
Reinformer: Max-Return Sequence Modeling for Offline RL

Zifeng Zhuang 1 2 Dengyun Peng 2 3 Jinxin Liu 2 Ziqi Zhang 2 Donglin Wang 2

Abstract
As a data-driven paradigm, offline reinforcement
learning (RL) has been formulated as sequence
modeling that conditions on the hindsight infor-
mation including returns, goal or future trajectory.
Although promising, this supervised paradigm
overlooks the core objective of RL that maximizes
the return. This overlook directly leads to the lack
of trajectory stitching capability that affects the
sequence model learning from sub-optimal data.
In this work, we introduce the concept of max-
return sequence modeling which integrates the
goal of maximizing returns into existing sequence
models. We propose Reinforced Transformer
(Reinformer), indicating the sequence model is
reinforced by the RL objective. Reinformer ad-
ditionally incorporates the objective of maximiz-
ing returns in the training phase, aiming to pre-
dict the maximum future return within the dis-
tribution. During inference, this in-distribution
maximum return will guide the selection of op-
timal actions. Empirically, Reinformer is com-
petitive with classical RL methods on the D4RL
benchmark and outperforms state-of-the-art se-
quence model particularly in trajectory stitching
ability. Code is public at https://github.
com/Dragon-Zhuang/Reinformer.

1. Introduction
In classical online reinforcement learning (RL), the agent
interacts with the environment to collect data and then uses
that to derive the policy which maximizes the returns (Sut-
ton et al., 1998). Mainstream RL algorithms rely on fitting
optimal value functions (Watkins & Dayan, 1992) or calcu-
lating policy gradients (Sutton et al., 1999). Both in terms
of paradigms and algorithms, reinforcement learning dif-
fers significantly from data-driven supervised learning. To

1Zhejiang University 2School of Engineering, Westlake Univer-
sity 3Harbin Institute of Technology. Correspondence to: Donglin
Wang <wangdonglin@westlake.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

avoid expensive or even risky online interaction and reuse
pre-collected datasets, offline RL is proposed. Compared to
classical RL with environment interaction, offline RL shares
a paradigm more akin to supervised learning due to learn-
ing from datasets. This encourages researchers to explore
offline algorithms from the supervised perspective.

Decision Transformer (DT) (Chen et al., 2021) maximizes
the likelihood of actions conditioned on the historical trajec-
tories (including returns), which essentially converts offline
RL to a supervised sequence modeling. Lots of subsequent
works have improved DT from different perspectives, includ-
ing model architecture (Kim et al., 2023), online finetuning
(Zheng et al., 2022), unsupervised pretraining (Xie et al.,
2023) and stitching ability (Wu et al., 2023). However, these
supervised paradigms seem to overlook the fundamental ob-
jective of reinforcement learning that is to maximize returns.
The only naive approach to maximize return is to manually
provide an initial return that is as large as possible. This
approach is acceptable in some cases, but it becomes fa-
tal when emphasizing trajectory stitching (Brandfonbrener
et al., 2022). A typical example, also Figure 2, is the stitch-
ing between a fail trajectory (R = 0: starting from the initial
point but not reaching the goal) and a successful trajectory
(R = 1: reaching the goal but not starting from the initial
point). Ideal returns should be 0 at first and then switch to 1
when stitching to the successful trajectory, which is conflict
with the naive max approach that manually sets 1.

In this work, we propose the concept of max-return se-
quence modeling, a supervised paradigm that integrates the
RL objective. Max-return sequence modeling not only max-
imizes the likelihood of actions, but also predicts the max-
imum in-distribution returns. Concretely, expectile regres-
sion (Sobotka & Kneib, 2012; Aigner et al., 1976) is adopted
to make the predicted returns as close as possible to the max-
imum returns that are achievable under the current historical
trajectory. When performing inference, the sequence model
first predicts the current maximum return and then selects
the best action from the offline dataset distribution, guided
by this predicted maximized return. An implementation of
max-return sequence modeling is Reinforced Transformer
(Reinformer), representing the sequence model reinforced
by the maximum return objective. When facing trajectory
stitching in Figure 2, Reinformer tends to predict 0 at the
initial point and predict 1 when switching to the successful

1

https://github.com/Dragon-Zhuang/Reinformer
https://github.com/Dragon-Zhuang/Reinformer


Reinformer: Max-Return Sequence Modeling for Offline RL

trajectory due to in-distribution max return prediction.

We exhaustively evaluate Reinformer on Gym, Maze2d,
Kitchen and Antmaze datasets from the D4RL bench-
mark (Fu et al., 2020). Reinformer has achieved perfor-
mance that is competitive with classical offline RL algo-
rithms. Compared with state-of-the-art sequence models,
Reinformer exhibits promising improvement, especially
on datasets where trajectory stitching ability is highly de-
manded to learn from sub-optimal data. Our further analysis
and ablation study elucidates the role of the return loss and
the characteristics of the predicted maximized returns.

2. Preliminaries
2.1. Offline Reinforcement Learning

Reinforcement Learning (RL) is a framework of sequen-
tial decision. Typically, this problem is formulated by a
Markov decision process (MDP) M = {S,A, r, p, d0, γ},
with state space S, action space A, scalar reward function
r, transition dynamics p, initial state distribution d0(s0)
and discount factor γ (Sutton et al., 1998). The objective
of RL is to learn a policy, which defines a distribution
over action conditioned on states π (at|st) at timestep t,
where at ∈ A, st ∈ S. Given this definition, the trajectory
τ = (s0, a0, · · · , sT , aT ) generated by the agent’s interac-
tion with environment M can be described as a distribution
Pπ (τ) = d0(s0)

∏T
t=0 π (at|st) p (st+1|st, at), where T is

the length of the trajectory, and it can be infinite. The goal
of RL is to find a policy π that maximizes the expectation
of the discounted cumulative return under the trajectory
distribution J (π) = Eτ∼Pπ(τ)

[∑T
t=0 γ

tr(st, at)
]
.

For offline reinforcement learning (Levine et al., 2020), the
interaction with the environment M is forbidden and only
a fixed offline dataset full of transitions is provided D ={
(st, at, rt, st+1, at+1)

N
t=1

}
where rt=̇r (st, at). This set-

ting is more challenging since the agent is unable to explore
the environment and collect additional feedback.

2.2. Sequence Modeling in Reinforcement Learning

Compared to online reinforcement learning which inter-
acts with the environment, offline RL is more similar
to the data-driven paradigm given the offline dataset D.
As a result, offline RL (Chen et al., 2021) has been
formulated as the supervised sequence modeling, differ-
ent from the classical MDP formulation. The offline
dataset can be denoted as the sequence form rather than
transitions D =

{(
· · · , s(n)t , a

(n)
t , g

(n)
t · · ·

)}
. Here

g
(n)
t is the returns-to-go (or simply returns) defined as
g
(n)
t =̇

∑T
t′=t r

(
s
(n)
t′ , a

(n)
t′

)
that represents the sum of fu-

ture rewards from current timestep t. Decision Transformer

(DT) (Chen et al., 2021), following the upside-down RL
(Srivastava et al., 2019; Schmidhuber, 2019), predicts the
actions based on the previous trajectories τ concatenated
with returns-to-go g

(n)
t :

LDT = Et,n

[
a
(n)
t − πDT

(
⟨g, s, a⟩(n)t−K ; g

(n)
t , s

(n)
t

)]2
,

where Et,n is an omission of Et∈[0,T ],n∈[1,N ]. Besides,
⟨g, s, a⟩(n)t−K denotes the previous K timesteps trajectory

supplemented with returns-to-go g
(n)
t and ⟨g, s, a⟩(n)t−K =(

g
(n)
t−K+1, s

(n)
t−K+1, a

(n)
t−K+1, · · · , g

(n)
t−1, s

(n)
t−1, a

(n)
t−1

)
. In DT,

the policy πDT is implemented by a causal transformer,
namely the decoder layers. For each timestep t, three
different tokens containing returns-to-go, state and action
g
(n)
t , s

(n)
t , a

(n)
t are fed into the model. And the future action

â
(n)
t is predicted via autoregressive modeling.

