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A SUB-MODULARITY OF S

Observation 2. The score function S : P(G) → R defined by

S(G) = Efout [max
g∈G

max(0, fout(g))] (7)

is submodular.

Proof. Straightforward:

S(G ∪ {g}) = Efout [ max
g′∈G∪{g}

max(0, fout(g
′))]

= Eη[ max
g′∈G∪{g}

max(0, fout(g
′, η))]

≤ Eη max
G

[max(0, fout(g
′, η)) + max(0, fout(g, η))]

= Eη max
G

[max(0, fout(g
′, η))] + Eη[max(0, fout(g, η))]

= S(G) + S({g})

Corollary 1. The greedy algorithm which iteratively selects points maximizing S(G) is a 1 − 1/e
approximation of the optimal.

B BIOLOGY BACKGROUND

Here we provide the mathematical formalization of the engaged processes in the CRISPR-based
gene knockout experiments from gene embeddings to assay readouts. We take a comprehensive
approach for clarity but not all notations below are used in this work.

• Genes: Let {g1, g2, . . . , gm} with gi ∈ G be all available genes for intervention.

• Disease phenotype: Several phenotype measurements are possible for every disease. Let
d ∈ D = {d1, d2, . . . , dl} be such a measurement from the list of l possible readouts.

• Intermediate phenotype functions: Instead of the actual disease phenotype, intermedi-
ate readouts are used to measure the effect of a gene intervention on the disease phenotype.
These readouts should be correlated with the downstream outcomes, but may present a sim-
plified view of the disease action; for example, they might include the expression of certain
proteins in a cancerous cell culture which are known to correlate with tumour growth rate
(the disease phenotype). We let ip ∈ IP = {ip1, ip2, . . . , ipp|ip : D → R} be the set
of maps from disease phenotype to real numbers that are the intermediate readouts for the
effect of each gene intervention.

• Knock-out function: ψ : Gm → P(G) shows which genes to intervene on. It takes the
set of all available genes as input and returns the subset of genes to get knocked out.

• Disease mechanism function: f : G×P(G) → Dl. This function takes all available genes
and also the intervened subset and returns how the effect of the intervention on disease
phenotype.

• Knock-out representation ϕko : P(G) → Rdko takes the subset of genes to knock out
and returns a real-valued vector as the representation of this intervention.

• Learnable mechanism: To make the disease mechanism function amenable to learning
algorithms, we use the intervention representation in the input and intermediate phenotype
read-out in the output and work with {Fj : Fj = ipj ◦ f ◦ ϕ−1

ko for1 ≤ j ≤ p} where
Fj : Rd

ko → R is the effect of a knock-out represented by the knock-out representation ϕko
in the input on the jth intermediate phenotype read-out in the output.

It is natural to work with real-valued functions with real-value domain which are more friendly
to function estimation algorithms. For example, one can use MSE error as a metric to learn the
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Figure 4: Top-k recall and expected maximal intervention value on: a) a mixture of two RBF kernels;
b) a one-dimensional linear combination of sinusoids with multiple local optima; c) a mixture of four
RBF kernels of varying scales.

intervention-to-assay mechanism from the available labeled datasets D = {(xi, yi)}ni=1 using the
objective function

F̂j =
1

n

∑
(xi,yi)

argmin
F

∥F (xi)− yi)∥. (8)

for every j that gives {F̂1, F̂2, . . . , F̂p}. Notice that ŷ = F̂j(x) is the best predictor of the
intermediate disease phenotype (screen, assay) for the gene intervention ψ(Gm) represented by
x = ϕko(ψ(G

m)).

C CLUSTERING OF OPTIMAL INTERVENTIONS

In the GeneDisco experiments (§ 5.2), we define a diversity metric based on the recall of Top-K
clusters. These clusters are obtained for each assay as follows. All experiments we carried out in
§ 5.2 leverage the Achilles dataset (Dempster et al., 2019) from GeneDisco to represent the different
interventions. This dataset characterizes each gene with an 808-dimensional vector. We first select
the optimal interventions as the ones in the top percentile of disease phenotype for a given assay. We
then project the Achilles representations of each intervention into a lower-dimensional subspace of
dimension 20 with PCA. We then fit a Gaussian Mixture Model (GMM) with 20 mixtures to obtain
the different clusters, selecting the best result out of 20 random initializations.

D ADDITIONAL EMPIRICAL EVALUATIONS

For reproducibility, code for all experiments in this work can be found at the following url: https:
//github.com/anonymous35780/solaris-2023-iclr.

