy
incremental selection, we show that our method can effectively differentiate between these sample
types in Appendix S. Furthermore, we present a feature map of the selected samples in Appendix U,
illustrating that our method consistently selects more representative samples.

6 CONCLUSION

In this work, we address the problem of selecting ambiguous or noisy samples in previous bilevel
coreset selection methods by using reducible loss as an approximation for performance gain. This
approach enables the identification of representative and informative samples while excluding noisy
or ambiguous ones, leading to improved performance. Additionally, we propose an efficient core-
set selection method designed to address the unique challenges of continual learning, such as task
interference, streaming scenarios, and knowledge distillation. Extensive experiments validate the
effectiveness of our approach in both data summarization and continual learning tasks. In future
work, we plan to explore coreset selection for fine-tuning large pretrained models, allowing them to
acquire new knowledge while maintaining generalizability.
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Julio Hurtado, Alain Raymond-Sáez, Vladimir Araujo, Vincenzo Lomonaco, Alvaro Soto, and Da-
vide Bacciu. Memory population in continual learning via outlier elimination. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 3481–3490, 2023.

David Isele and Akansel Cosgun. Selective experience replay for lifelong learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Rishabh Iyer, Ninad Khargoankar, Jeff Bilmes, and Himanshu Asanani. Submodular combinatorial
information measures with applications in machine learning. In Algorithmic Learning Theory,
pp. 722–754. PMLR, 2021.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Saurav Jha, Dong Gong, He Zhao, and Lina Yao. Npcl: Neural processes for uncertainty-aware
continual learning. Advances in Neural Information Processing Systems, 36:34329–34353, 2023.

Hyundong Jin, Gyeong-hyeon Kim, Chanho Ahn, and Eunwoo Kim. Growing a brain with sparsity-
inducing generation for continual learning. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pp. 18961–18970, 2023.

Chris Dongjoo Kim, Jinseo Jeong, Sangwoo Moon, and Gunhee Kim. Continual learning on noisy
data streams via self-purified replay. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 537–547, 2021.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

12



Published as a conference paper at ICLR 2025

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885–1894. PMLR, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Yan-Shuo Liang and Wu-Jun Li. Loss decoupling for task-agnostic continual learning. Advances in
Neural Information Processing Systems, 36, 2024.

Yuhang Liu, Wenyong Dong, Lei Zhang, Dong Gong, and Qinfeng Shi. Variational bayesian dropout
with a hierarchical prior. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7124–7133, 2019.

Francesco Locatello, Michael Tschannen, Gunnar Rätsch, and Martin Jaggi. Greedy algorithms
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A APPROXIMATING PREDICTIVE DISTRIBUTION WITH REDUCIBLE LOSS

Predictive distribution in Eq. (5) requires parameter distribution of model trained on D ∪ S and S

p (yi|xi;D ∪ S) =
∫

p (yi|xi;θ) p (θ|D ∪ S) dθ,

p (yi|xi;S) =
∫

p (yi|xi;θ) p (θ|S) dθ.

From the conclusion in (Liu et al., 2019), a vanilla neural network is a special case of a Bayesian
neural network with a uniform prior distribution and a Dirac-Delta posterior distribution. Therefore,
performance gain of vanilla neural network is

Gi = log p (yi|xi;θD∪S)− log p (yi|xi;θS) , (13)

where θD∪S and θS denote parameters of model trained on D∪S and S respectively. For classifica-
tion task and cross-entropy loss, we use loss to replace the negative log-probability, the performance
gain is

Gi = ℓ(xi, yi;θS)− ℓ(xi, yi;θD∪S). (14)

B RELATION BETWEEN REL AND IMPLICIT GRADIENT

We show that ReL in Eq. (14) is a proportional approximation to negative implicit gradient in (Borsos
et al., 2020) under greedy selection framework with binary sample weight. Given model trained on
S, parameter θD∪S is approximated by updating θS with one Newton step, namely

θD ≈ θS −H−1
full∇L(θS), (15)

where Hfull denotes Hessian matrix of loss
∑

(xi,yi)∈D ℓ(xi, yi;θS) with respect to θS . Since
S ⊂ D and samples are i.i.d., we could assume that the Hessian matrix H provides a statistical
approximation of the full Hessian Hfull in the neighbor space of θS , the following relationship
holds

1

|D|
Hfull ≈

1

|S|
H.

Approximating Gi in Eq. (14) with first-order Taylor expansion and substituting parameter differ-
ence in Eq. (15) results in

Gi ≈ ∇ℓ(xi, yi;θS)
T (θS − θD) ≈

|S|
|D|

∇ℓ(xi, yi;θS)
TH−1∇L(θS). (16)

Since CSR is computed over all candidate samples and the ratio |S|/|D| does not affect the ranking
of candidate samples, Eq. (16) indicates ReL is a proportional approximation to negative implicit
gradient in Greedy Coreset (Borsos et al., 2020).

For samples which are representative and not well represented by S, both implicit gradient and ReL
have high scores. Suppose (xi, yi) is such kind of sample, for ReL, representativeness indicates
ℓ(xi, yi;θD) is low, and not represented by S means ℓ(xi, yi;θS) is high, thus ReL is high. From
the aspect of implicit gradient, adding these samples into S will reduce loss on multiple samples after
training model on S ∪ (xi, yi) since this sample contains knowledge similar to other samples that
is not yet present in S. According to the definition of implicit gradient dL(θS)/dwi, a reduction in
loss across multiple samples indicates a high absolute value of the implicit gradient for that sample.
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C DISCUSSION WITH OTHER REDUCIBLE LOSS RELATED WORKS

Reducible loss was firstly introduced in Mindermann et al. (2022) for selecting samples that are
both learnable and worth learning from each batch of data. Sujit et al. (2023) further applied ReL
for selecting samples to replay in reinforcement learning, where unselected samples may be chosen
in later epochs or episodes. However, in the coreset selection task, unselected samples are discarded
and not reused after the selection process. As a result, the methods proposed in previous works
cannot be directly applied to coreset selection task.