To enable online finetuning ability, Online Decision Trans-
former (ODT) (Zheng et al., 2022) stochastic models the ac-
tion as a Gaussian distribution and trains the model by max-
imizing action likelihood and another max-entropy term:

LODT =Et,n

[
− log πODT

(
a
(n)
t | ⟨g, s, a⟩(n)t−K ; g

(n)
t , s

(n)
t

)
(1)

− λH
(
πODT

(
·| ⟨g, s, a⟩(n)t−K ; g

(n)
t , s

(n)
t

))]
,

where λ is the temperature parameter (Haarnoja et al., 2018)
and λ will be adaptively updated by another temperature loss
Lλ = λ

(
H

(
πODT

(
·| ⟨g, s, a⟩(n)t−K ; g

(n)
t , s

(n)
t

))
− β

)
with β is the prefixed value 1.

For the Inference of DT and ODT, one desired performance
ĝ0 must be specified as returns-to-go at first. Along with the
initial environment state s0, the next action will be generated
by the model a1 = πDT (ĝ0, s0) or πODT (a1|ĝ0, s0). Once
the action a1 is executed by the environment, the next state
s1 and reward r1 are returned. Then the next returns-to-
go should minus the returned reward ĝ1 = ĝ0 − r1. This
process is repeated until the episode terminates.

Drawbacks: These sequence models mainly focus on
maximizing the action likelihood while neglecting the RL
objective that maximizes the returns. Manually setting a
large initial ĝ0 can be seen as a naive approach to maximize
returns. Some cases are reasonable, but in the context of
trajectory stitching, this method will lead to severe out-of-
distribution (OOD) issues. It is crucial to consider the goal
of maximizing returns within the framework of sequence
modeling and to derive the maximum in-distribution returns
during the inference phase.

1Usually, this parameter is the negative value of the action
dimension β = −dim (A).

2



Reinformer: Max-Return Sequence Modeling for Offline RL

1)

2)

3)

Reinformer

𝑔𝑡−1

ො𝑎𝑡

𝑔𝑡𝑠𝑡−1 𝑎𝑡−1 𝑠𝑡

Reinformer

ො𝑔𝑡−1 ො𝑎𝑡−1

𝑔𝑡−1

ො𝑎𝑡ො𝑔𝑡

𝑔𝑡𝑠𝑡−1 𝑎𝑡−1 𝑠𝑡 𝑎𝑡

Reinformer

𝑔𝑡−1

ො𝑔𝑡

𝑠𝑡−1 𝑎𝑡−1 𝑠𝑡

Loss

Expectile
Regression 12,34ො𝑔𝑡𝑔𝑡

MSE 12,34ො𝑎𝑡𝑎𝑡

+

=

(a) Model Architecture

(b) Training Loss (c) Inference Pipeline

Figure 1. The overview of ReinForced TransFormer (Reinformer) (a) Model Architecture: The returns-to-go is the second token of
Reinformer inputs and the outputs contain returns and actions. (b) Train Loss: As a max-return sequence model, Reinformer not only
maximizes the action likelihood but also maximizes returns by expectile regression. (c) Inference Pipeline: When inference, Reinformer
first 1) gets state from the environment to predict the in-distribution maximum return. Then 2) predicted in-distribution max return is
concatenated with state to predict the optimal action. Finally, 3) the environment executes the predicted action to return the next state.

3. Reinformer: Reinforced Transformer
In this section, we start with a simple maze example to
illustrate why classical sequence models and the naive max-
return approach are unlikely to solve the trajectory stitching
problem. Further, we introduce the concept of max-return
sequence modeling and theoretically demonstrate that this
paradigm can derive maximum returns without suffering
from OOD issues. Finally, we present the implementation
details of our sequence model ReinForced TransFormer
(Reinformer) from three aspects: model architecture, the
loss function during training and the inference pipeline.

3.1. Trajectory Stitching Example

In the offline RL literature, trajectory stitching receives lots
of attention. Ideally, the offline agent should take suboptimal
trajectories that overlap and stitch them into the optimal
trajectories (Kostrikov et al., 2021b; Liu et al., 2023). It
has been proved both theoretically (Brandfonbrener et al.,
2022) and empirically (Kumar et al., 2022) that the return-
conditioned sequence modeling lacks stitching ability. We
utilize the following example to thoroughly describe this.

Example The Figure 2 depicts a toy maze, where s0
is the starting point, sG is the final goal state with

 
 

!
 

"
s

 
s

 
s

G
s

 
s

 ! r  !

" # r  

! " r  

 
s

Figure 2. A maze example for
trajectory stitching analysis.

reward r = 1, s1 is a
boom with r = −1 and
other states are all r =
0. The offline dataset
contains two trajectories
one trajectory τ1 starts
from the initial point s0
but doesn’t reach the goal
while another τ2 reaches

the goal sG but doesn’t start from s0. Trajectory stitching
expects the offline agent can follow the first half of τ1 (from
starting point s0 to s4) and then take the second half of τ2
(from s4 to the goal sG) to reach the goal. We first explain
why the basic sequence model, such as DT, might fail.

For DT, if we set initial returns-to-go as ĝ0 = 0 at the
starting point, the offline agent will smoothly reach the
intersection state s4. However, since returns-to-go is still
zero ĝ4 = 0, DT will reach the state s2 rather then sG. Only
when ĝ4 = 1, DT is possible to follow τ2. But ĝ4 = 1
is impossible to achieve given ĝ0 = 0. If we apply the
naive max approach and set the initial ĝ0 = 1, the agent
might directly walk towards the boom s1 (r = −1) because
ĝ0 = 1 is the OOD returns-to-go for the starting point2.

If the sequence model is endowed with capability to maxi-
mize the returns like RL, Let’s see what might happen. At
the starting point s0, only τ1 is contained in dataset so the
model will predict ĝ0 = 0. When offline agent comes to
the intersection s4, the latter segments of both trajectories
are available. If the sequence model is able to maximize
return, then τ2 is more likely to be selected since the return
R = 1 is larger. This inspires us to bring the capability of
maximizing returns back into sequence modeling.

3.2. Max-Return Sequence Modeling

The key objective of RL is to obtain the optimal action
for the current state through maximizing the returns. We
aim to equip supervised sequence modeling with additional
maximizing return objective. And during inference, the
sequence model can select optimal action conditioned on

2Actually, DT or ODT use this naive approach for Antmaze
dataset, called the “delayed” mode in code implementation.

3



Reinformer: Max-Return Sequence Modeling for Offline RL

the in-distribution maximized returns. We introduce the
expectile regression as returns-to-go loss to achieve this.

Expectile regression (Newey & Powell, 1987) is well studied
in applied statistics and econometrics and has been intro-
duced into offline RL recently (Kostrikov et al., 2021b; Wu
et al., 2023). Specifically, the returns-to-go loss based on
the expectile regression is as follows:

Lm
g = Et,n

[
|m− 1 (∆g < 0)|∆g2

]
, (2)

here ∆g = g
(n)
t − ĝ

(n)
t and ĝ

(n)
t = πθ

(
⟨s, g, a⟩(n)t−K ; s

(n)
t

)
.

It is noteworthy that the relative positions of these to-
kens are different from DT, where returns-to-go g

(n)
t is

placed after the state token s
(n)
t and before the action

a
(n)
t . Here m ∈ (0, 1) is the hyperparameter of ex-

pectile regression. When m = 0.5, expectile regres-
sion degenerates into standard regression, also MSE loss.

1 0 1
g

0.0

0.2

0.4

0.6

0.8

|m
1(

g
<

0)
|

g2

Expectile Regression
m = 0.5
m = 0.7
m = 0.9

Figure 3. illustration of weight.

But when m > 0.5, this
asymmetric loss will give
more weights to the g

(n)
t

larger than ĝ
(n)
t , which

aligns with the asym-
metric curves in Figure
3. Besides, The red ar-
row shows the weight in-
creases as the m becomes
larger. In other words, the

predicted returns-to-go ĝ
(n)
t will approach larger g(n)t .

