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Figure 8: Maximum Similarity Examples. We run two CIFARI10-trained models, one trained with tree
supervision loss (NBDT) and one without tree supervision loss (ResNet18). We compute the induced hierarchy
of both models and find samples most similar to the Animal, and Motor Vehicle concepts. Each row represents
an inner node, and the red borders indicate images that contain CIFAR10 classes. (1) Note that NBDT’s concept
of an animal includes classes and contexts it was not trained on; aquatic animals (top-right) and trains (bottom-
right) are not a part of CIFAR10. In contrast, ResNet18 largely finds examples closely related to existing
CIFARI10 classes (dog, car, boat). This is qualitative evidence that NBDTs better generalize.
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B EXPLAINABILITY

In this section, we expand on details for interpretability as presented in the original paper, with an
emphasis on qualitative use of the hierarchy.

B.1 MAXIMUM SIMILARITY EXAMPLES TO VISUALIZE GENERALIZATION

We (1) visually confirm the hypothesized meaning of each node by identifying the most “repre-
sentative” samples, and (2) check that these “representative” samples represent that category (e.g.,
Animal) and not just the training classes under that category. We define “representative” samples,
or maximum similarity examples, to be samples with embeddings most similar to an inner node’s
representative. We visualize these examples for a model before and after the tree supervision loss
(NBDT and ResNetl8, respectively). The models are trained on CIFAR10, but samples are drawn
from ImageNet. We observe that maximum similarity examples for NBDT contain more unseen
classes than ResNet18 (Figure [8). This suggests that our NBDT is better able to capture high-level
concepts such as Animal, which is quantitatively confirmed by the superclass evaluation in Table|[6]
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Figure 9: A Node’s meaning. (Left) Visualization of node hypothesis test performed on a CIFAR10-trained
WideResNet28x10 model, by sampling from CIFAR100 validation set for OOD classes. (Right) Classification
accuracy is high (80-95%) given unseen CIFAR100 samples of Vehicles (top) and Animals (bottom), for the
WordNet-hypothesized Animal/Vehicle node.

B.2 EXPLAINABILITY OF NODES’ VISUAL MEANINGS

This section describes the method used in Table [6] in more detail. Since the induced hierarchy
is constructed using model weights, the intermediate nodes are not forced to split on foreground
objects. While hierarchies like WordNet provide hypotheses for a node’s meaning, the tree may
split on unexpected contextual and visual attributes such as underwater and on land, depicted in
Figure[7b] To diagnose a node’s visual meaning, we perform the following 4-step test:

1. Posit a hypothesis for the node’s meaning (e.g. Animal vs. Vehicle). This hypothesis can be
computed automatically from a given taxonomy or deduced from manual inspection of each
child’s leaves (Figure[9).

2. Collect a dataset with new, unseen classes that test the hypothesised meaning from step 1 (e.g.
Elephant is an unseen Animal). Samples in this dataset are referred to as out-of-distribution
(OOD) samples, as they are drawn from a separate labeled dataset.

3. Pass samples from this dataset through the node. For each sample, check whether the selected
child node agrees with the hypothesis.

4. The accuracy of the hypothesis is the percentage of samples passed to the correct child. If the
accuracy is low, repeat with a different hypothesis.

Figure 9a) depicts the CIFAR10 tree induced by a WideResNet28x10 model trained on CIFAR10.
The WordNet hypothesis is that the root note splits on Animal vs. Vehicle. We use the CIFAR100
validation set as out-of-distribution images for Animal and Vehicle classes that are unseen at training
time. We then compute the hypothesis” accuracy. Figure[9b|shows our hypothesis accurately predicts
which child each unseen-class’s samples traverse.

B.3 HoOw MODEL ACCURACY AFFECTS INTERPRETABILITY

Induced hierarchies are determined by the proximity of class weights, but classes that are close
in weight space may not have similar visual meaning: Figure depicts the trees induced by
WideResNet28x10 and ResNetl10, respectively. While the WideResNet induced hierarchy (Fig-
ure[T0a) groups visually-similar classes, the ResNet (Figure[I0b) induced hierarchy does not, group-
ing classes such as Frog, Cat, and Airplane. This disparity in visual meaning is explained by
WideResNet’s 4% higher accuracy: we believe that higher-accuracy models exhibit more visually-
sound weight spaces. Thus, unlike previous work, NBDTs feature better interpretability with higher
accuracy, instead of sacrificing one for the other. Furthermore, the disparity in hierarchies indicates
that a model with low accuracy will not provide interpretable insight into high-accuracy decisions.
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Figure 10: CIFAR10 induced hierarchies, with automatically-generated WordNet hypotheses for each node.
The higher-accuracy (a) WideResNet (97.62% acc) has a more sensible hierarchy than (b) ResNet’s (93.64%
acc): The former groups all Animals together, separate from all Vehicles. By contrast, the latter groups Airplane,
Cat, and Frog.
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Figure 11: Visualization of path traversal frequency on an induced hierarchy for CIFAR10. (a) In-
Distribution: Horse is a training class and thus sees highly focused path traversals. (b) Unseen Class:
Seashore is largely classified as Ship despite not containing any objects, exhibiting model reliance on con-
text (water). (c) Unseen Class: Teddy Bear is classified as Dog, for sharing visual attributes like color and
texture.