Online training data scheduling can also select a subset from each incoming batch for training (Evans
et al., 2023), with the goal of maximizing the performance of the model trained on the selected data.
The target model is trained with only a single step on this subset, which may prevent it from fully
learning the knowledge contained in these samples. When the training dataset is large enough and
the pruning rate is not too high, the model can gradually acquire sufficient knowledge, allowing this
method to perform well. However, in the coreset selection task, we aim to select a small subset from
the entire dataset, meaning the pruning rate is much higher, and the full dataset may not be as large.
This can result in lower performance in the coreset selection task.

Our work adopts the same matching pursuit selection framework as Greedy Coreset (Borsos et al.,
2020). To address the issue of unselected data being excluded after selection, we train the model
on the selected subset until convergence, ensuring that the model fully captures the knowledge con-
tained in the selected data. The incremental selection method ensures that each newly selected
sample adds new knowledge to the existing subset.

Our work proves that ReL could act as an indicator for sample selecting in model convergence
condition. Eq. (16) shows that ReL is a proportional approximation of the negative implicit gra-
dient, while Eq. (3) illustrates that the implicit gradient computes how changes in sample weights
affect the outer loss via the chain rule. The optimal parameter change dθS/dwi estimates how the
model parameters will change when sample weights are modified, assuming the model is trained to
convergence. Thus, in the case of a converged model, ReL can serve as a reliable indicator.

Building on the coreset selection method from Greedy Coreset (Borsos et al., 2020), we address
the issue of selecting ambiguous or noisy samples using the implicit gradient and directly set the
performance gain in Eq. (4) as our selection objective. ReL serves as an approximation of this
performance gain. Both ReL and the implicit gradient can identify representative and informative
samples. However, compared to the implicit gradient, ReL is more effective at avoiding the selection
of ambiguous and noisy samples, resulting in improved performance over Greedy Coreset (Borsos
et al., 2020). Therefore, our method could effectively select coreset of representative and informative
samples. A related research area involves data compression (Wang et al., 2022b), which seeks to
store more information with limited storage capacity by compressing data.

D DERIVATION OF OUTER LOSS GRADIENT WITH RESPECT TO SAMPLE
WEIGHT

In this section, we derive Eq. (2) from the bilevel optimization formulation presented in Eq ( 1).
We follow a logical sequence of steps to arrive at the gradient expression in the desired form. The
gradient has been investigated in previous works (Lorraine et al., 2020; Franceschi et al., 2017;
Zhang et al., 2024). For completeness, we provide a simplified version here.

Step 1: First-Order Optimality Condition for θ∗(w) We begin by noting that θ∗(w) is the
minimizer of the weighted loss function L̂(θ), which is defined as:

L̂(θ) =
|D|∑
i=1

wiℓ(xi, yi;θ),

where θ are the parameters of the model. At the optimal solution θ∗(w), the gradient of the weighted
loss with respect to θ must vanish:

∂L̂(θ)
∂θ

∣∣∣
θ=θ∗(w)

= 0.
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This condition represents the first-order optimality condition for the minimizer of L̂(θ), implying
that at θ∗(w), the gradient of the weighted loss function with respect to θ is zero.

Step 2: Implicit Function Theorem Application Next, we apply the implicit function theorem
to relate the optimal model parameters θ∗(w) to the weight vector w. Since θ∗(w) is implicitly
defined by the equation

∂L̂(θ)
∂θ

∣∣∣
θ=θ∗(w)

= 0,

we can compute the derivative of θ∗(w) with respect to wi. Differentiating both sides of the equation
with respect to wi gives:

∂

∂wi

(
∂L̂(θ)
∂θ

∣∣∣
θ=θ∗(w)

)
= 0.

By the chain rule, this becomes:

∂2L̂(θ)
∂θ2

∣∣∣
θ=θ∗(w)

∂θ∗(w)

∂wi
+

∂2L̂(θ)
∂θ∂wi

∣∣∣
θ=θ∗(w)

= 0.

Here, the Hessian matrix H of L̂(θ) is the second derivative of L̂(θ) with respect to θ, evaluated at
θ∗(w). We can thus rewrite this as:

H
∂θ∗(w)

∂wi
= −∂L̂(θ)

∂wi

∣∣∣
θ=θ∗(w)

.

Step 3: Gradient of L(θ∗(w)) with Respect to wi Now we seek the gradient of the outer loss
function L(θ∗(w)) with respect to the weight wi. The outer loss function is:

L(θ∗(w)) =

|D|∑
i=1

ℓ(xi, yi;θ
∗(w)).

By the chain rule, the gradient of L(θ∗(w)) with respect to wi is:

∇wi
L(θ∗(w)) = ∇θL(θ∗(w))T

∂θ∗(w)

∂wi
.

Substitute the expression for ∂θ∗(w)
∂wi

from the implicit function theorem:

∇wi
L(θ∗(w)) = −∇θL(θ∗(w))TH−1∇θℓ(xi, yi;θ

∗(w)).

This gives the desired expression for the gradient of the loss function with respect to wi, as provided
in Eq. (2).

E ALGORITHMS FOR CSREL CONTINUAL LEARNING

In this work, we apply our coreset selection method to rehearsal-based CL. Training objective at
task t is

Lcnt(Dt ∪M;θcnt) =
1

|B|
∑

ℓ(xi, yi;θcnt) + α
1

|Bm|
∑

ℓ(xm, ym;θcnt), (17)

where (xi, yi) and (xm, ym) are samples from the current task dataset and memory M respectively.
The memory M stores coresets from all previous tasks, defined as M = ∪t

i=1Ci. α is hyper-
parameter for balancing regularization force from memory, B and Bm are batches from current task
and memory respectively.

