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A ON THE PRACTICALITY OF THE PROPOSED INTERVENTIONS

We propose three interventions for influencing humans towards a specific preference model, and
argue the benefits of doing so for alignment. Two of these interventions, tested in the Trained and
Question experiments, hold promise of real world practicality. Our goal was to present—to the
best of our knowledge—the first exploration into how to systematically influence human preference
expression to better match RLHF algorithmic assumptions. This represents a fundamentally new
and potentially impactful approach to improving model alignment. All experiments demonstrate
that human preference expression can indeed be systematically influenced to better match specific
preference models. While we used the ground-truth reward function for evaluation purposes, this
establishes the core feasibility of our approach.

The Trained experiment lays the groundwork for extensions to more complex domains and scenarios
where the ground-truth reward function is unknown or is known for the purposes of experimental
evaluation—as in our experiments—but differs from any reward function(s) used during training.
The significant effects observed in the Trained experiment suggest the potential efficacy of training
humans to follow a chosen preference model. We plan to further address the practical application
of this approach in future work, where we will elicit human preferences from a domain with a
ground-truth reward function that is different from the one used for teaching subjects about a specific
preference model.

The Question experiment already demonstrates a viable path forward, showing significant results
for one condition in which the intervention does not rely upon any knowledge of the ground-truth
reward function.

B THE REGRET PREFERENCE MODEL

B.1 INTUITION BEHIND THE REGRET PREFERENCE MODEL

Recall that, from Equation 3, the deterministic regret of a segment is given by regretd(�|r̃) =
V ⇤
r̃ (s

�
0 ) � (⌃� r̃ + V ⇤

r̃ (s
�
|�|). Deterministic regret quantifies the extent to which a segment dimin-

ishes expected return from V ⇤
r̃ (s

�
0 ). An optimal segment �⇤ has 0 regret, while a suboptimal segment

�¬⇤ has positive regret. When two segments have deterministic transitions, end in terminal states,
and share the same starting state, this regret preference model is equivalent to the partial return
preference model: Pregret(·|r̃) = P⌃r (·|r̃). Conceptually, the partial return preference model as-
sumes that preferences are determined solely by the reward-yielding outcomes within the segments,
whereas the regret preference model bases preferences on how much the segments deviate from
optimal behavior.

B.2 COMPARING TWO SEGMENTS WITH THE SAME START STATE

When computing the difference in deterministic regret for two segments with the same start state,
the start state value, V ⇤

r̃ (s
�
0 ), cancels out:

regretd(�1|r̃)� regretd(�2|r̃)

= V ⇤
r̃ (s

��1
0 )� (⌃��1

r̃ + V ⇤
r̃ (s

��1

|��1 |
)� V ⇤

r̃ (s
��2
0 ) + (⌃��2

r̃ + V ⇤
r̃ (s

��2

|��2 |
)

= �(⌃��1
r̃ + V ⇤

r̃ (s
��1

|��1 |
) + (⌃��2

r̃ + V ⇤
r̃ (s

��2

|��2 |
)

C ADDITIONAL INFORMATION ON THE DELIVERY DOMAIN AND CREATING A
HUMAN-LABELED PREFERENCE DATASET

When teaching subjects about the delivery domain and constructing the preference datasets for the
Privileged experiment, detailed in Section 5.1, we follow the same procedure as Knox et al. (2022).
For the Trained and Question experiments, detailed in Sections 5.2 and 5.3 respectively, we mod-
ify the interface, preference elicitation, and human subject filtering procedure. These changes are
detailed below where applicable.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

The Privileged experiment was designed as a proof-of-concept; that human preferences could be
influenced towards a specific preference model. When designing the Trained and Question experi-
ments, which focus on interventions for the real world, we departed from the experimental protocol
used by Knox et al. (2022) to better reflect the hypotheses we wished to test.

C.1 THE DELIVERY DOMAIN AND TASK

The delivery domain is structured as a grid composed of cells, each containing a specific type of
road surface. A task within the delivery domain is illustrated in Figure ??. The state of the delivery
agent is its location on the grid. The agent can move one cell in any of the four cardinal directions.
Episodes conclude either successfully at the destination, earning a reward of +50, or in failure upon
encountering a sheep, resulting in a reward of -50. Non-terminal transitions have a reward equal to
the sum of their components: cells with a white road surface carry a -1 reward component, while
cells with a brick surface carry a -2 component. Additionally, cells may contain a coin (+1) or a
roadblock (-1). Coins remain in place and can, at best, cancel out the cost of the road surface.