D.1 SAMPLE COMPLEXITY ON SYNTHETIC DATASETS

Our objective in this section is to validate a number of properties of the proposed method in inter-
pretable synthetic datasets.

• Sample complexity: our method requires fewer samples to reach a global optimum relative
to random sampling or naive uncertainty maximization methods.

• Diversity of candidate set: unlike standard Bayesian optimization methods, our approach
identifies a set of points which approximately maximize the function while also maintaining
diversity with respect to a pre-chosen metric, improving the robustness of the candidate set
to uncertainty in the mapping between observable and terminal outcomes.
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In these experiments and in Figure 2 we consider a number of baselines, including the following.

• Random: x∗ ∼ Unif(X \ Dt).

• UCB: naive upper-confidence sampling approach, letting c ∈ R be some constant:
x∗ = argmaxx∈X µ(x) + c

√
σ2(x).

• BAX acquisition (Algorithm 2) for algorithm A ∈ {Top-k, Levelset, Disco}.

• Thompson sampling: acquisition based on maximum of sampled function from a
Bayesian posterior. x∗ = argmaxx∈X f̂ip(x) f̂ip ∼ P (fip|Dtrain).

• Active sampling: maximize uncertainty over the input set x∗ = argmaxx∈X σ
2(x).

We consider the following synthetic datasets, where for all synthetic experiments we use a batch
size equal to one.

Mixture-of-Gaussians: pdf of a mixture of gaussians with means [-0.5, 0.5], variances 0.1 and
relative weights [0.3, 0.7]. x ∈ [−1, 1].

Multimodal mixture: given domain [−7, 7], outputs the (scaled) density of a mixture of Gaussians
with means {−4,−2, 0, 3}, variances {0.3, 0.35, 0.3, 0.35}, and weights {0.6, 0.45, 0.5, 0.4}. 2-d

sinusoid: f(x) = sin

[
1
2

(
0.25 − 1

π
0.1 .02

)
x

]
, x ∈ R2, −π < x < π

D.2 GENEDISCO DETAILED RESULTS

We provide below detailed results across the five CRISPR assays from the GeneDisco benchmark:
the Interferon γ and Interleukin 2 assays based on Schmidt et al. (2021), the Leukemia assay with
NK cells from Zhuang et al. (2019), the SARS-CoV-2 assay from Zhu et al. (2021) and the Tau pro-
tein assay from Sanchez et al. (2021). All interventions for the five assays were represented based
on the Achilles dataset (Dempster et al., 2019). For the active learning baselines already present in
GeneDisco we used the same hyperparameters as in Mehrjou et al. (2021). For the additional base-
lines introduced in this work, we use standard/default hyperparameters everywhere (see our code-
base for all details: https://github.com/anonymous35780/solaris-2023-iclr)
except as specified in Appendix D.3. To prevent model overfitting during the various active learn-
ing cycles, we closely followed experimental protocol in Mehrjou et al. (2021) and selected similar
model architectures and hyperparameters.

We observe in Table 2 that DiscoBAX outperforms all other 13 baselines we compare against on 3
out of the 5 datasets included in the GeneDisco benchmark, performs on par (significant overlap of
confidence intervals) with the best methods on the 4th one (Tau protein) and is only outperformed
by “random selection” on the last one (SARS-coV2). As discussed in section 5.2 and as noted in
Mehrjou et al. (2021), the fact that random outperforms all other 13 methods on that dataset seems to
indicate an issue with the data (eg., the feature space does not correlate with the disease phenotype,
high label noise) rather than an algorithmic issue. Critically, none of the other baselines performs
consistently high on all 5 assays: for instance, ‘random’ performs relatively poorly on all other 4
assays and the other methods that are on par with DiscoBAX on the Tau protein assay (eg., BADGE,
Coreset) have inconsistent performance on other assays. Aggregated performance across assays
is reported in Table 1 and demonstrates the overall higher performance of DiscoBAX over other
baselines.