B.4 VISUALIZATION OF TREE TRAVERSAL

Frequency of path traversals additionally provide insight into general model behavior. Figure
shows frequency of path traversals for all samples in three classes: a seen class, an unseen class but
with seen context, and an unseen class with unseen context.

Seen class, seen context: We visualize tree traversals for all samples in CIFAR10’s Horse class
(Figure[ITa). As this class is present during training, tree traversal highlights the correct path with
extremely high frequency. Unseen class, seen context: In Figure [ITb] we visualize tree traversals
for TinyImagenet’s Seashore class. The model classifies 88% of Seashore samples as “vehicle with
blue context,” exhibiting reliance on context for decision-making. Unseen class, unseen context:
In Figure we visualize traversals for Tinylmagenet’s Teddy Bear. The model classifies 90%
as Animal, belying the model’s generalization to stuffed animals. However, the model disperses
samples among animals more evenly, with the most furry animal Dog receiving the most Teddy
Bear samples (30%).

C HIERARCHICAL SOFTMAX AND CONDITIONAL EXECUTION

In the context of neural netework and decision tree hybrids, many works (Shazeer et al., 2017} Ke-
skin & Izadi, 2018} |Yang et al.,|2019; Tanno et al., 2019) leverage conditional execution to improve
computational efficiency in a hierarchical classifier. One motivation is to handle large-scale classifi-
cation problems.
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Figure 12: Tree Supervision Loss has two variants: Hard Tree Supervision Loss (A) defines a cross entropy
term per node. This is illustrated with the blue box for the blue node and the orange box for the orange node.
The cross entropy is taken over the child node probabilities. The green node is the leaf representing a class
label. The dotted nodes are not included in the path from the label to the root, so do not have a defined loss.
Soft Tree Supervision Loss (B) defines a cross entropy loss over all leaf probabilities. The probability of the
green leaf is the product of the probabilities leading up to the root (in this case, (z, w2)(z, ws) = 0.6 x 0.7).
The probabilities for the other leaves are similarly defined. Each leaf probability is represented with a colored
box. The cross entropy is then computed over this leaf probability distribution, represented by the colored box
stacked on one another.

C.1 HARD TREE SUPERVISION LOSS

An alternative loss would be hierarchical softmax — in other words, one cross entropy loss per
decision rule. We denote this the hard tree supervision loss, as we construct a variant of hierarchical
softmax that (a) supports arbitrary depth trees and (b) is defined over a single, un-augmented fully-
connected layer (e.g. k-dimensional output for a k-leaf tree). The original neural network’s loss
Loriginal Minimizes cross entropy across the classes. For a k-class dataset, this is a k-way cross
entropy loss. Each internal node’s goal is similar: minimize cross-entropy loss across the child
nodes. For node ¢ with c children, this is a c-way cross entropy loss between predicted probabilities
D(i)prea and labels D(i)1ape1. We refer to this collection of new loss terms as the hard tree supervision
loss (Eq. f). The individual cross entropy losses for each node are scaled so that the original cross
entropy loss and the tree supervision loss are weighted equally, by default. If we assume /N nodes
in the tree, excluding leaves, then we would have N + 1 different cross entropy loss terms — the
original cross entropy loss and N hard tree supervision loss terms. This is Loriginal + Lhard, Where:

N
1 . .
Lhard = N E CROSSENTROPY (D () preds D(4)1abel) - 4

i=1

over the ¢ children for each node

C.2 HARD INFERENCE

Hard inference is more intuitive: Starting at the root node, each sample is sent to the child with
the most similar representative. We continue picking and traversing the tree until we reach a leaf.
The class associated with this leaf is our prediction (Figure [I} A. Hard). More precisely, consider
a tree with nodes indexed by i with set of child nodes C(¢). Each node i produces a probability of
child node j € C(7); this probability is denoted p(j|:). Each node thus picks the next node using
argmax ;¢ o P(Ji)-

Whereas this inference mode is more intuitive, it underperforms soft inference (Figure [7). Fur-
thermore, note that hard tree supervision loss (i.e. modified hierarchical softmax) appears to more
specifically optimize hard inference. Despite that, hard inference performs worse (Figure [§) with
hard tree supervision loss than the “soft” tree supervision loss (Sec[3.4) used in the main paper.

D IMPLEMENTATION

Our inference strategy, as outlined above and in Sec. 3.1 of the paper, includes two phases: (1)
featurizing the sample using the neural network backbone and (2) running the embedded decision
rules. However, in practice, our inference implementation does not need to run inference with the
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Table 7: Comparisons of Inference Modes Hard inference performs worse than soft inference. See Table
in the main manuscript for a comparison against baselines.