After training task t, we select coreset from Dt with Alg.1, and store the holdout model loss of each
selected sample. To shrink memory of previous data, we re-select memory data to shrink memory
of previous tasks, using memory data of previous tasks as selection pool. Since the holdout model
loss for previous memory samples are already stored in the memory, there is no need to retrain the
holdout model during re-selection. We refer our CL method as CSReL Continual Learning (CSReL-
CL) and detailed algorithm is shown in Alg.2.
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Algorithm 2: CSReL Continual Learning
Input: Dataset sequence D1:T , memory size K
Initialize memory M0 = ∅;
for i in range(1,T + 1) do

Train continual model with replay θ∗
cnt = argminθ Lcnt(Dt ∪M;θ);

// Update memory
Compute size for each task ki = K/i, j ∈ [1 : i];
for j in range(i) do

Reselect samples for previous tasks from Cj by Alg.1, coreset size is ki;
Select samples for current task from Di by Alg.1, |Ct| = ki;
Form new memory M = ∪i

j=1Cj ;

F ALGORITHMS FOR CSREL-CL CONSIDERING PREVIOUS TASKS

Algorithm 3: Coreset selection considering previous tasks
Input: Dataset D, select size m, selection steps tout, memory M
Result: Coreset C
Define holdout loss function: Lhld(θ) = 1/(|D|+ |M|)

∑
i∈D∪M ℓ(xi, yi;θ);

Initialize S0 = ∅;
Train holdout model θD = argminθ Lhld(θ);
Select size of one step n = m/tout;
// Outer loop
for k in range(tout) do

θS = argminθ L̂(θ);
Compute ReL GPrv

i = ℓ(xi, yi;θS)− ℓ(xi, yi;θD), (xi, yi) ∈ D\Sk;
Select top-n samples Tk by ReL;
Update current coreset Sk+1 = Sk ∪ Tk;

C = Sk

Algorithm 4: CSReL-CL-Prv
Input: Dataset sequence D1:T , memory size K
Initialize memory M0 = ∅;
for i in range(1,T + 1) do

// Train continual model with replay
θ∗
cnt = argminθ Lcnt(Dt ∪M; θ);
// Update memory
Compute size for each task ki = K/i, j ∈ [1 : i];
for j in range(i) do

Reselect samples for task j from Cj by Alg.3, coreset size is ki;
Select samples for current task from Di with M by Alg.3, |Ct| = ki;
Form new memory M = ∪i

j=1Cj ;

G ALGORITHMS FOR CSREL RESERVOIR SAMPLING

ReL for selecting sample in data stream is

GRS
i = ℓ(xi, yi;θSt

)− ℓ(xi, yi;θcnt), (18)

where θcnt is parameters of continual learning model, St is selected subset of current task and
(xi, yi) denotes i-th sample in Bt.

To apply our selection method to reservoir sampling, we maintain an memory model which is trained
on St, with parameters θSt . ReL computed in Eq. (18) is applied to modify update probability so that
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samples with higher ReL will have higher probability to be selected to memory. Specifically, for each
batch, we firstly compute ReL for each sample with Eq. (18), then we normalize ReL by Softmax
function as probability scaling factor. The final update probability is original update probability
multiplied by scaling factor. Once one sample is selected, this sample randomly replace one existing
sample in current memory. To update information contained in θSt

, we retrain additional model on
selected data of current task when number of newly updated samples reaches threshold Nupd, and
we reinitialize θSt when a new task comes. We refer to our modified reservoir sampling method as
CSReL-RS.

CSReL-RS update process is shown in Alg. 5, where B is current training batch, n is number of
seen samples in this stream, and K is memory size. CL process applying our CSReL-RS is shown
in Alg.6.

Algorithm 5: CSReL-RS
Input: Current batch B = {(xi, yi)}, continual model θcnt, memory model θSt

, number of
seen samples n, memory size K, retrain threshold Nupd, number of updated samples
nupd

Compute ReL: Gi = ℓ(xi, yi;θSt)− ℓ(xi, yi;θcnt);

Compute probability scaling factor: si =
exp(GRS

i )∑
exp(GRS

i )
· |B|;

for i in range |B| do
if n < |K| then

// Add sample to memory
M = M∪ (xi, yi);
nupd+ = 1;

else
r = randint(0, n+ 1);
// Scale probability of update by si
if r < (K · si) then

// Replace existing sample
pos = randint(0, |M|);
M[pos] = (xi, yi);
nupd+ = 1;

n+ = 1;
if nupd ≥ Nupd then

Initialize θSt ;
Train θSt

on memory data of current task;
nupd = 0;

Algorithm 6: Continual learning with CSReL-RS
Input: Dataset sequence D1:T , Memory size K, loss function Lcnt

Initialize memory M0 = ∅;
Initialize continual model θcnt;
for t in range(1,T + 1) do

for B in Di do
Sample memory batch BM;
Update continual model θcnt = θcnt − η∇Lcnt(Bt ∪ BM;θcnt);
// Here we reuse loss on B before update θcnt
Update memory M by Alg.5;
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Figure 6: Implicit Gradient and holdout model loss of top-10 candidates in Greedy Coreset selection
on CIFAR-10 dataset.
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Figure 7: Implicit Gradient and holdout model loss of top-10 candidates in Greedy Coreset selection
on CIFAR-100 dataset.

H LOSS OF HIGH IMPLICIT GRADIENT CANDIDATES

To verify the claim that samples with high implicit gradients may be noisy or ambiguous, we plot
the implicit gradient and holdout model loss of the top 10 implicit gradient candidates during the
selection process of Greedy Coreset. We use the original implementation of Greedy Coreset for
selection, with the holdout model trained on the full selection pool. Our experiments are conducted
on the CIFAR-10 and CIFAR-100 datasets, and we plot the candidates after every 25 coreset samples
are selected. The results for CIFAR-10 and CIFAR-100 are shown in Figures 6 and 7 respectively.

The x-axis represents the rank of candidate samples, the left y-axis denotes the implicit gradient
value, and the right y-axis shows the loss value. From Figure 6, we observe that some samples
have high holdout model loss values. After selecting 125 and 200 samples, the top-ranked candidate
samples exhibit holdout model losses greater than 2.0, indicating that these samples are almost
misclassified by the holdout model. A similar pattern is observed in the CIFAR-100 experiment
after selecting 150 and 200 samples as shown in Figure 7.
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(a) Number of selected sample by our method from each difficulty level during selection on MNIST
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(b) Number of selected sample by Greedy Coreset from each difficulty level during selection on MNIST

Figure 8: Difficulty analysis on MNIST during selection.

Since samples with high holdout model loss are often ambiguous or noisy, these results suggest that
such samples may exhibit high implicit gradient values and could be selected for the coreset.