D.3 GENEDISCO EXPERIMENTS - HYPERPARAMETER SELECTION

For the three BAX alogirthms (Top-K BAX, Levelset BAX and DiscoBAX), we optimize the main
hyperparameters of each method (ie., respectively the K parameter the level threshold and the num-
ber of Sets in SetSelect). To mitigate the risk of overfitting, we select our hyperparameters based
on a single assay (the ‘Tau protein’ assay), and use the obtained optimal values in experiments for
all assays. We perform a grid search for each hyperparameter, repeating each experiment over 5
seeds. We find that on that dataset, optimal values for the hyperparameters are respectively k=5,
Levelset=1.0 and S=10.
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Figure 5: Top-K recall and Diversity score Vs acquisition cycles for all GeneDisco CRISPR
assays
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E DEEPER INSIGHT INTO THE ALGORITHM

E.1 INSIGHTS OF EQ. (4):

In this section, we design a simplistic scenario to provide more insight into the proposed objective
function eq. (4) and how it serves two purposes, i.e., choosing a set of interventions with high
phenotype values and high diversity. For convenience, in fig. 6, we show a simple scenario where 2
out of 3 genes are to be chosen, i.e., |S| = 2 and |X | = 3. There are three ways of choosing a pair
of genes out of three options. We aim to show which pair is favoured by eq. (4). Without loss of
generality, assume x1 is chosen. Due to the probabilistic model of fout, all yi = fout(xi), i = 1, 2, 3
are random variables whose probability densities (Pi) are plotted next to each gene. It is observed
that P1 and P3 are concentrated at larger values (higher regions of the vertical axis) compared to P2

that puts much of its mass at lower values. Hence, in most realization, y1 takes a large value (star)
and y1 ≈ max(y1, ·) as the second argument is sampled from distributions concentrated at lower
values (P2) or almost equally large values (P3). The second argument becomes important in the
rare events when y1 takes a small value (cross). In this case, the output of max(y1, ·) is no longer
determined by its first argument and is, with high probability, influenced by the second argument
which takes on a large value if realized from P3 compared with P2 as the former is concentrated
at larger values. Hence, choosing the pair (x1,x3) produces a larger average than (x1,x2) and is
therefore favourable by eq. (4). Moreover, it is implicitly assumed in the above reasoning that P1,
P2 and P3 are not highly correlated. Otherwise, a small value of y1 led to a small value of y3 as well.
Hence, eq. (4) chooses the genes which produce large values and the mechanisms that are modeled
as the random effect are as independent as possible. This choice of genes increases the chance that
if one gene fails to proceed to further steps of the drug discovery pipeline for some reason such
as safety, tractability, etc, the other chosen genes will preserve high chances of success as they are
likely to be involved in mechanisms different from those that cause the failure of the previous gene.

E.2 INSIGHTS OF FIG. 1:

This illustrates the motivation and goal of this research which is finding mathematical formulation
and practical implementation of an algorithm that meets the actual needs of initial stages of drug
discovery pipeline that neither value-seeking nor diversity-seeking methods can fulfill. The pheno-
typic effect of genetic perturbation can follow a complex function with many modes. We are mainly
interested in genes which cause large changes in the measured phenotype as those are the genes
that engage more with the disease and can be a potential target for a drug compound. However, as
the figure shows, the value-seeking methods stop after finding one mode of the function (the light
gray triangles which are concentrated in one of the modes but do not cover the other modes which
have equally large values). This is risky since the genes that are associated with that mode are
probably correlated in the sense that if one of them fails in the further steps of the drug discovery
pipeline, the other may also fail with high likelihood. On the other end of the spectrum, although a
diversity-seeking algorithm proposes uncorrelated genes that are unlikely to fail together (the dark
gray circles which cover a large domain but miss the modes), it is highly inefficient and a large
number of chosen genes may not be highly involved in the disease mechanism. Hence, the nature of
the problem requires a middle-ground method that seeks the modes of the underlying function but
covers as many does as possible (the red stars that efficiently cover all modes but not in-between
spaces) so that if the genes associated with one mode fails, those associated with the other modes
have chance to proceed in the pipeline.