To unveil what the returns-to-go loss function has learned
and offer a formal elucidation of its role, we introduce the
following theorem along with its proof:

Theorem 3.1. We first define S
(n)
t =̇

[
⟨s, g, a⟩(n)t−K ; s

(n)
t

]
.

For m ∈ (0, 1), denote gm
(
S
(n)
t

)
= π∗

θ

(
S
(n)
t

)
, where

π∗
θ = argminLm

g , then we have

lim
m→1

gm
(
S
(n)
t

)
= gmax,

where gmax = maxa∼D g
(
S
(n)
t ,a

)
denotes the maximum

returns-to-go with actions from offline dataset.

Proof. First, according to the monotonicity of expectile
regression, we have gm1 ≤ gm2 when 0 < m1 < m2 < 1.

Secondly, ∀m ∈ (0, 1) ,gm ≤ gmax and we can use contra-
diction to prove it. Assume one m3 satisfies gm3 > gmax,
then all the returns-to-go from offline dataset will g(n)t <
gm3 . The returns-to-go loss can be simplified given the

same weight 1−m3:

Lm3
g = Et,n

[
(1−m3)

(
g
(n)
t − gm3

)2
]

> Et,n

[
(1−m3)

(
g
(n)
t −max

t,n
[g

(n)
t ]

)2
]
.

This inequality holds because g
(n)
t ≤ maxt,n[g

(n)
t ] < gm3 .

But this inequality is conflict with the fact that gm3 is ob-
tained by minimizing the returns-to-go loss. Therefore, the
assumption is not valid and gm ≤ gmax is true.

Finally, this limit follows from the properties of bounded
monotonically non-decreasing functions thus affirming the
validity of the theorem.

In one word, Theorem 3.1 indicates the loss Lm
g will make

the model predict the maximum returns-to-go when m → 1,
which is similar to the maximizing returns objective in RL.
When inference, the model will generate the action con-
ditioned on this predicted maximum returns-to-go. Fur-
thermore, the second step in our proof indicates that this
predicted returns do not suffer from OOD issues.

3.3. Implementation Details

Now, we will focus on the specific implementation of
Reinformer, describing the model input and output, train-
ing, and inference procedures. Figure 1 is an overview.

Model Architecture To accommodate the max-return se-
quence modeling paradigm, which predicts the maximum
return and utilizes it as a condition to guide the genera-
tion of optimal actions, we have positioned returns between
state and action. In detail, the input token sequence of
Reinformer and corresponding output tokens are summa-
rized as follows:

Input:
〈
· · · , s(n)t , g

(n)
t , a

(n)
t

〉
Output:

〈
ĝ
(n)
t , â

(n)
t ,□

〉
here g(n)t =̇

∑T
t′=t r

(
s
(n)
t′ , a

(n)
t′

)
is the returns-to-go and we

will abbreviated it as returns in the absence of ambiguity.
When predicting the ĝ

(n)
t , the model takes the current state

s
(n)
t and previous K timesteps tokens ⟨s, g, a⟩(n)t−K into con-

sideration. For the sake of simplicity, S(n)
t−K denotes the

input
[
⟨s, g, a⟩(n)t−K ; s

(n)
t

]
. While the action prediction ât

is based on
(
S
(n)
t−K ,G

(n)
t−K

)
=

[
⟨s, g, a⟩(n)t−K ; s

(n)
t , g

(n)
t

]
.

The □ represents this predicted token neither participates in
training nor inference so we ignore it.

At the timestep t, different tokens are embedded by different
linear layers and fed into the transformers (Vaswani et al.,

4



Reinformer: Max-Return Sequence Modeling for Offline RL

Algorithm 1 Training
1: Input: offline dataset D, sequence model πθ

2: for sample ⟨ · · · , st, gt, at ⟩ from D do
3: ĝt, ât = πθ (· · · , st, gt, at)
4: Calculate action loss La by Equation (3)
5: Calculate returns-to-go loss Lm

g by Equation (4)
6: Take gradient descent step on ∇θ

(
La + Lm

g

)
7: end for

2017) together. The output returns-to-go ĝ
(n)
t is processed

by a linear layer. For action â
(n)
t , we adopt the Gaussian dis-

tribution and use the mean of this distribution for inference.

Training Loss Since the model predicts two parts, ĝt and
ât, the loss function is composed of returns-to-go loss and
action loss. For the action loss, we adopt the loss function
of ODT and simultaneously adjust the order of tokens:

La = Et,n

[
− log πθ

(
a
(n)
t |S(n)

t−K ,G
(n)
t−K

)
− λH

(
πθ

(
·|S(n)

t−K ,G
(n)
t−K

))]
(3)

The returns-to-go loss is the expectile regression with the
parameter m:

Lm
g = Et,n

[
|m− 1 (∆g < 0)|∆g2

]
, (4)

with ∆g = g
(n)
t −πθ

(
S
(n)
t−K

)
.

Two loss functions have the same weight so the total loss is
La + Lg. Algorithm 1 summarizes the training process.

Inference Pipeline For each timestep t, the action is the
last token, which means the predicted action is affected
by state from the environment and the returns-to-go. The
returns of the trajectories output by the sequence model
exhibit a positive correlation with the initial conditioned
returns-to-go (Chen et al., 2021; Zheng et al., 2022). That is,
within a certain range, higher initial returns-to-go typically
lead to better actions. In classical Q-learning (Mnih et al.,
2015), the optimal value function Q∗ can derive the optimal
action a∗ given the current state. In the context of sequence
modeling, we also assume that the maximum returns-to-go
are required to output the optimal actions. The inference
pipeline of the Reinformer is summarized as follows:

Env7−→ s0
πθ−→ g0

πθ−→ a0
Env−−→ s1

πθ−→ g1
πθ−→ a1 → · · · (5)

Specially, the environment initializes the state s0 and then
the sequence model πθ predicts the maximum returns-to-
go g0 given current state s0. Concatenating g0 with s0,
πθ can output the optimal action a0. Then the environment
transitions to the next state s1 and the reward r1. It should be

Algorithm 2 Inference
1: Input: sequence model πθ, environment Env
2: s0 = Env.reset( ) and t = 0
3: repeat
4: Predict maximum returns ĝt = πθ (· · · , st,□,□ )
5: Predict optimal action ât = πθ (· · · , st, ĝt,□)
6: st+1, rt = Env.step(ât) and t = t+ 1
7: until done

noted that this reward r1 will not participate in the inference.
Repeat the above steps until the trajectory comes to an end.
This pipeline has been summarized in Algorithm 2.

3.4. Comparison with EDT

Elastic Decision Transformer (EDT) (Wu et al., 2023) ex-
plicitly considers trajectory stitching, so we briefly intro-
duce EDT and then compare it with our Reinformer. EDT
also introduces the same returns-to-go loss (4). During
the inference phase, EDT uses this loss to estimate the
maximum returns-to-go ĝmax(K) achievable under differ-
ent historical lengths K. EDT then selects the maximum
ĝ∗max = maxK ĝmax(K) and finally determine the action
based on the expert action inference (Lee et al., 2022) along
with the EDT model. The inference of EDT dynamically
adjusts historical trajectories, which preserves longer his-
torical lengths when previous trajectories are optimal and
shortens them when they are suboptimal.

Similarly, EDT requires initial returns as input. Therefore,
we also categorize EDT as a kind of basic sequence model
that does not explicitly consider maximizing return. Al-
though EDT is equipped with the same returns-to-go loss,
it still relies on the naive max-return. For the Antmaze
dataset that requires trajectory stitching, EDT does not pro-
vide experimental results. Our reproduced results indicate
that EDT perform poorly on Antmaze.