I DIFFICULTY OF SELECTED SAMPLES

We analyze difficulty of selected samples. To define sample difficulty, we firstly train a model on
full dataset to convergence, then we compute loss on each sample in full dataset, we use this loss
as metric of difficulty. This difficulty means how hard-to-learn of one sample. Based on difficulty,
we equally split all samples into 8 groups with the incremental of difficulty, indicating 8 levels of
difficulty. For each difficulty level, we count how many samples in this level are selected, aiming to
analyze preference of one selection method. We analyze preference along the selection procedure
for our method and Greedy Coreset (Borsos et al., 2020), and selection experiment is the same in
Section 5.1. For both methods, we analyze preference with subset size 25, 50, 75, 100, 125, 150,
175, 200. Results on MNIST, CIFAR-10 and CIFAR-100 are shown in Figure 8, Figure 9 and Figure
10 respectively.

For MNIST dataset, from Figure 8, both our method and Greedy Coreset tend to select harder
samples. When subset size smaller than 100, our method selects more hard samples, this explains
why our method under-perform Greedy Coreset when subset size is smaller in Figure 1 (a), and as
subset size increases, the preference of both methods tend to be the same, this is also consistent
to test accuracy in Figure 1 (a). Note that, compared to CIFAR-10 and CIFAR-100, since MNIST
is much simpler, both methods tend to select hard-to-learn samples, indicating these samples are
discriminative.
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(a) Number of selected sample by our method from each difficulty level during selection on CIFAR-10
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(b) Number of selected sample by Greedy Coreset from each difficulty level during selection on CIFAR-10

Figure 9: Difficulty analysis on CIFAR-10 during selection.
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(a) Number of selected sample by our method from each difficulty level during selection on CIFAR-100
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(b) Number of selected sample by Greedy Coreset from each difficulty level during selection on CIFAR-100

Figure 10: Difficulty analysis on CIFAR-100 during selection.

(a) CIFAR-10 (b) CIFAR-100

Figure 11: Visualization of selected samples by Greedy Coreset in the last two difficulty groups in
CIFAR-10 and CIFAR-100.
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(a) CNN on MNIST
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(b) ResNet-18 on CIFAR-10
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(c) ResNet-18 on CIFAR-100

Figure 13: Number of selected noisy samples under different noise ratio. Our method selects much
less noisy samples compared to other two methods, demonstrating that our method are more robust
under noisy data case.

For CIFAR-10 dataset, from Figure 9, our method tend to select more easy-to-learn samples com-
pared to Greedy Coreset. Note that our method selects no samples from the last two difficulty levels
which indicate ambiguous or noisy samples, while Greedy Coreset selects much more samples in
last three difficulty levels. We have visualized the samples selected by Greedy Coreset from the last
two difficulty levels in Figure 11, and observed that, while these samples are correctly labeled, some
samples are non-typical and may contain misleading features that negatively impact the model’s
learning process. These results demonstrate that CSReL could effectively avoid selecting noisy or
ambiguous samples. Experiments in Figure 1 (b) indicate that these harder samples may harm model
performance.

For CIFAR-100 dataset, from Figure 10, the results are similar to results on CIFAR-10. Our method
selects much less samples in high difficulty levels. According to test performance in Figure 1 (c), our
methods selects less ambiguous samples or noisy samples, and perform better than Greedy Coreset.

In conclusion, our method could identify discriminative samples and effectively avoid selecting
ambiguous or noisy samples.

J ANALYSIS ON REPRESENTING FULL DATASET

250 500 750 1000 1250 1500 1750 2000

Subset size

10

15

20

25

30

Te
st

 a
cc

ur
ac

y

9

10

11

12

13

14

Lo
ss

 o
n 

fu
ll 

da
ta

se
t

Greedy Coreset accuracy
Our method accuracy

loss of Greedy Coreset
loss of our method

Figure 12: Average loss on the full dataset
and test accuracy of models trained on sub-
sets with different size of our method and
Greedy Coreset on CIFAR-100 dataset.

Same as experiment in Section 5.3, we also conduct
experiments on CIFAR-100 dataset. We train mod-
els on selected subset along the selection procedure,
and evaluate these models by test accuracy and av-
erage loss on full dataset. loss and accuracy with
respect to subset size is shown in Figure 12.

From results in Figure 12 model trained on subset
selected by our method could achieve higher test ac-
curacy and lower average loss on full dataset. These
results demonstrate that, compared to Greedy core-
set (Borsos et al., 2020), our method selects a subset
with higher performance gain. This finding aligns
with the results of our ablation study on the CIFAR-
10 dataset, presented in Section 5.3.

K DATA
SUMMARIZATION UNDER DATA NOISE

We count the number of noisy samples selected by
different methods in the experiment of Section 5.3,
with results shown in Figure 13. Our method selects
significantly fewer noisy samples, particularly on the more challenging CIFAR-10 and CIFAR-100
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Table 5: Forgetting of continual learning experiments.

Methods Split MNIST Split CIFAR-10 Split CIFAR-100 Perm-MNIST

Uniform sampling 6.26±1.20 26.93±4.54 79.55±2.19 10.29±0.94
k-means of features 6.29±1.42 60.98±1.53 79.00±1.61 10.55±0.63
k-center of embeddings 5.05±1.69 56.71±4.22 78.82±1.12 10.28±0.01
Hardest samples 15.35±3.16 72.55±1.94 73.97±1.15 11.74±0.71
iCaRL’s selection 5.45±0.32 58.64±4.11 79.65±1.02 9.77±0.26
Greedy Coreset 3.20±0.49 58.41±3.68 79.01±0.86 9.45±0.23
PBCS 5.65±0.80 53.25±1.61 77.00±1.76 12.10±1.04
CSReL-CL 3.03±0.50 43.43±5.44 75.09±1.24 8.81±0.50
CSReL-CL-Prv 3.92±0.04 37.94±8.21 72.36±0.15 8.44±0.19

datasets compared to MNIST. These findings align with the performance drop observed in Section
5.3, demonstrating that our method is more robust in handling noisy data.

L FORGETTING IN CONTINUAL LEARNING EXPERIMENTS

In this section, we present forgetting metric (Chaudhry et al., 2018a) which measures performance
degradation in subsequent tasks for experiments in Section 5.2. Computation of forgetting is

fk
j = max

l∈{1,...,k−1}
al,j − ak,j , ∀j < k,

where ak,j denotes accuracy of task j after training k-th task. We evaluate forgetting of CL experi-
ments in Table 5.