F ADDITIONAL EMPIRICAL EVALUATIONS ON SYNTHETIC DATASET

Finally, we include an evaluation of the Expected Improvement (EI) acquisition function on the
same task as was previously illustrated in Figure 2. Because we use an acquisition batch size of one
in these experiments, the parallel acquisition strategy qEI coincides with the incremental expected
improvement acquisition function. Concretely, the expected improvement acquisition function per-
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<latexit sha1_base64="PHxrhNUG2E6jjDrepYPR6uHQgJg=">AAACBnicbVDLSsNAFJ3UV62vqEsRBotQQUpSiroRim5cVrAPaEKYTCft0JkkzEzEELpy46+4caGIW7/BnX/jpO1CWw9c7uGce5m5x48Zlcqyvo3C0vLK6lpxvbSxubW9Y+7utWWUCExaOGKR6PpIEkZD0lJUMdKNBUHcZ6Tjj65zv3NPhKRReKfSmLgcDUIaUIyUljzz0OHooZJ69ilMvdoJvMwbdCTlsOnVPLNsVa0J4CKxZ6QMZmh65pfTj3DCSagwQ1L2bCtWboaEopiRcclJJIkRHqEB6WkaIk6km03OGMNjrfRhEAldoYIT9fdGhriUKff1JEdqKOe9XPzP6yUquHAzGsaJIiGePhQkDKoI5pnAPhUEK5ZqgrCg+q8QD5FAWOnkSjoEe/7kRdKuVe2zav22Xm5czeIoggNwBCrABuegAW5AE7QABo/gGbyCN+PJeDHejY/paMGY7eyDPzA+fwBHDZZ1</latexit>

max(y1, y2) = y2 ⇠ P2

<latexit sha1_base64="BMwUselNE8TF23LS84isEyCCrIQ=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyyCqzIjRV0W3bhwUcE+oC0lk95pQzMPkjtiHYq/4saFIm79D3f+jWk7C209EDicc25yc7xYCo2O823llpZXVtfy64WNza3tHXt3r66jRHGo8UhGqukxDVKEUEOBEpqxAhZ4Ehre8GriN+5BaRGFdziKoROwfih8wRkaqWsftBEeML1hqg+UmSTrw7hrF52SMwVdJG5GiiRDtWt/tXsRTwIIkUumdct1YuykTKHgEsaFdqIhZnxoLm8ZGrIAdCedbj+mx0bpUT9S5oRIp+rviZQFWo8CzyQDhgM9703E/7xWgv5FJxVhnCCEfPaQn0iKEZ1UQXtCAUc5MoRxJcyulA+YYhxNYQVTgjv/5UVSPy25Z6XybblYuczqyJNDckROiEvOSYVckyqpEU4eyTN5JW/Wk/VivVsfs2jOymb2yR9Ynz/VUJV7</latexit>

Large average
<latexit sha1_base64="glk0MI3sXcMj1uqrtDU0eNajYqw=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyyCqzIjRV0W3bisaB/QDiWTpm1okhmSO2Idir/ixoUibv0Pd/6NaTsLbT0QOJxzbnJzwlhwA5737eSWlldW1/LrhY3Nre0dd3evbqJEU1ajkYh0MySGCa5YDTgI1ow1IzIUrBEOryZ+455pwyN1B6OYBZL0Fe9xSsBKHfegDewB0ltJhMDEJkmfjTtu0St5U+BF4mekiDJUO+5XuxvRRDIFVBBjWr4XQ5ASDZwKNi60E8NiQof28palikhmgnS6/RgfW6WLe5G2RwGeqr8nUiKNGcnQJiWBgZn3JuJ/XiuB3kWQchUnwBSdPdRLBIYIT6rAXa4ZBTGyhFDN7a6YDogmFGxhBVuCP//lRVI/LflnpfJNuVi5zOrIo0N0hE6Qj85RBV2jKqohih7RM3pFb86T8+K8Ox+zaM7JZvbRHzifP+splYk=</latexit>

Small average

Figure 6: A simple visualization to gain insight into eq. (4).

Figure 7: Evaluation of the EI acquisition function on the regression problem discussed previously.

forms the following maximization, given some pool D of already sampled points:

max
x ̸∈D

EP (f(x)|D) max(f(x)− f(x∗), 0) (9)

where x∗ is the element of D which maximizes f and P (·|D) denotes the posterior over function
values f(x) for some fixed x.
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Table 2: Performance comparison on GeneDisco CRISPR assays We report the performance of
DiscoBAX and all baselines methods on all datasets from the GeneDisco benchmark.

