
Amortized Variational Inference: When and Why?
(Supplemental Material)

A MISSING PROOFS

We provide proofs for all statements in §3.

A.1 CAVI RULE

Lemma 3.1 follows from the coordinate-ascent VI update rule for F-VI [Blei et al., 2017, Eq. 17], which tells us how to
choose q(zn ; νn) to minimize the KL-divergence, while maintaining the other factors in the approximating distribution
fixed. Specifically, suppose ν0 and ν−n are fixed. Then the optimal variational parameter ν⋆n for nth factor verifies

q(zn ; ν
⋆
n) ∝ exp

{
Eq(θ ; ν0)

[
Eq(z−n ; ν) [log p(θ, z,x)]

]}
. (1)

We now apply this rule to the optimal solution, i.e. we set ν0 = ν∗0 and ν−n = ν∗
−n. Then, minimizing the KL-divergence,

ν⋆n = ν∗n and the desired result follows.

A.2 EXISTENCE OF AN IDEAL INFERENCE FUNCTION AND SIMPLE HIERARCHICAL MODELS

Theorem 3.3 states that the existence of an ideal inference function for a standard latent variable model (Definition 3.2) is, in
general, equivalent to p(θ, z,x) being a simple hierarchical model (Eq. 1).

We first prove item (1). Suppose p(θ, z,x) is a simple hierarchical model. Applying the CAVI rule (Lemma 3.1) to Eq. 1,

q(zn ; ν
∗) ∝ exp

Eq(θ ; ν∗
0 )

Eq(z−n ; ν∗)

log p(θ) + n∑
j=1

log p(zj | θ) + log p(xj | zj , θ)


∝ exp

{
Eq(θ ; ν∗

0 )

[
Eq(z−n ; ν∗) [log p(zn | θ) + log p(xn | zn, θ)]

]}
∝ exp

{
Eq(θ ; ν∗

0 )
[log p(zn | θ) + log p(xn | zn, θ]

}
.

Then

q(zn ; ν
∗) = kx(xn)

∫
Θ

q(θ ; ν∗0 (x)) log p(zn | θ) + log p(xn | zn, θ)dθ, (2)

where kx(xn) =
[∫

Z
∫
Θ
q(θ ; ν∗0 (x)) log p(zn | θ) + log p(xn | zn, θ)dθdzn

]−1
is a normalizing constant. The R.H.S of

Eq. 2 defines an ideal inference function fx(xn), in the sense that, given x, we have xn = xm =⇒ fx(xn) = fx(xm).
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Figure 1: Graphical representation of a standard latent variable model. If present, the dotted edges preclude the existence of
an ideal inference function fx(xn) = ν∗n and the amortization gap cannot be closed.

Next we prove the converse, which is item (2) of Theorem 3.3. Applying the CAVI rule to a standard latent variable model,

q(zn ; ν
∗) ∝ exp

{
Eq(θ,z−n ; ν∗

−n)
log p(θ, z,x)

}
∝ exp

Eq(θ,z−n ; ν∗
−n)

log p(zn | z−n, θ) + log p(xn | zn, z−n, θ) +
∑
i ̸=n

log p(xi | zn, z−n, θ)

 . (3)

The last equation highlights all the terms in which zn appears. Furthermore, we used the property of conditional independence
(Definition 3.2 (ii)) to break up the log likelihood log p(x | z, θ) into a sum.

Suppose now that there exists a graph G, such that for any standard latent variable model supported by this graph, there
exists an ideal inference function, that is ν∗n = fx(xn). Because the q is parametric, we have that the R.H.S of Eq. 3 is also a
(dataset dependent) function of xn. For this assumption to hold for any choice of distribution, any contribution of xi ̸=n that
is not common to all the variational factors of q(z) must be absorbed into the normalizing constant and effectively vanish.
We will complete the proof by removing unique contributions of xi and severing offending edges in G (Figure 1).

The most obvious contribution of xi appears in the likelihood terms and is removed if and only if we exclude non-local
dependence, that is for i ̸= n, p(xi | zn, z−n, θ) = p(xi | z−n, θ). Doing so for every n, we have

p(xi | zn, z−n, θ) = p(xi | zi, θ). (4)

Remark A.1. Here the assumption of local dependence (Definition 3.2 (i)) is critical. Without it, we cannot exclude the
possibility that xi does not depend on zi, or any zj’s other than zn, and hence that p(xi | zn, z−n, θ) = p(xi | zn, θ), i ̸= n.
Then an edge between zn and xi would not contradict the existence of an ideal inference function.