Among coreset selection methods, our method has the minimal forgetting on all datasets. Our
method could also outperform other sample selection methods in most datasets. This demonstrates
the effectiveness of our method for selecting a informative subset to prevent forgetting.

M CONTINUAL LEARNING ON BCSR SETTING

To further demonstrate the effectiveness of our method, we evaluate CSReL-CL under the same
setting as BCSR (Hao et al., 2024) on the Split CIFAR-100 dataset, which is equally divided into
20 tasks. The memory size is set to 100, and task IDs are provided during inference. We replace
the selection method in BCSR with our CSReL selection. The results are presented in Table 6, with
BCSR and other baseline results referenced from the BCSR paper (Hao et al., 2024).

The results in Table 6 show that our method could outperform other coreset selection baselines,
demonstrating the effectiveness of our selection method.

N CONTINUAL LEARNING EXPERIMENT ON IMAGENET 500 CLASS

To evaluate the scalability of our CSReL-RS on a large dataset, we select 500 classes from
ImageNet-1K and split them into 10 tasks, with the memory size set to 1000. The baselines are
ER (Riemer et al., 2018) and DER++ (Buzzega et al., 2020), we replace reservoir sampling in the
baseline methods with CSReL-RS as CSReL-ER and CSReL-DER++. For DER++, we use ReL-
cmb for selection. The final average accuracy is presented in Table 7.

Results in Table 7 show that replacing reservoir sampling in ER (Riemer et al., 2018) with CSReL-
RS leads to a slight performance improvement, while combining our method with DER++ (Buzzega
et al., 2020) results in a significant performance boost. These findings demonstrate that our method
remains effective on larger datasets, showcasing its scalability for larger datasets.
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Table 6: Average accuracy on Split CIFAR-100 under BCSR setting, our CSReL selection could
consistently outperform other methods.

Method Average accuracy Forgetting

k-means features (Nguyen et al., 2017) 57.82±0.69 0.070±0.003
k-means embedding (Sener & Savarese, 2017) 59.77±0.24 0.061±0.001
Uniform 58.99±0.54 0.074±0.004
iCaRL (Rebuffi et al., 2017) 60.74±0.09 0.044±0.026
Grad Matching (Campbell & Broderick, 2019) 59.17±0.38 0.067±0.003
SPR (Kim et al., 2021) 59.56±0.73 0.143±0.064
MetaSP (Sun et al., 2022a) 60.14±0.25 0.056±0.230
Greedy Coreset (Borsos et al., 2020) 59.39±0.16 0.066±0.017
GCR (Tiwari et al., 2022) 58.73±0.43 0.073±0.013
PBCS (Zhou et al., 2022b) 55.64±2.26 0.062±0.001
OCS (Yoon et al., 2021) 52.57±0.37 0.088±0.001
BCSR (Hao et al., 2024) 61.60±0.14 0.051±0.015
CSReL 62.10±0.45 0.094±0.006

Table 7: Average accuracy on ImageNet 500 class dataset, our method could consistently outperform
the random counterpart.

Method Average accuracy

ER 9.85±0.01
CSReL-ER 10.30±0.26
DER++ 15.94±0.94
CSReL-DER++ 19.03±0.21

O EFFECT OF HOLDOUT MODEL TRAINING EPOCH IN CONTINUAL
LEARNING

We also test the effect of holdout model training epoch in CL task. Specifically, we test different
holdout model training epochs on Split CIFAR-100 dataset with the same setting as Section 5.2.1.
The results are shown in Table 8.

In practice, we find training holdout model for 10 epochs is enough for good performance, compared
to 100 training epochs, the computation overhead is small. We show that final results is relatively
stable with respect to different holdout model training epochs.

P TIME COST AND MODEL SIZE IN DATA SUMMARIZATION EXPERIMENT

For data summarization experiment in Section 5.1, we list time cost and model parameters on
MNIST, CIFAR-10 and CIFAR-100 in Table 9. All experiments are conducted on NVIDIA RTX
3090. Specifically, We use 5-layer CNN on MNIST and use ResNet-18 for CIFAR-10 and CIFAR-
100, and 200 coreset samples are selected from 10000 candidate samples for each dataset.

Compared to MNIST, selecting corest in CIFAR-10 and CIFAR-100 takes 7x time. However, com-
pared to scaling of model size and data size, the time cost of training holdout model scales mildly.

Table 8: Effect of holdout model training epoch in continual learning.

Holdout training epochs Average accuracy

10 17.48±0.21
15 17.21±0.07
20 17.43±0.55
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Table 9: Time cost and model parameters in data summarization experiment.

Dataset Model parameters Holdout training time Selection time

MNIST 184.59K 159.84s 102.70s
CIFAR-10 11.16M 349.74s 737.68s
CIFAR-100 11.21M 350.87s 735.85s

Figure 14: Overview of coreset continual learning process. Coreset is selected from current task
dataset after training on current tasks. The selected coreset are added into memory for replay. In
coreset selection, holdout model is trained on current task dataset initially, then coreset is selected in
multiple steps. In each selection step, 1 train coreset model on currently selected coreset, 2 select
candidate samples, 3 compute ReL for each candidate sample, 4 rank candidate samples by ReL,
5 select samples with top-n ReL into coreset.

Besides, time cost of selection also scales mildly as model size increases and data size. Our base-
line Greedy Coreset (Borsos et al., 2020) takes 4000 seconds for computing Neural Tangent Kernel,
compared to Greedy Coreset (Borsos et al., 2020), our method is much more efficient.

Q OVERVIEW OF CORESET SELECTION FOR CONTINUAL LEARNING

To provide a clearer understanding of our method, we further illustrate our CSReL-CL approach,
proposed in Section 4.1 in Figure 14. For the continual learning task, we treat the training dataset
of the current task as the entire dataset and select the coreset from it. After training the continual
learning (CL) model on each task, the holdout model is then trained on the dataset of the current
task.

In CSReL-CL-prv proposed in Section 4.2, holdout model is trained on current task dataset and
memory. The holdout model is updated after training on each task, rather than being trained only at
the initial step. In the CSReL-RS method, introduced in Section 4.3, we use the CL model itself as
the holdout model. Consequently, the holdout model incorporates updated information, enabling it
to provide valuable insights for the selection process.