Dataset Method Top-K recall Diversity score Overall score

Interferon γ

Adversarial BIM 33% (3.6%) 5.2% (0.5%) 13.1% (1.4%)
BADGE 46.5% (3.9%) 7.9% (0.7%) 19.1% (1.7%)
Coreset 51.5% (3%) 7.2% (0.6%) 19.3% (1.3%)
DiscoBAX (ours) 56.5% (3.4%) 11.1% (0.8%) 25% (1.6%)
Kmeans Data 41.5% (1.3%) 6.1% (0.2%) 16% (0.5%)
Kmeans Embedding 42% (2.4%) 6.7% (0.6%) 16.7% (1.2%)
Levelset BAX 46% (3.6%) 7.6% (0.7%) 18.7% (1.5%)
Margin sample 33.5% (5.8%) 6.2% (1.1%) 14.4% (2.6%)
qEI 45% (3.6%) 7.9% (0.4%) 18.9% (1.1%)
qPOI 44% (3.1%) 8.1% (0.4%) 18.9% (1.1%)
qUCB 43.7% (3.7%) 7.8% (0.4%) 18.5% (1.2%)
Random 31.5% (2.9%) 5% (0.6%) 12.5% (1.3%)
Soft Uncertainty 30.5% (3.7%) 5.1% (0.6%) 12.4% (1.5%)
Thompson Sampling 35.5% (2.6%) 6% (0.7%) 14.6% (1.4%)
Top-K BAX 52% (3.1%) 9.6% (0.8%) 22.3% (1.5%)
Top Uncertainty 38.5% (3%) 6.8% (0.7%) 16.2% (1.4%)
UCB 41.5% (2.6%) 7.6% (0.9%) 17.7% (1.6%)

Interleukin 2

Adversarial BIM 31% (3.6%) 4.8% (0.5%) 12.2% (1.4%)
BADGE 44% (3.6%) 7.6% (1%) 18.3% (1.9%)
Coreset 52.5% (2.9%) 8.5% (0.4%) 21.1% (1.1%)
DiscoBAX (ours) 58% (3.1%) 12.4% (0.5%) 26.8% (1.3%)
Kmeans Data 48.5% (1.7%) 6.6% (0.3%) 17.8% (0.7%)
Kmeans Embedding 46.5% (2.8%) 7.5% (0.5%) 18.6% (1.2%)
Levelset BAX 53% (3%) 9.5% (0.9%) 22.5% (1.6%)
Margin sample 42.5% (4.2%) 7.4% (0.9%) 17.8% (2%)
qEI 52.5% (2.9%) 11.4% (0.9%) 24.5% (1.6%)
qPOI 54% (2.8%) 11.9% (0.9%) 25.3% (1.6%)
qUCB 52.5% (4.7%) 11.3% (1%) 24.4% (2.2%)
Random 31.5% (2.7%) 5.1% (0.5%) 12.6% (1.2%)
Soft Uncertainty 31% (4%) 5.2% (0.8%) 12.7% (1.8%)
Thompson Sampling 35% (3.5%) 7.2% (1.1%) 15.9% (2%)
Top-K BAX 56% (3.9%) 12.2% (1%) 26.2% (2%)
Top Uncertainty 49% (2.8%) 9.5% (1.1%) 21.6% (1.7%)
UCB 49.5% (2.8%) 10.8% (1.1%) 23.1% (1.8%)

SARS-CoV-2

Adversarial BIM 17% (2.4%) 3.5% (0.8%) 7.7% (1.4%)
BADGE 10.5% (7.8%) 1.8% (1.4%) 4.3% (3.3%)
Coreset 27.5% (2.6%) 3.4% (0.4%) 9.7% (1%)
DiscoBAX (ours) 26% (3%) 4% (0.3%) 10.2% (1%)
Kmeans Data 24% (1.9%) 4.9% (0.3%) 10.8% (0.8%)
Kmeans Embedding 29.5% (1.7%) 4.8% (0.4%) 11.9% (0.8%)
Levelset BAX 25% (2.6%) 4.3% (0.4%) 10.3% (1%)
Margin sample 15% (2.1%) 2.6% (0.4%) 6.2% (0.9%)
qEI 23.5% (3.3%) 4.1% (0.8%) 9.8% (1.6%)
qPOI 21.7% (3%) 3.5% (0.4%) 8.7% (1%)
qUCB 21.5% (2.9%) 4.4% (0.6%) 9.7% (1.3%)
Random 32% (3.3% 6.2% (0.9%) 14% (1.7%)
Soft Uncertainty 6.5% (4.9%) 1.6% (1.4%) 3.2% (2.6%)
Thompson Sampling 19% (1.9%) 2.6% (0.3%) 7.1% (0.7%)
Top-K BAX 20% (2.8%) 2.8% (0.4%) 7.5% (1.1%)
Top Uncertainty 18% (2.3%) 3.1% (0.5%) 7.4% (1%)
UCB 18% (2.4%) 2.7% (0.5%) 7% (1.1%)
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Dataset Method Top-K recall Diversity score Overall score