Method Backbone CIFAR10 CIFAR100 TinyImageNet
NN WideResNet28x10 97.62% 82.09% 67.65%
NBDT-H (Ours) WideResNet28x10 97.55% 82.21% 64.39%
NBDT-S (Ours) WideResNet28x10 97.55% 82.97% 67.72%
NN ResNet18 94.97% 75.92% 64.13%
NBDT-H (Ours) ResNet18 94.50% 74.29% 61.60%
NBDT-S (Ours) ResNet18 94.82% 77.09 % 63.77 %

Table 8: Tree Supervision Loss Training the NBDT with the tree supervision loss (“TSL”) is superior to (a)
training with a hierarchical softmax (“HS”) and to (b) omitting extra loss terms. (“None”). A is the accuracy
difference between our soft loss and hierarchical softmax.

Dataset Backbone NN Inference None TSL HS A

CIFAR10 ResNet18 94.97% Hard 94.32% 94.50% 93.94% +0.56%
CIFAR10 ResNet18 94.97% Soft 94.38% 94.82% 93.97% +0.85%
CIFAR100 ResNet18 75.92% Hard 57.63% 74.29% 73.23% +0.94%
CIFAR100 ResNet18 75.92% Soft 61.93% 77.09% 74.09% +1.83%
TinyImageNet ResNetl8 64.13% Hard 39.57% 61.60% 58.89% +2.71%
TinyImageNet ResNetl8 64.13% Soft 45.51% 63.77% 61.12% +2.65%

backbone, separately. In fact, our inference implementation only requires the logits ¢ outputted by
the network. This is motivated by the knowledge that the average of inner products is equivalent to
the inner product of averages. Knowing this, we have the following equivalence, given the fully-
connected layer weight matrix W, its row vectors w;, featurized sample x, and the classes C' we are
currently interested in.

IC] 1€l

1 1 .
<xaﬁ wl>zﬁz<xawl>:ﬁ;ylazec (5)

=1 =1

Thus, our inference implementation is simply performed using the logits 7 output by the network.

E EXPERIMENTAL SETUP

To reiterate, our best-performing models for both hard and soft inference were obtained by training
with the soft tree supervision loss. All CIFAR10 and CIFAR100 experiments weight the soft loss
terms by 1. All TinyImagenet and Imagenet experiments weight the soft loss terms by 10. We found
that hard loss performed best when the hard loss weight was 10X that of the corresponding soft
loss weight (e.g. weight 10 for CIFAR10, CIFAR100; and weight 100 for TinyImagenet, Imagenet);
these hyper-parameters are use for the tree supervision loss comparisons in Table

Where possible, we retrain the network from scratch with tree supervision loss. For our remaining
training hyperparameters, we largely use default settings found in |github.com/kuangliu/
pytorch—cifar: SGD with 0.9 momentum, 5~ weight decay, a starting learning rate of 0.1,
decaying by 90% % and g of the way through training. We make a few modifications: Training lasts
for 200 epochs instead of 350, and we use batch sizes of 512 and 128 on one Titan Xp for CIFAR

and TinyImagenet respectively.

In cases where we were unable to reproduce the baseline accuracy (WideResNet), we fine-tuned a
pretrained checkpoint with the same settings as above, except with starting learning rate of 0.01.

On Imagenet, we retrain the network from scratch with tree supervision loss. For our remaining
hyperparameters, we use settings reported to reproduce EfficientNet-EdgeTPU-Small results at
github.com/rwightman/pytorch-image-models: batch size 128, RMSProp with start-
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Figure 13: An example of a survey question presented to mechanical turks.

ing learning rate of 0.064, decaying learning rate by 97% every 2.4 epochs, weight decay of 1072,
drop-connect with probability 0.2 on 8 V100s. Our results were obtained with only one model, as
opposed to averaging over 8 models, so our reported baseline is 77.23%, as reported by the Ef-
ficientNet authors: https://github.com/tensorflow/tpu/tree/master/models/
official/efficientnet/edgetpu#post-training—quantization.

F CIFAR100 TREE VISUALIZATION

We presented the tree visualizations for various models on the CIFAR10 dataset in Sec. 5 of the
paper. Here we also show that similar visual meanings can be drawn from intermediate nodes of
larger trees such as the one for CIFAR100. Figure [T4]displays the tree visualization for a WideRes-
Net28x10 architecture on CIFAR100 (same model listed in Table 1 of Sec. 4.2). It can be seen in
Figure[T4]that subtrees can be grouped by visual meaning, which can be a Wordnet attribute like Ve-
hicle or Household Item, or a more contextual meaning such as shape or background like Cylindrical
or Blue Background.
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Figure 14: CIFAR100 tree visualization on WideResNet28x10 with samples of intermediate node hypothesis.
Some nodes split on Wordnet attributes while other split on visual attributes like color, shape, and background.
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