4. Related Work
Offline Reinforcement Learning As the cradle of super-
vised sequence modeling, offline RL (Levine et al., 2020)
breaks free from the traditional paradigm of online inter-
action. Classic off-policy actor-critic algorithms (Degris
et al., 2012; Konda & Tsitsiklis, 1999) encounter out-of-
distribution (OOD) issues, where the value function tends
to overestimate the OOD state-action pairs (Fujimoto et al.,
2019; Liu et al., 2024c). Mainstream offline algorithms can
be categorized into two classes. One is policy constraint,
which constrains the learned policy stay close to the be-
havior policy based on different “distance” such as batch
constrained (Fujimoto et al., 2019), KL divergence (Wu
et al., 2019; Liu et al., 2022), MMD distance (Kumar et al.,
2019) and MSE constraint (Fujimoto & Gu, 2021). The

5



Reinformer: Max-Return Sequence Modeling for Offline RL

Table 1. The normalized last score on D4RL Gym-v2, Maze2d-v1 and Kitchen-v0 dataset. We report the mean and standard
deviation of normalized score for five seeds. For each seed, the stats is calculated by 10 evaluation trajectories for Gym while 100 for
Maze2d and Kitchen. The best result is bold and the blue result means the best result among sequence modeling.

Dataset
Reinforcement Learning Sequence Modeling

BC CQL IQL DT ODT EDT QDT Reinformer

G
y
m

halfcheetah-medium 42.6 44.0 47.4 42.6 42.7 42.5 39.3 42.94±0.39
halfcheetah-medium-replay 36.6 45.5 44.2 36.6 40.0 37.8 35.6 39.01±0.91
halfcheetah-medium-expert 55.2 91.6 86.7 86.8 91.2 92.04±0.32
hopper-medium 52.9 58.5 66.3 67.6 67.0 63.5 66.5 81.60±3.32
hopper-medium-replay 18.1 95.0 94.7 82.7 86.6 89.0 52.1 83.31±3.47
hopper-medium-expert 52.5 105.4 91.5 107.6 107.8 107.82±2.14
walker2d-medium 75.3 72.5 78.3 74.0 72.2 72.8 67.1 80.52±2.74
walker2d-medium-replay 26.0 77.2 73.9 66.6 68.9 74.8 58.2 72.89±5.06
walker2d-medium-expert 107.5 108.8 109.6 108.1 107.9 109.35±0.32

Total 466.7 698.5 692.6 672.6 687.3 709.46

M
a
z
e
2
d

maze2d-umaze 0.4 -8.9 42.1 18.1 35.8 57.3 57.15±4.27
maze2d-medium 0.8 86.1 34.9 31.7 18.3 13.3 85.62±30.89
maze2d-large 2.3 23.8 61.7 35.7 26.8 31.0 47.35±6.89

Total 3.5 101.0 138.7 85.5 85.9 101.6 190.12

K
i
t
c
h
e
n kitchen-complete 65.0 43.8 62.5 40.8 59.85±0.52

kitchen-partial 38.0 49.8 46.3 10.0 73.10±2.01
kitchen-mixed 51.5 51.0 51.0 9.8 65.50±6.22

Total 154.5 144.6 159.8 60.5 198.45

other is value regularization, which regularizes the value
function to assign low values on OOD state-action pairs
(Liu et al., 2024b; Kostrikov et al., 2021a; Bai et al., 2022).
Some algorithms take a different approach, understanding
and solving offline RL problems from the perspective of on-
policy learning. R-BVE (Gulcehre et al., 2021) and Onestep
RL (Brandfonbrener et al., 2021) both transform off-policy
style offline algorithms (such as CRR (Wang et al., 2020),
BCQ (Fujimoto et al., 2019), BRAC (Wu et al., 2019)) into
on-policy style. Besides, BPPO (Zhuang et al., 2023) finds
the online algorithm PPO (Schulman et al., 2017) can di-
rectly solve the offline RL due to its inherent conservatism.
In contrast, Decision Transformer (DT) (Chen et al., 2021)
directly maximizes the action likelihood, which opens up a
new paradigm called supervised sequence modeling.

Sequence Modeling in Reinforcement Learning Before
Decision Transformer (DT), upside-down reinforcement
learning (Srivastava et al., 2019; Schmidhuber, 2019) has al-
ready begun exploring RL solutions using supervised learn-
ing methods. DT (Chen et al., 2021) incorporates return
as part of the sequence to predict the optimal action. This
paradigm breaks away from the classic RL paradigm, cir-
cumventing OOD problems directly. Inspired by DT, RL
is investigated from a supervised learning perspective, in-
cluding network architecture (Kim et al., 2023; David et al.,
2022), unsupervised pretraining (Xie et al., 2023) and large
capacity model (Lee et al., 2022). While other works im-
prove DT using RL components such as online finetuning
(Zheng et al., 2022), trajectory stitching (Wu et al., 2023)

and dynamics programming (Yamagata et al., 2023). How-
ever, no sequence model incorporates the RL objective that
maximizes returns to enhance the model (Liu et al., 2024a).

5. Experiments
We conduct extensive experiments on Gym, Maze2d,
Kitchen and Antmaze datasets from D4RL benchmark
(Fu et al., 2020), aiming to answer the following questions:

• As a max-return sequence modeling method, how does
Reinformer compare with other state-of-the-art se-
quence models that do not explicitly consider maximiz-
ing returns? Can Reinformer narrow the performance
gap or even surpass classical offline RL algorithms?

• How does the predicted maximized returns-to-go and
the parameter m of returns loss affect the Reinformer
performance? Additionally, what is the characteristic
of the predicted maximized returns-to-go?

5.1. Results on D4RL Benchmark

We conduct a comprehensive evaluation of Reinformer,
covering not only Gym dataset where performance ap-
proaches saturation but also more challenging datasets
like Maze2d, Kitchen and Antmaze. Among these,
Antmaze is characterized by sparse rewards and strongly
emphasizes the stitching ability.

6



Reinformer: Max-Return Sequence Modeling for Offline RL

Baselines We compare our method with both represen-
tative reinforcement learning and state-or-the-art sequence
modeling methods. Some results are reproduced using the
official code and please refer to Appendix A for detail.

• Reinforcement learning includes Behavior Cloning
(BC) (Pomerleau, 1988), Conservative Q-Learning
(CQL) (Kumar et al., 2020) and Implicit Q-Learning
(IQL) (Kostrikov et al., 2021b). Strictly, BC is an imita-
tion learning algorithm. We categorize BC here just to
emphasize that it is not a sequence modeling algorithm.

• Sequence modeling includes Decision Transformer
(DT) (Chen et al., 2021), Online Decision Transformer
(ODT) (Zheng et al., 2022), Elastic Decision Trans-
former (EDT) (Wu et al., 2023) and Q-learning Deci-
sion Transformer (QDT) (Yamagata et al., 2023).

Results on Dense Rewards Datasets The results of
Reinformer on three datasets are presented in Table 1. Eval-
uations of existing sequence modeling algorithms are no-
tably insufficient, primarily focusing on Gym datasets while
overlooking more challenging Maze2d and Kitchen. All
the sequence model are able to achieve performance com-
parable to RL algorithms on Gym dataset. Furthermore,
Reinformer also demonstrates superior performance on
Maze2d (+37.07%) and Kitchen(+28.45%) compared
to the strongest baseline. Especially on Kitchen, classi-
cal offline algorithms do not significantly outperform BC,
indicating that reward function is not fully utilized.

Results on Sparse Rewards Dataset The Antmaze
dataset features sparse rewards, with r = 1 when reaching
the goal. Both medium-diverse and medium-play
does not contains complete trajectories from the starting
point to the goal, which necessitates the algorithm to stitch
failed trajectories to accomplish the goal. Despite the claims
of trajectory stitching ability, our reproduced results in Table
2 indicate that EDT (Wu et al., 2023) performs poorly.

Table 2. The normalized best score on D4RL Antmaze-v2
dataset. We report the mean and standard deviation of normal-
ized score for five seeds. For each seed, the stats is calculated by
100 evaluation trajectories. The best result is bold and the blue
result means the best result among sequence modeling.