Next, we have by assumption that ν∗i = fx(xi). Then

q(zn ; ν
∗) ∝ exp


∫
Θ,Z−n

q(dθ ; ν0(x))
∏
i ̸=n

q(dzi ; fx(xi)) log p(zn | z−n, θ) + log p(xn | zn, θ)

 . (5)

The offending terms are now the variational factors q(dzi ; fx(xi)) in the integral. To remove them, we must get rid of any
term that couples zn and zi, and so zn must be a priori independent of zi, that is

p(zn | z−n, θ) = p(zn | θ). (6)

A standard latent variable model that verifies Eq. 4 and Eq. 6 must also verify Eq. 1 and is therefore a simple hierarchical
model.

A.3 EXAMPLE OF A LATENT VARIABLE MODEL, WHICH IS NOT A SIMPLE HIERARCHICAL MODEL
AND ADMITS AN IDEAL INFERENCE FUNCTION

The statement of Theorem 3.4, item (ii) is carefully written for all distributions supported on a graph. To see why a simple
“if and only if” version of item (i) is not true, consider a dense hierarchical model, with edges between all elements of x and
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z. If we a choose a likelihood which is symmetric in z, e.g. p(xn | z, θ) = p(xn |
∑

n zn, θ), then there exists a (constant)
ideal inference function and moreover, all factors q(zn ; ν∗n) are identical.

This case is of course trivial: with such a symmetry, the notion of a local latent variable is unjustified. To our knowledge, all
examples of models, which are not simple hierarchical models and still admit an ideal inference function, rely on a similar
trivialities. These however constitute edge cases we must be mindful of when writing formal statements.

A.4 ANALYTICAL RESULTS FOR THE LINEAR PROBABILISTIC MODEL

We prove Proposition 3.6, which provides an exact expression for the mean and variance of q(zn ; ν∗), the optimal solution
returned by F-VI when applied to the linear generative model. In the model of interest, θ is a scalar random variable, and we
introduce the fixed standard deviations, τ ∈ R and σ ∈ R. Next

p(θ) ∝ 1; p(zn) = N (0, 1); p(xn) = N (θ + τzn, σ). (7)

Since the posterior distribution p(θ, z | x) is normal, q(zn ; ν∗) can be worked out analytically [e.g Turner and Sahani, 2011,
Margossian and Saul, 2023]. Specifically,

q(zn ; ν
∗
n) = N

(
µn,

1

[Σ−1]nn

)
, (8)

where µn is the correct posterior mean for zn and Σ is the correct posterior covariance matrix. Note that F-VI always
underestimates the posterior marginal variance unless Σ is diagonal [Margossian and Saul, 2023, Theorem 3.1]. It remains
to find an analytical expression for the posterior distribution.

Lemma A.2. The marginal posterior distribution is given by

p(zn | x) = N
(

τ

σ2 + τ2
(xn − x̄), s

)
, (9)

for some s, constant with respect to x.

Proof. From Bayes’ rule

log p(z, θ | x) = k − 1

2

N∑
n=1

z2n − 1

2σ2

N∑
n=1

(xn − θ − τzn)
2

= k − 1

2

N∑
n=1

z2n − 1

2σ2

N∑
n=1

θ2 + (x− τzn)
2 − 2θ(xn − τzn)

= k − 1

2

N∑
n=1

z2n − 1

2σ2

(
nθ2 +

N∑
n=1

(xn − τzn)
2 − 2θ

N∑
n=1

(xn − τzn)

)
, (10)

where k is a constant with respect to z and θ. Moving forward, we overload the notation for k to designate any such constant.
As expected, Eq. 10 is quadratic in θ and z.

Remark A.3. At this point, the proof may take two directions: in one, we work out the precision matrix, Φ (i.e. the
inverse covariance matrix Σ) for p(z, θ | x) and invert it to obtain the posterior mean for each zn. Constructing Φ is
straightforward and necessary to show the covariance of q(zn ; ν∗n) is constant with respect to x. However, inverting Φ
requires recursively applying the Sherman-Morrison formula three times, which is algebraically tedious. The other direction
is to marginalize out θ. We can then construct the precision matrix Ψ for p(z | x), which only requires a single application
of the Sherman-Morrison formula to invert. We opt for the second direction, noting both options are rather involved.
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To marginalize out θ, we complete the square and perform a Gaussian integral,

log p(z, θ | x) = k − 1

2

N∑
n=1

z2n − n

2σ2

[
θ2 +

1

n

N∑
n=1

(xn − τzn)
2 − 2θ

N∑
n=1

(xn − τzn)