R IMPACT OF SELECTION ORDER

Since our method selects samples for the coreset using a greedy incremental framework, meaning
that once a sample is selected, it is no longer considered in subsequent selections. The problem
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of selection order is a common challenge in greedy methods. There are possibility that the perfor-
mance gain of selected samples might decrease or that some selected samples could be detrimental.
To address this, we conducted experiments on MNIST, CIFAR-10 and CIFAR-100 by iteratively
removing n samples from the 200-size selected coreset of with the lowest performance gain, then
reselecting new samples from the remaining candidates. The results, presented in Table 10, show
that performance remains stable after removal and reselection. Additionally, the reselection process
produces coresets different from the original ones.

Table 10: Test accuracy after removing and rese-
lecting samples for coreset.

n MNIST CIFAR-10 CIFAR-100

0 96.67 39.46 9.26
10 96.53 39.58 10.01
20 96.51 39.60 8.93
50 96.42 39.16 10.08
100 96.09 39.31 10.19

One possible explanation is the existence of
multiple subsets containing a similar amount of
knowledge. Our method selects samples that
are both representative and complementary to
the current coreset. This implies that select-
ing different initial samples results in similar fi-
nal performance because our method inherently
identifies subsets that complement the initial se-
lection. Further evidence for this comes from
our evaluation of the coreset selection method
under different random seeds in Section 5.1.
Despite the variation in selected subsets, the
performance remains consistent. Therefore, the
order of selection is not a significant concern in real-world data scenarios.

S DISTINGUISHING DIFFICULT SAMPLES FROM NOISY SAMPLES

We note that difficult samples and noisy samples cannot be distinguished solely based on Eq. (4)
and (6), as both types of samples may exhibit high loss values on the holdout model. However, our
method selects coreset iteratively. If noisy or ambiguous samples are included in the coreset, they
may hinder the coreset model θS from effectively learning other clean samples, leading to increased
loss for the clean candidates on the coreset model. As a result, the ReL of clean candidates may
increase, making them more likely to be selected in subsequent iterations.

While difficult samples could be informative and not harm the learning of other samples, selecting
difficult samples does not preclude the selection of other difficult samples, as demonstrated in Fig-
ure 8(a) in Appendix I. For the relatively simple MNIST dataset, difficult samples tend to be more
informative and are therefore selected. Additionally, we analyzed the difficulty levels of selected
samples in the noisy MNIST experiment discussed in the Ablation Study (Section 5.3) in Figure
15. The results show that more easy samples are selected from the noisy MNIST dataset, due to the
learning of these samples is disrupted by the presence of selected noisy samples. Consequently, dif-
ficult samples and noisy samples yield different outcomes. Additionally, we note that the noise rates
in the last two difficulty groups shown in Figure 15 are 0.24% and 79.76% respectively. Our method
tends to select more samples from the second-to-last group while selecting fewer samples from the
last group. This is because the holdout model can effectively learn difficult samples, whereas noisy
samples cannot be well learned by either the holdout model or the coreset model.

In summary, our method is capable of selecting more difficult samples when they are informative and
consistent with other samples. For noisy and ambiguous samples, however, our approach prioritizes
cleaner samples to mitigate the disruption caused by noisy data. In low noise-ratio scenarios, which
are common in real-world applications, noisy samples can be identified in as the holdout model can
effectively learn difficult samples but fails to learn noisy ones. As a result, our method effectively
treat difficult and non-representative samples, ensuring appropriate selection.

T CORESET SELECTION FOR CONTINUAL LEARNING WITH LARGE
BACKBONE MODELS

To further demonstrate the effectiveness and efficiency of our method over other bilevel coreset
selection methods in continual learning. We conducted additional experiments applying complex
backbones ResNet-50 and VIT-Tiny (Wu et al., 2022) on CIFAR-100 and Tiny-ImageNet respec-
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Figure 15: Number of selected samples from each difficulty group in noisy MNIST experiment,
noise-ratio=0.1.

Table 11: Average accuracy and time cost of Greedy Coreset, BCSR and CSReL-CL on CIFAR-100
and Tiny-ImageNet dataset.

CIFAR-100 Tiny-ImageNet

Average accuracy Time cost Average accuracy Time cost
Greedy Coreset 28.17±0.57 21h 58m 12.17±0.07 24h 55m
BCSR 27.32±0.10 11h 26m 12.33±0.08 28h 13m
Our method 32.51±0.58 10h 04m 17.51±0.11 15h 13m

tively. Both datasets were evenly split into 10 tasks, with memory sizes set to 1000 and 2000 for
CIFAR-100 and Tiny-ImageNet, respectively.

We compared our method with related bilevel coreset selection methods for continual learning,
including Greedy Coreset (Borsos et al., 2020) and BCSR (Hao et al., 2024). The average accuracy
and time cost are summarized in Table 11. Our method outperforms other bilevel coreset selection
approaches by a large margin on both datasets while also being more efficient, particularly when
using the more complex VIT-Tiny backbone.

U FEATURE MAP OF SELECTED SAMPLES

We have visualized the features of coreset samples selected by different methods from CIFAR-10
using t-SNE. The features were extracted using a ResNet-18 model trained on CIFAR-10, as shown
in Figure 16. Representative samples share common features with other samples and are effectively
learned by the model, thus could be well classified. The features of the coreset selected by our
method are concentrated near the high density part and better separated compared to those selected
by the two baseline methods, demonstrating the ability of our approach to select representative
samples.

Our work defines informative sample as samples contains new knowledge compared to currently
selected coreset. To demonstrate that our method selects both representative and informative sam-
ples, we train model on the first 150 selected samples and visualize their features as dots. We then
visualize the next 50 selected samples as triangles. Figure 17 shows the features of coreset samples
selected by our method and by Greedy Coreset. The later-selected samples by our method tend to
lie near the margins of feature clusters, indicating they are less well-learned by the model. Fur-
thermore, samples selected by our method are more closely aligned with the feature clusters of each
class, while those selected by Greedy Coreset are more scattered. This demonstrates that our method
effectively selects samples that are both representative and informative. However, it is important to
note that the informativeness of a sample cannot be determined solely based on its features, as not
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Figure 16: Features of selected samples by Greedy Coreset (Borsos et al., 2020), PBCS (Zhou et al.,
2022b) and CSReL. The shadow part is features of randomly selected samples from the full dataset.
Our method selects more representative samples compared to other methods.
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Figure 17: Features of currently selected samples and later selected samples, illustrating that our
method selects both representative and informative samples.

well learned samples, such as ambiguous or noisy ones, may negatively impact the model’s learning
process.