Antmaze-v2
RL Sequence Modeling

BC IQL DT EDT ODT Reinformer

umaze 68.5 84.0 64.5 67.8 53.1 84.4±2.7
umaze-diverse 64.8 79.5 60.5 58.3 50.2 65.8±4.1
medium-play 4.5 78.5 0.8 0.0 0.0 13.2±6.1
medium-diverse 4.8 83.5 0.5 0.0 0.0 10.6±6.9

Total 142.6 325.5 126.3 126.1 103.3 174.0

One observation in Table 2 is that the previous sequence
models even underperform BC, which highlights the ab-
sence of trajectory stitching. Reinformer exhibits a signifi-
cant improvement compared to other sequence models, espe-

cially on medium-diverse and medium-play. How-
ever, compared to RL algorithm IQL (Kostrikov et al.,
2021b), the performance gap remains quite considerable.

Summary and Discussion Thanks to the max-return
sequence modeling paradigm, Reinformer has emerged
as the current state-of-the-art in sequence modeling. On
Antmaze dataset that particularly demands extreme tra-
jectory stitching, offline RL retains a significant advantage.
However, on other datasets, our method demonstrates a no-
ticeable improvement. Figure 4 describes the improvement
probability (Agarwal et al., 2021) of Reinformer.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
P(X > Y)

ReinFormer

ReinFormer

ReinFormer

ReinFormer
X

IQL

BC

EDT

DT
Y

Figure 4. The probability of improvement of Reinformer com-
pared with other methods using rliable (Agarwal et al., 2021). The
larger the probability is, the better our method performs.

5.2. Analysis of Returns-to-go loss

We will delve into the critical return loss in max-return
sequence modeling. We aim to understand the impact of
this module on the Reinformer performance and explore
the characteristics of the predicted maximized returns.

0 25 50 75 100
Normalized Score

ud

u

+12.15%

+7.28%

0 5 10 15 20
Normalized Score

md

mp

+17.78%

+52.25%

ReinFormer
ReinFormer-n

Figure 5. The comparison between different inference approaches
on Antmaze dataset: Reinformer with predicted maximized
returns versus Reinformer-n with naively maximized returns.
Abbreviations: u → umaze, ud → umaze-diverse, mp →
medium-play, md → medium-diverse.

Comparison on Maximizing Return Approach The key
advantage of max-return sequence modeling lies in predict-
ing the maximized in-distribution return during the infer-
ence. The compared baseline Reinformer-n is based on the
naive max approach that the initial returns is the max return
in offline dataset. This baseline also includes the returns-
to-go loss during training. As for the comparison results
without return loss, please refer to the results in Table 1 or
2. We demonstrate the performance on different Antmaze

7



Reinformer: Max-Return Sequence Modeling for Offline RL

datasets in Figure 5. The improvement observed on umaze
and umaze-diverse, which contains the entire trajectory
from the starting point to the goal, is 19.43%. The improve-
ment on medium-play and medium-diverse, where
emphasizes trajectory stitching, is 70.03%.

Ablation Study on m Next, we analyze the impact of the
hyper-parameter m in return loss. According to the theo-
rem 3.1, when m → 1, the learned returns will approach
to the maximum return within the offline distribution. Fur-
thermore, due to the fact that higher in-distribution return
leads to better action, we can conclude that the performance
will improve as m approaches 1. The experimental results
in Figure 6 indeed align with the above theoretical anal-
ysis. Within a certain range, large m generally leads to
better training process and higher performance. However,
when m = 0.999 is excessively large, it may result in a
performance decline. This could be attributed to the model
overfitting to some extreme large returns in offline dataset.

20000 40000
Iteration Steps

20

0

20

40

N
or

m
al

iz
ed

 S
co

re

m=0.7
m=0.9
m=0.99
m=0.999

(a) maze2d-umaze

0.5 0.7 0.9 0.99 0.999
m

4

6

8

10

12

N
or

m
al

iz
ed

 S
co

re

mp
md

(b) Antmaze

Figure 6. The performance given different hyper-parameter
m. 5(a) illustrates the training curves with varying m on
maze2d-umaze while 5(b) illustrates the trend of best re-
sults as m varies on Antmaze-medium-play (mp) and
medium-devise (md).

Characteristic of the Predicted Maximized Returns We
conduct experiments on Halfcheetah-medium and
Kitchen-complete to analyze the characteristics of
predicted maximized returns-to-go. In Figure 7(b), the
dashed line represents the true returns-to-go. Original
Kitchen environment is a staged sparse reward environ-
ment so the dashed line exhibits a step-wise decline. Trajec-
tory return can only be one of [0, 1, 2, 3, 4] but the dataset
in D4RL (Fu et al., 2020) contains trajectories with returns
ranging from 0 to 400. Therefore the predicted return, the
solid line, is a continuous curve. The may results from some
densification operation when constructing the dataset.

In environment with non-negative rewards, the true returns-
to-go should exhibit a monotonically decreasing trend and
eventually reach 0. In 7(a), the predicted returns with dif-
ferent m all exhibits clear decreasing trend and only the
excessively large m = 0.999 is unable to converge to 0. For
Kitchen in Figure 7(b), the solid curve g = 4 represents
the predicted return of the trajectory that completes the task

while g = 2 is the trajectory that completes the half. The
curve g = 4 demonstrates a good monotonically decreasing
property. But the descent rate of g = 2 significantly slowed
down in the latter part and ultimately did not converge to
zero. This high level return indicates that the model is still
attempting to complete the task, although it ultimately fail.

1)

2)

3)

Reinformer

𝑔𝑡−1

ො𝑎𝑡

𝑔𝑡𝑠𝑡−1 𝑎𝑡−1 𝑠𝑡

Reinformer

ො𝑔𝑡−1 ො𝑎𝑡−1

𝑔𝑡−1

ො𝑎𝑡ො𝑔𝑡

𝑔𝑡𝑠𝑡−1 𝑎𝑡−1 𝑠𝑡 𝑎𝑡

Reinformer

𝑔𝑡−1

ො𝑔𝑡

𝑠𝑡−1 𝑎𝑡−1 𝑠𝑡

Loss

Eexpectile 
Regression 12,34ො𝑔𝑡𝑔𝑡

MSE 12,34ො𝑎𝑡𝑎𝑡

+

=

(a) Model Architecture

(b) Training Loss (c) Inference Pipeline

(a) Halfcheetah-medium

0 200
Step

0

1

2

3

4

R
et

ur
ns

-to
-g

o

g=4
g=2

(b) Kitchen-complete

Figure 7. The predicted maximized returns-to-go by Reinformer
and the true returns-to-go obtained through interaction with the
environment. In 6(a), the black curve is the mean of true returns-to-
go of different m and the other curves are the predicted maximized
returns-to-go. The bottom-left histogram illustrates the distribution
of the differences between prediction and grand truth. In 6(b), the
dashed line represents the true returns-to-go from the environment,
while the solid line represents the predicted returns-to-go. It’s
worth noting that the trajectory return of Kitchen environment
can only take one of [0, 1, 2, 3, 4]. Here, we present a trajectory
that successfully completes the task (g = 4) along with another
one that completes half of the task (g = 2).

From Figure 7(a), we observe that except for m = 0.999,
the predicted returns can well match the actual returns. We
plotted a frequency distribution histogram of the difference
between the predicted return and the actual return. An obser-
vation is m = 0.999 suffers from overestimation although
this does not harm the performance. In Figure 7(b), the
case g = 4 exhibits a relatively high degree of matching.
Because case g = 2 only completes the initial phase of the
task, the predicted returns remains consistently high without
any decrease or convergence. After translation, the true
return still match the predicted maximized returns.

6. Conclusion, Discussion and Future work
In this work, we propose the paradigm of max-return se-
quence modeling which considers the RL objective that
maximizes returns. Both theoretical analysis and exper-
iments indicate the effectiveness of our proposed model
Reinformer. Despite our promising improvement on trajec-
tory stitching, sequence modeling still falls short compared
to classical RL. In future work, we will focus on identifying
and bridging the gap between classical RL algorithms and
sequence modeling. Furthermore, we aim to investigate the
scenarios where classical RL excels and where sequence
models can truly shine, providing a more nuanced under-
standing of their respective strengths and applications.