+

(
1

n

N∑
n=1

(xn − τzn)

)2

−

(
1

n

N∑
n=1

(xn − τzn)

)2


= k − 1

2

N∑
n=1

z2n − n

2σ2

(θ − 1

n

N∑
n=1

(xn − τzn)

)2

+
1

n

N∑
n=1

(xn − τzn)
2

−

(
1

n

N∑
n=1

(xn − τzn)

)2
 (11)

Then

log p(z | x) = k − 1

2

N∑
n=1

z2n − 1

2σ2

 N∑
n=1

(xn − τzn)
2 − 1

n

(
N∑

n=1

(xn − τzn)

)2
 . (12)

Expanding the square, (
N∑

n=1

(xn − τzn)

)2

=

N∑
n=1

(xn − τzn)
2 + 2

∑
j<n

(xn − τzn)(xj − τzj). (13)

Plugging this in and factoring out τ , we get

log p(z | x) = k − 1

2

N∑
n=1

z2n − τ2

2σ2

 N∑
n=1

(
1− 1

n

)(xn

τ
− zn

)2
− 2

n

∑
j<n

(xn

τ
− zn

)(xj

τ
− zj

) . (14)

Now the standard expression for a multivariate Gaussian is

log p(z | x) = k − 1

2
(z− µ)TΨ(z− µ) = k − 1

2

 N∑
n=1

Ψnn(zn − µn)
2 + 2

∑
j<n

Ψjn(zn − µn)(zj − µj)

 , (15)

where µ is the mean and Ψ the precision matrix. We solve for the mean and precision matrix by matching the coefficients in
the above two expressions for zn, znzj , and z2n, which respectively produce the following equations:

N∑
j=1

Ψnjµj =
τ

σ2
(xn − x̄) (16)

Ψnj = − τ2

nσ2
, ∀n ̸= j (17)

Ψnn = 1 +
τ2

σ2

(
1− 1

N

)
. (18)

This immediately gives us the precision matrix. Eq. 16 may be rewritten in matrix form as

µ =
τ

σ2
Ψ−1[x− x̄1], (19)

where 1 is the N -vector of 1’s. Let α = Ψnj , for any n ̸= j, and β = Ψnn − α. Then

Ψ = βI + α11T , (20)
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Applying the Sherman-Morrison formula, we obtain the covariance matrix,

Ψ−1 = (βI + α11T )−1

= β−1I − β−1Iα11Tβ−1I

1 + α1Tβ−1I1

= β−1I − αβ−1

β +Nα
11T . (21)

Notice that Ψ−1 does not depend on x and that it’s diagonal elements are all equal. Moreover (Ψ−1)nn gives us the constant,
s. Next let

a = β−1 τ

σ2
; b = − αβ−1

β +Nα

τ

σ2
. (22)

Then µ = (aI + b11T )[x− x̄11T ] and moreover

µn = a(xn − x̄) + b

N∑
j=1

xj − x̄

= a(xn − x̄)

=
τ

σ2

(
τ2 + σ2

σ2

)−1

(xn − x̄)

=
τ

σ2 + τ2
(xn − x̄),

as desired.

To complete the proof of Proposition 3.4, we need to show that the variances of q(zn ; ν∗) is constant with respect to x; that
they are equal for each zn follows from the symmetry of the problem. We already constructed the precision matrix Ψ for
p(z | x), but we actually need to study the full precision matrix Φ of p(θ, z | x). We use the index 0 to denote the columns
(or rows) corresponding to θ.

Lemma A.4. The posterior precision matrix Φ of p(θ, z | x) verfies

Φ00 =
N

σ2
; Φ0j =

τ

2σ2
if j > 0; Φnn = 1 +

τ2

σ2
if i > 0; Φnj = 0, if n ̸= j. (23)

Crucially, Φ is constant with respect to x.

Proof. Consider Eq. 10, rewritten here for convenience,

log p(z, θ | x) = k − 1

2

N∑
n=1

z2n − 1

2σ2

(
Nθ2 +

N∑
n=1

(xn − τzn)
2 − 2θ

N∑
n=1

(xn − τzn)

)
.

The standard Gaussian form is

log p(z, θ | x) = k − 1

2

[
Φ00(θ − ν)2 +

N∑
n=1

Φnn(zn − µn)
2

+2

 N∑
j=1

Φ0j(θ − ν)(zj − µj) +
∑
j<n

Φnj(zn − µn)(zj − µj)

 . (24)

Matching coefficients for θ2, θzj , znzj and z2n, we obtain respectively

Φ00 =
N

σ2
; Φ0j =

τ

2σ2
if j > 0; Φnn = 1 +

τ2

σ2
if n > 0; Φnj = 0, if n ̸= j.