We have also plotted the features of samples selected by iCaRL’s selection (Rebuffi et al., 2017) and
k-means features selection (Nguyen et al., 2017) in Figure 18. Compared to Greedy Coreset Borsos
et al. (2020) and PBCS (Zhou et al., 2022b), features are less scattered.

V ADDITIONAL DATA SUMMARIZATION RESULTS

We further conduct coreset selection experiments with RCS (Xu et al., 2023) and CDS (Wan et al.,
2024) on the CIFAR-10 and CIFAR-100 datasets under the same settings as Section 5.1, with the
coreset size set to 200. The results are presented in Table 12.

RCS (Xu et al., 2023) defines a bilevel selection objective for adversarial contrastive learning, which
differs from the supervised classification task addressed in our work. As a result, RCS underper-
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Figure 18: Features of samples selected by iCaRL’s selection and k-means features selection.
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Table 12: Test accuracy of model trained on coreset selected by different methods, our method
outperforms all other baseline methods.

Method CIFAR-10 CIFAR-100

RCS 27.17±1.11 4.87±0.60
GC+CDS 33.03±1.74 8.06±0.23
Greedy Coreset 36.53±1.40 6.94±0.23
PBCS 37.41±0.26 6.77±0.18
CSReL (ours) 39.58±0.14 8.91±0.42

forms other coreset selection methods. GC+CDS (Wan et al., 2024) leverages the contributing di-
mension structure within the Graph Cut framework (Iyer et al., 2021), constructing coresets based on
a balance between representativeness and diversity. However, unlike bilevel optimization methods,
this approach relies on hyperparameter tuning to achieve this balance, which may be suboptimal.
Additionally, the improvement in model performance when adding a sample to the coreset cannot
be directly evaluated solely through representativeness and diversity metrics. In contrast, bilevel
optimization methods select samples by evaluating performance in the outer loop, thereby providing
stronger performance guarantees for the resulting coreset.

bilevel coreset selection methods outperform RCS (Xu et al., 2023) and GC+CDS (Wan et al., 2024)
on the CIFAR-10 dataset and perform slightly below GC+CDS (Wan et al., 2024) on the CIFAR-
100 dataset. These results indicate that bilevel coreset selection methods remain effective and robust.
Furthermore, our CSReL selection method surpasses all baseline methods, showcasing its superior
effectiveness and timeliness.

W DATA SUMMARIZATION EXPERIMENT DETAILS

We conduct experiments on MNIST, CIFAR-10 and CIFAR-100, coreset size of all datasets is set
to 200. For experiments on MNIST and CIFAR-10, we follow experiment settings of Borsos et al.
(2020) and Zhou et al. (2022b). Different from Greedy Coreset which uses Neural Tangent Kernel
(Jacot et al., 2018) as inner model, we use same model structure for holdout model and current
model.

We use CNN as backbone for MNIST, which contains two blocks of convolution, dropout, max-
pooling and ReLU activation, two convolution layers have 32 and 64 filters with 5 × 5 kernel size.
Two fully connected layers of size 128 and 10 with dropout follows convolution blocks. The dropout
probability is 0.5. We train CNN on selected coreset using SGD optimizer with learning rate 2e−2,
training batch size is set to 32 and training epochs is set to 3000. This training protocol is applied in
all compared methods. The reason why we don’t use Adam optimizer is that we found performance
is not stable under different random seeds, therefore, we use SGD optimizer instead.

We use same ResNet-18 as in Borsos et al. (2020) and Zhou et al. (2022b) as backbone for CIFAR-
10 and CIFAR-100 dataset. Note that there is no Batch-Normalization layer in this backbone. For
experiments on CIFAR-10 and CIFAR-100, we train ResNet on selected coreset using Adam opti-
mizer with learning rate 5e−4, training batch size is set to 64 and training epochs is set to 1800. This
training protocol is applied in all compared methods.

In experiment on MNIST, holdout model is trained by SGD optimizer with learning rate 1.5e−3,
training batch size is 32 and training epoch is 125. In each selection step, current model is trained
by SGD optimizer with learning rate 2e−2, batch size is set to 32. Since selected coreset is very
small, to avoid overfitting ,we train current model on selected subset with 16 epochs. Initial coreset
size is set to 0 and selection step is 200.

In experiment on CIFAR-10 and CIFAR-100, holdout model is trained by SGD optimizer with
learning rate 3e−3, batch size is set to 32 and training epoch is 100. In each selection step, current
model is trained by SGD optimizer with learning rate 2e−2, batch size is set to 32, current model
training epoch is set to 16. Initial coreset size is set to 0 and selection step is 200.
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Table 13: Optimization hyperparameters in continual learning experiments in Table 1.

Dataset Batch size Epochs Optimizer Learning rate Loss factor

Split MNIST 256 400 Adam 5e-4 100.0
Split CIFAR-10 256 400 Adam 5e-4 20.0
Split CIFAR-100 32 100 SGD 2e-2 4.0
Permuted MNIST 256 400 Adam 5e-4 0.1

Table 14: Optimization hyperparameters in continual learning experiments in Table 2.

Dataset Batch size Optimizer Learning rate CE Loss factor KD loss factor

Split CIFAR-100 32 SGD 2e-2 1.0 0.2
Split Tiny-ImageNet 32 SGD 3e-2 1.0 0.1

X CONTINUAL LEARNING EXPERIMENT DETAILS

X.1 DATA SUMMARIZATION FOR CONTINUAL LEARNING

Datasets: We conduct experiments on Split MNIST, Split CIFAR-10, Split CIFAR-100 and Perm
MNIST. Split MNIST, CIFAR-10 and MNIST consist of 10 classes. Following Borsos et al. (2020)
we split CIFAR-10 and MNIST into 5 tasks with 2 classes for each task. We split CIFAR-100 into 10
tasks with 10 classes for each class. For Perm MNIST contains 10 tasks and each task is randomly
permuted version of MNIST. Also following Borsos et al. (2020), in experiments in Split MNIST,
Split CIFAR-10 and Perm MNIST, we randomly select 1000 samples from each task for training,
for Split CIFAR-100, we use all data of each task.