8



Reinformer: Max-Return Sequence Modeling for Offline RL

Acknowledgements
This work was supported by the National Science and
Technology Innovation 2030 - Major Project (Grant No.
2022ZD0208800), and NSFC General Program (Grant No.
62176215).

Impact Statement
Our research introduces a novel approach to offline rein-
forcement learning (RL) through the integration of max-
return sequence modeling, which we term Reinformer. This
work aims to address a critical gap in the current paradigm
of sequence modeling by explicitly incorporating the core
RL objective of maximizing returns. By doing so, we en-
hance the trajectory stitching capability, which is crucial for
learning from sub-optimal data and improving the overall
performance of RL algorithms.

The broader impact of our work extends to various domains
where RL is applied, such as robotics, autonomous systems,
and decision-making processes. The Reinformer algorithm
the potential to lead to more efficient and effective learn-
ing algorithms, which could accelerate the development
and deployment of autonomous technologies. This, in turn,
could have significant societal consequences, including ad-
vancements in healthcare, transportation, and environmental
management, where the ability to make optimal decisions is
paramount.

From an ethical standpoint, our work emphasizes the impor-
tance of aligning RL algorithms with their intended objec-
tives, ensuring that the pursuit of maximizing returns does
not lead to unintended consequences. This is particularly
relevant as AI systems become more integrated into critical
systems where ethical considerations are paramount.

As we move forward, it is imperative to consider the soci-
etal implications of deploying RL algorithms that are more
capable of learning from data. This includes ensuring that
these systems are transparent, fair, and accountable, and that
they do not perpetuate biases or lead to negative outcomes
for vulnerable populations.

In conclusion, while our work contributes to the advance-
ment of the field of Machine Learning, particularly in the
area of RL, we recognize the need for ongoing discussions
around the ethical use and societal impact of these tech-
nologies. We encourage the community to engage in these
conversations and to develop guidelines that will ensure the
responsible application of our findings.

References
Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A.,

and Bellemare, M. G. Deep reinforcement learning at

the edge of the statistical precipice. Advances in Neural
Information Processing Systems, 2021.

Aigner, D. J., Amemiya, T., and Poirier, D. J. On the
estimation of production frontiers: maximum likelihood
estimation of the parameters of a discontinuous density
function. International economic review, pp. 377–396,
1976.

Bai, C., Wang, L., Yang, Z., Deng, Z., Garg, A., Liu, P.,
and Wang, Z. Pessimistic bootstrapping for uncertainty-
driven offline reinforcement learning. arXiv preprint
arXiv:2202.11566, 2022.

Brandfonbrener, D., Whitney, W., Ranganath, R., and Bruna,
J. Offline rl without off-policy evaluation. Advances in
neural information processing systems, 34:4933–4946,
2021.

Brandfonbrener, D., Bietti, A., Buckman, J., Laroche, R.,
and Bruna, J. When does return-conditioned supervised
learning work for offline reinforcement learning? Ad-
vances in Neural Information Processing Systems, 35:
1542–1553, 2022.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing
systems, 34:15084–15097, 2021.

David, S. B., Zimerman, I., Nachmani, E., and Wolf, L.
Decision s4: Efficient sequence-based rl via state spaces
layers. In The Eleventh International Conference on
Learning Representations, 2022.

Degris, T., White, M., and Sutton, R. S. Off-policy actor-
critic. arXiv preprint arXiv:1205.4839, 2012.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219, 2020.

Fujimoto, S. and Gu, S. S. A minimalist approach to offline
reinforcement learning. Advances in neural information
processing systems, 34:20132–20145, 2021.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep
reinforcement learning without exploration. In Interna-
tional conference on machine learning, pp. 2052–2062.
PMLR, 2019.

Gulcehre, C., Colmenarejo, S. G., Wang, Z., Sygnowski, J.,
Paine, T., Zolna, K., Chen, Y., Hoffman, M., Pascanu, R.,
and de Freitas, N. Regularized behavior value estimation.
arXiv preprint arXiv:2103.09575, 2021.

9



Reinformer: Max-Return Sequence Modeling for Offline RL

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. PMLR,
2018.

Kim, J., Lee, S., Kim, W., and Sung, Y. Decision con-
vformer: Local filtering in metaformer is sufficient for
decision making. arXiv preprint arXiv:2310.03022, 2023.

Konda, V. and Tsitsiklis, J. Actor-critic algorithms. Ad-
vances in neural information processing systems, 12,
1999.

Kostrikov, I., Fergus, R., Tompson, J., and Nachum, O. Of-
fline reinforcement learning with fisher divergence critic
regularization. In International Conference on Machine
Learning, pp. 5774–5783. PMLR, 2021a.

Kostrikov, I., Nair, A., and Levine, S. Offline reinforce-
ment learning with implicit q-learning. arXiv preprint
arXiv:2110.06169, 2021b.

Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S.
Stabilizing off-policy q-learning via bootstrapping error
reduction. Advances in Neural Information Processing
Systems, 32, 2019.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Con-
servative q-learning for offline reinforcement learning.
Advances in Neural Information Processing Systems, 33:
1179–1191, 2020.

Kumar, A., Agarwal, R., Geng, X., Tucker, G., and Levine,
S. Offline q-learning on diverse multi-task data both
scales and generalizes. arXiv preprint arXiv:2211.15144,
2022.

Lee, K.-H., Nachum, O., Yang, M. S., Lee, L., Free-
man, D., Guadarrama, S., Fischer, I., Xu, W., Jang, E.,
Michalewski, H., et al. Multi-game decision transformers.
Advances in Neural Information Processing Systems, 35:
27921–27936, 2022.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643, 2020.

Liu, J., Zhang, H., and Wang, D. Dara: Dynamics-aware
reward augmentation in offline reinforcement learning.
arXiv preprint arXiv:2203.06662, 2022.

Liu, J., He, L., Kang, Y., Zhuang, Z., Wang, D., and Xu,
H. Ceil: Generalized contextual imitation learning. Ad-
vances in Neural Information Processing Systems, 36:
75491–75516, 2023.

Liu, J., Guo, X., Zhuang, Z., and Wang, D. Didi: Diffusion-
guided diversity for offline behavioral generation. arXiv
preprint arXiv:2405.14790, 2024a.

Liu, J., Zhang, H., Zhuang, Z., Kang, Y., Wang, D., and
Wang, B. Design from policies: Conservative test-time
adaptation for offline policy optimization. Advances in
Neural Information Processing Systems, 36, 2024b.

Liu, J., Zhang, Z., Wei, Z., Zhuang, Z., Kang, Y., Gai,
S., and Wang, D. Beyond ood state actions: Supported
cross-domain offline reinforcement learning. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 13945–13953, 2024c.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Newey, W. K. and Powell, J. L. Asymmetric least squares
estimation and testing. Econometrica: Journal of the
Econometric Society, pp. 819–847, 1987.

Pomerleau, D. A. Alvinn: An autonomous land vehicle
in a neural network. Advances in neural information
processing systems, 1, 1988.

Schmidhuber, J. Reinforcement learning upside down:
Don’t predict rewards–just map them to actions. arXiv
preprint arXiv:1912.02875, 2019.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Sobotka, F. and Kneib, T. Geoadditive expectile regression.
Computational Statistics & Data Analysis, 56(4):755–
767, 2012.

Srivastava, R. K., Shyam, P., Mutz, F., Jaśkowski, W., and
Schmidhuber, J. Training agents using upside-down re-
inforcement learning. arXiv preprint arXiv:1912.02877,
2019.

Sutton, R. S., Barto, A. G., et al. Introduction to reinforce-
ment learning. 1998.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y.
Policy gradient methods for reinforcement learning with
function approximation. Advances in neural information
processing systems, 12, 1999.

Tarasov, D., Nikulin, A., Akimov, D., Kurenkov, V., and
Kolesnikov, S. CORL: Research-oriented deep offline
reinforcement learning library. In 3rd Offline RL Work-
shop: Offline RL as a ”Launchpad”, 2022. URL https:
//openreview.net/forum?id=SyAS49bBcv.