Actions that would result in the agent moving into a house or beyond the grid’s boundaries result in
no movement. In such cases, the reward reflects the current cell’s surface component but excludes
any coin or roadblock components. The start state distribution, D0, is uniformly random over non-
terminal states.

This domain was intentionally designed to make it easy for subjects to recognize poor behavior
while making it challenging to discern optimal behavior from most states, mirroring many real-world
tasks. This complexity means that some assumptions of the regret preference model, specifically that
humans will always prefer optimal segments over suboptimal ones, are not always met, providing a
robust test of the model’s performance under realistic conditions.

C.2 SELECTING SEGMENT PAIRS FOR PREFERENCE ELICITATION

During the main preference elicitation portion of all experimental conditions, preferences are col-
lected over trajectory segments sampled from the delivery task shown in Figure ??. Below we
outline our methodology for selecting segment pairs for labeling in the Privileged experiment, as
well as separately for the Trained and Question experiments.

Privileged Experiment We followed the methodology of Knox et al. (2022) for collecting seg-
ment pairs, which involved two stages of data collection with differing goals. The first stage sought
to characterize human preferences over a range of possible behaviors, including those that would
highlight the differences between partial return and regret. The second stage sought to collect pref-
erences over segment pairs that resolve the identifiablity issues of the partial return preference model
related to a constant shift in the reward function. We refer readers to Knox et al. (2022) for a de-
tailed description on how these segment pairs were constructed. Figure 11 plots the coordinates
from which segment pairs where sampled for each condition in the first stage of data collection.
Figures 12 and 13 plot these coordinates for the second of data collection.

The first stage of data collection resulted in 1, 359 segment pairs from 39 subjects for the P⌃r -
Privileged condition, 1, 418 segment pairs from 42 subjects for the Privileged-Control condition, and
1, 501 segment pairs from 43 subjects for the Pregret-Privileged condition. All trajectory segments
consisted of 3 actions, and the start state for each segment in a pair was different. The second stage of
data collection resulted in 1, 173 segment pairs from 25 subjects for the P⌃r -Privileged condition,
375 segment pairs from 8 subjects for the Privileged-Control condition, and 1, 030 segment pairs
from 22 subjects for the Pregret-Privileged condition. For each segment pair in the second stage, the
agent in one segment takes 3 actions while in the other segment it reaches a terminal state in fewer
than 3 actions. Each subject is asked to label preferences for between 35 and 50 segment pairs. No
two subjects see the same segment pairs.
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P⌃r -Privileged Privileged-Control Pregret-Privileged

Figure 13: The coordinates of the segment pairs shown to subjects for preference labeling in the second stage of
data collection for the Privileged experiment. Each segment pair belonging to these graphs contain one segment
where the agent terminates at a positive terminal state and one where it does not. The proportionality of the
circles are consistent across this plot and the 3 subplots of Figure 12 and 13.

P⌃r -Privileged Privileged-Control Pregret-Privileged

Figure 11: The coordinates of the segment pairs shown to subjects for preference labeling in the first stage of
data collection for the Privileged experiment. The x-axis is the difference in the change in state value between
the two segments and the y-axis is partial return differences between the two segments. The areas of the circles
are proportional to the number of segment pairs at that point. The proportionality is consistent across this plot
and the 3 subplots of Figures 12 and 13.

P⌃r -Privileged Privileged-Control Pregret-Privileged

Figure 12: The coordinates of the segment pairs shown to subjects for preference labeling in the second stage of
data collection for the Privileged experiment. Each segment pair belonging to these graphs contain one segment
where the agent terminates and one where it does not. The proportionality of the circles are consistent across
this plot and the 3 subplots of Figure 11 and 13.

Trained and Question Experiments Subjects label the same dataset of 500 segment pairs for
each of the 3 conditions in the Trained and Question experiment. We chose 500 segment pairs
for preference labeling by splitting the P⌃r -Privileged, Privileged-Control, and Pregret-Privileged
datasets into different numbers of same sized partitions. We then identified the smallest partition
size where the likelihood of the influenced preference dataset was always significantly higher than
that of the control condition, defined as being 100 times more likely.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

In 72 of the 500 pairs used for labeling, the agent in one trajectory segment takes 3 actions, while
in the other segment, it reaches a terminal state in fewer than 3 actions. Knox et al. (2022) found
that these trajectory segments are essential for learning a reward function with the partial return
preference model in this domain. The remaining trajectory segments consist of 3 actions sampled
uniformly randomly from all possible actions. The trajectory segments in a segment pair have the
same start state. The order of trajectory segments within a pair and the order of segment pairs shown
to subjects is uniformly random. Each subject is asked to label preferences for 50 segment pairs.
No two subjects within a condition see the same segment pairs, except for the last segment pair used
to test for task comprehension and attention. Figure 19 illustrates the segment pairs sampled for
labeling for all experimental conditions within these two experiments.