Leukemia/NK

Adversarial BIM 23.5% (2.2%) 4.9% (0.3%) 10.7% (0.8%)
BADGE 36.5% (3.9%) 5.7% (0.6%) 14.4% (1.5%)
Coreset 30% (3.2%) 3.9% (0.4%) 10.9% (1.2%)
DiscoBAX (ours) 47% (2.1%) 7.1% (0.4%) 18.2% (1%)
Kmeans Data 26.5% (1.1%) 3.5% (0.2%) 9.6% (0.4%)
Kmeans Embedding 38% (1.3%) 5.9% (0.4%) 15% (0.7%)
Levelset BAX 30.5% (4.1%) 5.7% (0.8%) 13.1% (1.8%)
Margin sample 23.5% (3.1%) 4.1% (0.6%) 9.8% (1.4%)
qEI 26.5% (3.2%) 4.3% (0.6%) 10.7% (1.4%)
qPOI 31% (1.5%) 4.8% (0.6%) 12.2% (0.9%)
qUCB 33% (2.9%) 5.4% (0.7%) 13.4% (1.4%)
Random 26.5% (3.5%) 4.3% (0.6%) 10.7% (1.5%)
Soft Uncertainty 29.5% (2.3%) 4.6% (0.4%) 11.6% (0.9%)
Thompson Sampling 23.5% (2.6%) 4.4% (0.4%) 10.2% (1.1%)
Top-K BAX 32.5% (2.9%) 4.5% (0.4%) 12.1% (1.1%)
Top Uncertainty 26% (3.1%) 4.8% (0.6%) 11.2% (1.3%)
UCB 26.5% (3%) 4.2% (0.6%) 10.5% (1.3%)

Tau protein

Adversarial BIM 16% (1.5%) 5% (0.3%) 8.9% (0.6%)
BADGE 34% (2.8%) 5% (0.5%) 13.1% (1.1%)
Coreset 35% (2.2%) 4.4% (0.3%) 12.5% (0.9%)
DiscoBAX (ours) 33% (2.1%) 4.6% (0.4%) 12.3% (0.9%)
Kmeans Data 27% (1.1%) 3.3% (0.2%) 9.5% (0.5%)
Kmeans Embedding 30% (2.6%) 4.4% (0.4%) 11.5% (1%)
Levelset BAX 22.5% (2.4%) 4.6% (0.5%) 10.2% (1.1%)
Margin sample 32% (3.3%) 4.9% (0.5%) 12.5% (1.2%)
qEI 32.1% (2.8%) 4.3% (0.6%) 11.7% (1.3%)
qPOI 31% (2.5%) 4.5% (0.5%) 11.8% (1.1%)
qUCB 31.2% (2.6%) 4.4% (0.4%) 11.7% (1%)
Random 25% (3.3%) 3.9% (0.5%) 9.9% (1.3%)
Soft Uncertainty 27% (2.4%) 4.6% (0.4%) 11.1% (0.9%)
Thompson Sampling 24.5% (2.4%) 3.8% (0.3%) 9.7% (0.9%)
Top-K BAX 33.5% (2.4%) 4.8% (0.4%) 12.7% (1%)
Top Uncertainty 29.5% (1.2%) 4.1% (0.2%) 11% (0.5%)
UCB 32% (2.7%) 4.4% (0.3%) 11.8% (1%)

Table 3: GeneDisco experiment - Hyperparameter selection

Method Hyperparameter value Top-K recall Diversity score Overall score

Top-K BAX

2 32% (3.6%) 4% (0.5%) 11.3% (1.3%)
3 32% (3.3%) 4.3% (0.5%) 11.8% (1.1%)
5 33% (2.4%) 4.4% (0.4%) 12.1% (0.9%)
10 30% (3.2%) 4.2% (0.4%) 11.2% (1.3%)

Levelset BAX

0.8 19% (2.1%) 3.4% (0.3%) 8% (0.8%)
1 30% (4.3%) 5.4% (0.7%) 12.7% (1.8%)
1.2 21% (1.3%) 4.1% (0.6%) 9.3% (0.9%)
1.5 29% (0.7%) 5.4% (0.5%) 12.5% (0.6%)

DiscoBAX

2 36% (5.3%) 4.8% (0.8%) 13.1% (2%)
3 32% (2.6%) 4.1% (0.5%) 11.4% (1.1%)
5 37.5% (2.7%) 5.4% (0.4%) 14.2% (1%)
10 38% (1.8%) 5.5% (0.3%) 14.5% (0.8%)
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