10

https://openreview.net/forum?id=SyAS49bBcv
https://openreview.net/forum?id=SyAS49bBcv


Reinformer: Max-Return Sequence Modeling for Offline RL

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, Z., Novikov, A., Zolna, K., Merel, J. S., Springen-
berg, J. T., Reed, S. E., Shahriari, B., Siegel, N., Gulcehre,
C., Heess, N., et al. Critic regularized regression. Ad-
vances in Neural Information Processing Systems, 33:
7768–7778, 2020.

Watkins, C. J. and Dayan, P. Q-learning. Machine learning,
8:279–292, 1992.

Wu, Y., Tucker, G., and Nachum, O. Behavior regu-
larized offline reinforcement learning. arXiv preprint
arXiv:1911.11361, 2019.

Wu, Y.-H., Wang, X., and Hamaya, M. Elastic decision
transformer. arXiv preprint arXiv:2307.02484, 2023.

Xie, Z., Lin, Z., Ye, D., Fu, Q., Wei, Y., and Li, S. Future-
conditioned unsupervised pretraining for decision trans-
former. In International Conference on Machine Learn-
ing, pp. 38187–38203. PMLR, 2023.

Yamagata, T., Khalil, A., and Santos-Rodriguez, R. Q-
learning decision transformer: Leveraging dynamic pro-
gramming for conditional sequence modelling in offline
rl. In International Conference on Machine Learning, pp.
38989–39007. PMLR, 2023.

You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli,
S., Song, X., Demmel, J., Keutzer, K., and Hsieh, C.-J.
Large batch optimization for deep learning: Training bert
in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Zheng, Q., Zhang, A., and Grover, A. Online decision trans-
former. In international conference on machine learning,
pp. 27042–27059. PMLR, 2022.

Zhuang, Z., Lei, K., Liu, J., Wang, D., and Guo, Y. Be-
havior proximal policy optimization. arXiv preprint
arXiv:2302.11312, 2023.

11



Reinformer: Max-Return Sequence Modeling for Offline RL

A. Baseline Results
Existing sequence modeling algorithms have only been evaluated on the Gym-v2 dataset, neglecting other more complex
and challenging datasets (Maze2d-v1, Kitchen-v0 and Antmaze-v2). To provide a more comprehensive comparison
and evaluation of Reinformer, we have reproduced several baseline methods using their offical code. Subsequently, we will
clarify which results stem from the original works or third-party reproductions, and which are reproduced by ourselves.
Table 1 contains last results on dataset Gym-v2, Maze2d-v1 and Kitchen-v0.

• Gym-v2: All the results of Reinforcement Learning baselines including BC, CQL and IQL come from the IQL original
paper (Kostrikov et al., 2021b). The results of Decision Transformer (DT) are from the DT original paper (Chen et al.,
2021). For ODT, EDT and QDT, the results are sourced from their respective original papers (Zheng et al., 2022; Wu
et al., 2023; Yamagata et al., 2023) while the results on dataset medium-expert are all absent. We reproduce the EDT
which considers trajectory stitching using its official code https://github.com/kristery/Elastic-DT.

• Maze2d-v1: The results of BC, CQL, IQL and DT are from the open source library Clean Offline Reinforcement
Learning (CORL) https://github.com/tinkoff-ai/CORL. CORL provides high-quality and easy-to-follow
single-file implementations of state-of-the-art offline reinforcement learning algorithms and each implementation is
backed by a research-friendly codebase (Tarasov et al., 2022). For QDT, the results come from its original paper
(Yamagata et al., 2023) without discounted returns-to-go introduced. The result of EDT is still reproduced.

• Kitchen-v0: The results of BC, CQL and IQL come from the IQL original paper (Kostrikov et al., 2021b) and we
reproduce the EDT.

Table 2 contains the best results on dataset Antmaze-v2. The reason for selecting the best result rather than
the last one is due to the instability in the training of Reinformer. Additionally, our algorithm’s performance on
Antmaze-large-diverse and Antmaze-large-play is poor, with the agent completing the tasks only 1 or
2 times out of 100 evaluations. It is challenging to ascertain whether these results are attributable to the randomness induced
by hyperparameter tuning or seed selection. So we only report the results on other four datasets.

• Antmaze-v2: The results of BC, IQL and DT are extracted from CORL library (Tarasov et al., 2022). The other
results are reproduced by ourselves using its their respective official code, including ODT https://github.com/
facebookresearch/online-dt and EDT https://github.com/kristery/Elastic-DT.

During the process of reproducing EDT, we observe that EDT is highly sensitive to the initial returns-to-go. This indicates
that, despite incorporating a loss function aimed at maximizing returns, EDT still operates with naively maximizing returns.
Additionally, we are not fully acquainted with the optimal selection of initial returns-to-go on Maze2d-v1, Kitchen-v0
and Antmaze-v2. To address this, we have uniformly adopted the maximum return observed in the dataset. However, we
are uncertain whether this choice may introduce any adverse effects on the experimental outcomes of EDT. This indirectly
highlights one of the advantages of Reinformer, which is its ability to adaptively select the returns-to-go without the need
for manual design.

B. Experiment Details and Hyperparameters
Our Reinformer implementation draws inspiration from and references the following four repositories:

• online-dt: https://github.com/facebookresearch/online-dt;

• Elatic-DT: https://github.com/kristery/Elastic-DT;

• min-decision-transformer: https://github.com/nikhilbarhate99/min-decision-transformer;

• decision-transformer: https://github.com/kzl/decision-transformer.

The state tokens, return tokens and action tokens are first processed by different linear layers. Then these tokens are fed into
the decoder layer to obtain the embedding. Here the decoder layer is a lightweight implementation from “min-decision-
transformer”. The context length for the decoder layer is denoted as K. We use the LAMB (You et al., 2019) optimizer with
to optimize the model with action loss and returns-to-go loss. The hyperparameter of returns loss is denoted as m.

12

https://github.com/kristery/Elastic-DT
https://github.com/tinkoff-ai/CORL
https://github.com/facebookresearch/online-dt
https://github.com/facebookresearch/online-dt
https://github.com/kristery/Elastic-DT
https://github.com/facebookresearch/online-dt
https://github.com/kristery/Elastic-DT
https://github.com/nikhilbarhate99/min-decision-transformer
https://github.com/kzl/decision-transformer


Reinformer: Max-Return Sequence Modeling for Offline RL

B.1. Hyperparameter m

The hyperparameter m is crucially related to the returns-to-go loss and is one of our primary focuses for tuning. We
explore values within the range of m = [0.7, 0.9, 0.99, 0.999]. When m = 0.5, the expectile loss function will degenerate
into MSE loss, which means the model is unable to output a maximized returns-to-go. So we do not take m = 0.5 into
consideration. We observe that performance is generally lower at m = 0.7 compared to others. Only hopper-medium
and hopper-medium-replay adopt the parameter m = 0.999 while m = 0.9 and m = 0.99 are generally better than
m = 0.999 on other datasets. The detailed hyperparameter selection of m is summarized in the following table:

Table 3. Hyperparameters m of returns loss on different datasets.

Dataset m maze2d-umaze 0.99
halfcheetah-medium 0.9 maze2d-medium 0.99
halfcheetah-medium-replay 0.9 maze2d-large 0.99
halfcheetah-medium-expert 0.9 kitchen-complete 0.99
hopper-medium 0.999 kitchen-partial 0.9
hopper-medium-replay 0.999 kitchen-mixed 0.9
hopper-medium-expert 0.9 Antmaze-umaze 0.9
walker2d-medium 0.9 Antmaze-umaze-diverse 0.99
walker2d-medium-replay 0.99 Antmaze-medium-play 0.99
walker2d-medium-expert 0.99 Antmaze-medium-diverse 0.99

B.2. Context Length K

The context length K is another key hyperparameter for sequence modeling, and we conduct a parameter search across the
values K = [2, 5, 10, 20]. The maximum value is 20 because the default context length for DT (Chen et al., 2021) is 20.
The minimum is 2, which corresponds to the shortest sequence length (setting K = 1 would no longer constitute sequence
modeling). Overall, we found that K = 20 leads to more stable learning and better performance on high quality dataset
(such as Gym-medium-expert and Kitchen). Conversely, a smaller context length is preferable on low quality dataset
(such as Gym-medium/medium-replay and Antmaze). The parameter K has been summarized as follows:

Table 4. Context length K on different datasets.