Augmentations: Following Borsos et al. (2020), we apply normalization to Split MNIST and Perm
MNIST. For more complicated CIFAR-10 and CIFAR-100 dataset, we apply random crop, random
horizontal flip and normalization.

Backbones: We use same CNN structure in Section W for Split MNIST, and use the same ResNet-
18 in Section W for Split CIFAR-10. For Split CIFAR-100, we add BatchNormalization layer in
each convolution block of ResNet-18. For Perm MNIST, we use a fully connected net with two
hidden layers with 100 units, ReLU activations, and dropout with probability 0.2 on the hidden
layers.

Optimization: Optimization related hyperparameters are shown in Table 13, the loss factor is α in
Eq. (17). Following Borsos et al. (2020) and Zhou et al. (2022b), we use Adam optimizer (Kingma,
2014) for experiments on Split MNIST, Split CIFAR-10 and Permuted MNIST. For Split CIFAR-100
dataset, we use SGD optimizer for all compared methods.

X.2 CONTINUAL LEARNING WITH MODIFIED RESERVOIR SAMPLING AND KNOWLEDGE
DISTILLATION

Datasets: We conduct experiments on Split CIFAR-100 and Split Tiny-ImageNet dataset. We split
CIFAR-100 into 10 tasks with 10 classes for each class. For Split Tiny-ImageNet, we split totally
200 classes into 10 disjoint tasks. All samples of each task are used during training.

Augmentations: We keep the same augmentation used in mammoth (Buzzega et al., 2020). Both
Split CIFAR-100 and Split Tiny-ImageNet dataset applies random crop, random horizontal flip and
normalization.

Backbones: Both dataset use the same ResNet-18 in mammoth implementation (Buzzega et al.,
2020).

Optimization: We list all the hyperparameters related to optimization in Table 14. Training epoch
is consistent with corresponding baselines.
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Figure 19: Visualization of selected sample in each class from CIFAR-10.

Table 15: Time cost for offline continual learning tasks

Split MNIST Split CIFAR-10 Perm MNIST Split CIFAR-100

Time cost 4.8m 27.6m 17.5m 69.4m

Y VISUALIZATION OF SELECTED DATA

To make the effectiveness of our method straight forward, we visualize the first 10 selected samples
of each class in CIFAR-10, pictures are shown in Figure 19, each row collects images from same
class.

From visualization, we can see that sample selected by our method is clear, unambiguous and di-
verse.

Z COMPUTATION RESOURCES AND EXPERIMENT TIME COST

We conduct all experiments on 2 NVIDIA GeForce RTX 3090 graphical cards with 24 GB memory
for each graphical card. Our CPU type is Intel(R) Core(TM) i9-12900K, memory of our server is
32 GB. We list time cost for all main offline continual learning experiments in Table 15 and list time
cost for CSReL-RS in Table 16.

Table 16: Time cost for continual learning tasks using CSReL-RS

Split CIFAR-100 Split Tiny ImageNet

CSReL-ER 56m 7h 47m
CSReL-DER++ 1h 20m 8h 56m
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AA URL OF CITED ASSETS

We download MNIST dataset from http://yann.lecun.com/exdb/mnist/.

We download CIFAR-100 dataset from https://www.cs.toronto.edu/ kriz/cifar-10-python.tar.gz.

We download CIFAR-100 dataset from https://www.cs.toronto.edu/ kriz/cifar-100-python.tar.gz.

Tiny ImageNet dataset is downloaded by mammoth implementation, the URL is
https://github.com/aimagelab/mammoth.

Greedy Coreset implementation is downloaded from https://github.com/zalanborsos/bilevel coresets.

AB BROADER IMPACT

Coreset selection aims to summarize an informative subset from full dataset, which could signif-
icantly reduce training cost and energy consumption. Storage required may also be reduced with
coreset selection method. Our coreset selection method could be applied not ony on continual learn-
ing, but also Neural Architecture Search and Reinforcement learning. Continual learning in our
work could also improve intelligent agent for continually learning new knowledge, enabling more
general applied models and personalized models.

36


	Introduction
	Related Work
	Coreset Selection with Reducible Loss
	Bilevel Optimization for Coreset Selection
	Maximize Performance Gain in Coreset Selection with ReL
	Discussion on ReL and CSReL

	Coreset Selection for Continual Learning
	Applying Coreset Selection to Continual Learning
	Considering Previous Tasks While Updating Memory
	Selecting Coreset from Streaming Data
	Coreset Selection for Knowledge Distillation

	Experiments
	Data Summarization
	Continual Learning
	Coreset Selection for Continual Learning
	Coreset Selection for Existing Continual Learning Methods

	Ablation Study

	Conclusion
	 Appendix
	Approximating Predictive Distribution with Reducible Loss
	Relation between ReL and Implicit Gradient
	Discussion with Other Reducible Loss Related Works
	Derivation of Outer Loss Gradient with Respect to Sample Weight
	Algorithms for CSReL Continual Learning
	Algorithms for CSReL-CL Considering Previous Tasks
	Algorithms for CSReL Reservoir Sampling
	Loss of High Implicit Gradient Candidates
	Difficulty of Selected Samples
	Analysis on Representing Full Dataset
	Data Summarization under Data Noise
	Forgetting in Continual Learning Experiments
	Continual Learning on BCSR Setting
	Continual Learning Experiment on ImageNet 500 Class
	Effect of Holdout Model Training Epoch in Continual Learning
	Time Cost and Model Size in Data Summarization Experiment
	Overview of Coreset Selection for Continual Learning
	Impact of Selection Order
	Distinguishing Difficult Samples from Noisy Samples
	Coreset Selection for Continual Learning with Large Backbone Models
	Feature Map of Selected Samples
	Additional Data Summarization Results
	Data Summarization Experiment Details
	Continual Learning Experiment Details
	Data Summarization for Continual Learning
	Continual Learning with Modified Reservoir Sampling and Knowledge Distillation

	Visualization of Selected Data
	Computation Resources and Experiment Time Cost
	AA URL of Cited Assets
	AB Broader impact