The variance of q(zn ; ν∗) is obtained by inverting the diagonal elements of Φ. By symmetry, Varq∗(zn) = ξ ∀n, where ξ
is a constant which does not depend on x. This completes the proof of Proposition 3.4.
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Figure 2: Optimal variational means when using a Gaussian F-VI on a hidden Markov model (Eq. 25). Even though
the elements of x are all equal, the optimal variational means take on different values and so no inference function
fϕ : wn → ν∗n can be constructed, for any subset wn ∈ x.

A.5 NON-EXISTENCE OF AN IDEAL INFERENCE FUNCTION FOR HIDDEN MARKOV MODELS

To prove Proposition 3.8, we construct an example for which the optimal F-VI solution, using a factorized Gaussian
approximation, can be written in a nearly closed form, and show that the optimal variational factors ν∗n take different values
even when all the values of x are equal. Then for any strict subset wn ∈ x, we have wn = wm but ν∗n ̸= ν∗m. This provides
our counter-example.

Consider the model
p(z0) ∝ 1 ; p(zn | zn−1) = N (zn−1, 1) ; p(xn | zn) = N (zn, 1), (25)

where θ is held fixed, say to a point estimate θ̂, and ignored for the rest of this analysis. Applying Bayes’ rule and expanding

log p(z | x) = k − 1

2

N∑
n=1

(zn − zn−1)
2 + (xn − zn)

2

= −1

2

N∑
n=1

2z2n + z2n−1 − 2xnzn − 2znzn−1,

which is a quadratic form in z and hence a Gaussian. Matching the coefficients for zn, znzj and z2n to the standard expression
for a multivariate Gaussian (Eq. 24), we get

N∑
j=1

Ψnjµj = −2xn (26)

Ψnj = −2 if j = n− 1 or j = n+ 1 (27)
Ψnn = 3 if n ≥ 1 (28)
Ψ00 = 1. (29)

All non-specified elements of Ψ go to 0. Moreover the precision matrix Ψ is tri-diagonal. The posterior mean solves the
linear problem,

µ = −2Ψ−1x. (30)

Since the variational family and the target are both Gaussian, the optimal variational mean is simply the posterior mean and
ν∗ = µ. Even though the elements of x are all equal, it is in general not the case that the elements of ν∗ are constant. To
see this explicitly, we take N = 100 and x1 = x2 = · · · = xN = 1, and find that the elements of ν∗ are indeed distinct
(Figure 2). This shows that there exists a hidden Markov model and a realization of the data x such that no learnable
inference function exists.

B ADDITIONAL EXPERIMENTAL RESULTS

Hardware. All experiments are conducted in Python 3.9.15 with PyTorch 1.13.1 and CUDA 12.0 using an NVIDIA
RTX A6000 GPU.
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Figure 3: Reconstruction MSE on a test set.

Reconstruction error on test set for Bayesian neural network. We consider the reconstruction error on a test set of 10,000
images (Figure 3). The reconstructed image is obtained by (i) computing q(z′ | x′) using the inference function fϕ and (ii)
feeding Eq(z

′ | x′) into the likelihood neural network Ω (in the VAE context, the “decoder”) to obtain x̂′. Ω is evaluated at
the Bayes estimator θ̂ = Eq(θ | x). F-VI provides no automatic way of doing step (i) (one would need to learn q(z′ ; ν′) by
running F-VI from scratch), and so we do not evaluate it on the test set. Overall, we find the model generalizes well, and the
test error is very close to the training error.

References

David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A review for statisticians. Journal of the
American Statistical Association, 112, 2017.

Charles C Margossian and Laurence K Saul. The shrinkage-delinkage trade-off: An analysis of factorized gaussian
approximations for variational inference. Uncertainty in Artificial Intelligence, 2023.

Richard E. Turner and Maneesh Sahani. Two problems with variational expectation maximisation for time-series models. In
David Barber, A. Taylan Cemgil, and Silvia Chiappa, editors, Bayesian Time series models, chapter 5, pages 109–130.
Cambridge University Press, 2011.

7


	MISSING PROOFS
	CAVI rule
	Existence of an ideal inference function and simple hierarchical models
	Example of a latent variable model, which is not a simple hierarchical model and admits an ideal inference function
	Analytical results for the linear probabilistic model
	Non-existence of an ideal inference function for hidden Markov models

	ADDITIONAL EXPERIMENTAL RESULTS