Dataset K maze2d-umaze 20
halfcheetah-medium 5 maze2d-medium 10
halfcheetah-medium-replay 5 maze2d-large 10
halfcheetah-medium-expert 20 kitchen-complete 20
hopper-medium 5 kitchen-partial 20
hopper-medium-replay 5 kitchen-mixed 20
hopper-medium-expert 20 Antmaze-umaze 2
walker2d-medium 5 Antmaze-umaze-diverse 2
walker2d-medium-replay 2 Antmaze-medium-play 3
walker2d-medium-expert 20 Antmaze-medium-diverse 2

B.3. Training Steps and Learning Rate

The default number of training steps is 50000, with a learning rate of 0.0001. With these default settings, if the training
score continues to rise, we would consider increasing the number of training steps or doubling the learning rate. For some
datasets, 50000 steps may cause overfitting and less training steps are better. The training steps are presented in Table 5 and
learning rate is summarized in Table 6. We evaluate the policy every 5000 steps to obtain a normalized score. For each seed,
this normalized score is calculated as the average returns of 100 trajectories except for 10 trajectories on Gym-v2 datasets.

13



Reinformer: Max-Return Sequence Modeling for Offline RL

Table 5. The training steps on different datasets.

Dataset Training Steps maze2d-umaze 50000
halfcheetah-medium 50000 maze2d-medium 35000
halfcheetah-medium-replay 50000 maze2d-large 45000
halfcheetah-medium-expert 50000 kitchen-complete 100000
hopper-medium 30000 kitchen-partial 90000
hopper-medium-replay 300000 kitchen-mixed 50000
hopper-medium-expert 100000 Antmaze-umaze 50000
walker2d-medium 15000 Antmaze-umaze-diverse 50000
walker2d-medium-replay 80000 Antmaze-medium-play 100000
walker2d-medium-expert 50000 Antmaze-medium-diverse 100000

Table 6. The learning rate on different datasets.

Learning Rate Dataset
0.0008 Antmaze-medium-play;

0.0004
1) walker2d-medium-replay;
2) maze2d-medium; 3) maze2d-large;
4) Antmaze-medium-diverse;

0.0001 Other datasets.

B.4. Network Architecture

The default values for the number of decoder layer, attention heads and hidden dimension are 4, 8 and 256, respectively.
These parameters are usually fixed. When we observe an initial increase followed by a decrease in the training curve,
we infer overfitting and reduce the number of layers. On the contrary, if the training curve consistently rises without a
clear convergence trend, we would attempt to increase the number of layers. As for the number of attention heads, only
Antmaze-medium-diverse is 4.

Table 7. The number of encoder layers and attention heads on different datasets.

Hyperparameters Values Dataset

Encoder Layers

3 maze2d-umaze; antmaze-umaze; antmaze-umaze-diverse;
4 Gym-v2;
5 maze2d-medium; maze2d-large; Kitchen-v0; Antmaze-medium-diverse;
6 Antmaze-medium-play.

Attention Heads 4 Antmaze-medium-diverse;
8 Other datasets.

C. Training Curves
We exhibit the training curves on five seeds. The black line represents the mean of these five seeds and the red shaded area
represents the variance.

C.1. Gym-v2

The training curves on nine datasets from Gym-v2 are plotted in Figure 8. Among these nine datasets,
hopper-medium-replay exhibits severe training fluctuations, while walker2d-medium-replay shows slight
fluctuation. The remaining datasets are notably stable, yielding satisfactory results without deliberate hyperparameter tuning.

14



Reinformer: Max-Return Sequence Modeling for Offline RL

10000 20000 30000 40000 50000
Iteration Steps

10

20

30

40
N

or
m

al
iz

ed
 S

co
re

mean

10000 20000 30000 40000 50000
Iteration Steps

10

20

30

40

N
or

m
al

iz
ed

 S
co

re

mean

10000 20000 30000 40000 50000
Iteration Steps

0

20

40

60

80

N
or

m
al

iz
ed

 S
co

re

mean

(a) halfcheetah-medium (b) halfcheetah-medium-replay (c) halfcheetah-medium-expert

5000 10000 15000 20000 25000 30000
Iteration Steps

40

50

60

70

80

90

N
or

m
al

iz
ed

 S
co

re

mean

0 50000 100000 150000 200000 250000 300000
Iteration Steps

20

40

60

80

N
or

m
al

iz
ed

 S
co

re

mean

20000 40000 60000 80000 100000
Iteration Steps

0

20

40

60

80

100

N
or

m
al

iz
ed

 S
co

re

mean

(d) hopper-medium (e) hopper-medium-replay (f) hopper-medium-expert

6000 8000 10000 12000 14000
Iteration Steps

20

40

60

80

N
or

m
al

iz
ed

 S
co

re

mean

20000 40000 60000 80000
Iteration Steps

0

20

40

60

80

N
or

m
al

iz
ed

 S
co

re

mean

10000 20000 30000 40000 50000
Iteration Steps

20

40

60

80

100

120

N
or

m
al

iz
ed

 S
co

re

mean

(g) walker2d-medium (h) walker2d-medium-replay (i) walker2d-medium-expert

Figure 8. The training curves on Gym-v2.

C.2. Maze2d-v1

The training curves on three datasets from Maze2d-v1 are plotted in Figure 9. The training curve of maze2d-umaze is
relatively stable. The variance on dataset maze2d-medium is very high and the training process also suffers from severe
training fluctuations. Sometimes, the score can even approach to 125. Dataset maze2d-medium also fluctuates a little.

10000 20000 30000 40000 50000
Iteration Steps

20

0

20

40

60

N
or

m
al

iz
ed

 S
co

re

mean

5000 10000 15000 20000 25000 30000 35000
Iteration Steps

0

25

50

75

100

125

N
or

m
al

iz
ed

 S
co

re

mean

10000 20000 30000 40000
Iteration Steps

0

10

20

30

40

50

N
or

m
al

iz
ed

 S
co

re

mean

(a) maze2d-umaze (b) maze2d-medium (c) maze2d-large

Figure 9. The training curves on Maze2d-v1.

15



Reinformer: Max-Return Sequence Modeling for Offline RL

C.3. Kitchen-v0

The training curves on three datasets from Kitchen-v0 are plotted in Figure 9. Overall, the training curves are remarkably
stable, and the long context length K is crucial for the stability of learning.

20000 40000 60000 80000 100000
Iteration Steps

10

20

30

40

50

60

N
or

m
al

iz
ed

 S
co

re

mean

20000 40000 60000 80000
Iteration Steps

0

20

40

60

N
or

m
al

iz
ed

 S
co

re

mean

10000 20000 30000 40000 50000
Iteration Steps

0

20

40

60

N
or

m
al

iz
ed

 S
co

re

mean

(a) kitchen-complete (b) kitchen-partial (c) kitchen-mixed

Figure 10. The training curves on Kitchen-v0.

C.4. Antmaze-v2

Since we report the best score during training rather than the last score, we do not provide training curves on Antmaze.
Here, we would like to emphasize the reward modification. Antmaze contains datasets with sparse rewards, where only 1
indicates the reach of the goal while 0 is not. In order to enhance the reward signal, we multiply the reward by 100. However,
we found that this modification leads to the occurrence of NaN values on dataset Antmaze-umaze-diverse. Besides,
the original reward also occur the NaN values. So we modify the reward by adding another 1, that is, r̂ = 100× r + 1. We
summarize the results of different reward modification in Table 8.

Table 8. The normalized best score on Antmaze-v2 dataset with different reward modification.

Antmaze r̂ = 100× r r̂ = 100× r + 1
umaze 85±3.87 84.4±2.7
umaze-diverse NaN 65.8±4.1
medium-play 11.4±3.78 13.2±6.1
medium-diverse 7.2±2.17 10.6±6.9

16