In the Trained experiment we collected data from 10 subjects per condition. In the Question ex-
periment, we sought to do the same but ran into the following issue: We randomly sample subjects
to complete our study from a standard sample of available subjects who meet certain criteria (see
Appendix C.3), utilize random assignment to assign each subject to a condition, and recollect data
removed from subjects who failed the comprehension tests (detailed in Appendix C.4). For the
Pregret-Question condition, we were unable to find a 10th subject who passed the comprehension
test before the subject sample population potentially changed significantly over time. As such, we
were no longer confident that we could claim the subjects from all conditions in the Question exper-
iment were drawn from the same population. Therefore, we collected data from only 9 subjects per
condition in the Question experiment, resulting in a maximum dataset size of 450 preferences per
condition.

Figure 14: The coordinates of the segment pairs shown to subjects for preference labeling for all conditions for
the Trained and Question experiments. The areas of the circles are proportional to the number of segment pairs
at that point. The proportionality is consistent across this plot.

C.3 RECRUITING HUMAN SUBJECTS

All subject compensation amounts were chosen using the median time subjects took during a pilot
study and then calculating the payment to result in $15 USD per hour. This hourly rate of $15 was
chosen because it is commonly recommended as an improved US federal minimum wage.

Privileged Experiment We recruited subjects with IRB approval via Amazon Mechanical Turk
and paid subjects $5 per experiment. Subjects had to be located in the United States, have an
approval rating of at least 99%, and have completed at least 100 other studies on Mechanical Turk
to join our study. Due to an experimental error, we did not show the IRB-approved consent form to
participants after they accepted our study on Mechanical Turk. We reported this issue to our IRB
and received approval to use the collected data.

Trained and Question Experiments We recruited subjects with IRB approval via Prolific. We
paid subjects in the Trained experiment (see Section 5.2) $7.50 for completing the study. We ob-
served that subjects took about half the time to complete the study when they were not taught about a
specific preference model, such as in the control condition, and so for the Question experiment (see
Section 5.3) we paid subjects $3.75 for completing the study. Subjects were recruited via Prolific
from a standard sample, and were required to be both fluent in English and located in the United
States.
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C.4 FILTERING SUBJECT’S DATA

We evaluated each subject’s understanding of the delivery domain and excluded those who lacked
sufficient understanding. Participants were required to complete a task-comprehension survey, from
which we derived a task-comprehension score. The questions and corresponding answer choices are
detailed in Table 1. Participants received 1 point for fully correct answers and 0.5 points for par-
tially correct answers. For the Privileged experiment—and separately for the Trained and Question
experiments—the threshold score for removing worker data was determined by visually inspecting a
histogram of the scores, aiming to strike a balance between upholding high comprehension standards
and retaining a sufficient dataset for analysis.

In addition to filtering based on the task-comprehension survey, we also removed data from any
participant who ever preferred a segment where the agent ends in a negative terminal state—the
worst possible outcome—over a segment where the agent does not.

Privileged Experiment Subjects could achieve a score on the task-comprehension survey ranging
from 0 to 7. Data from participants scoring below 4.5 was discarded. All subjects were shown at
least one segment pair containing a segment where the agent ends in a negative terminal state and a
segment where it does not, and their data is removed if they prefer the former. These segment pairs
are used to test for task comprehension and attentiveness. Because of a data management error, the
filtered-out data was lost and we don’t otherwise know how many subjects were filtered out for this
expirement.

Trained and Question Experiment Subjects could achieve a score on the task-comprehension
survey ranging from 0 to 6. Data from participants scoring below 3.5 was discarded. The last
segment pair shown to participants during preference elicitation always contained a segment where
the agent ends in a negative terminal state and a segment where it does not. Other segment pairs
shown to subjects may also illustrate this scenario.

Across all conditions in the Trained experiment, the data from 19/49 subjects were removed: 9/19
from the Trained-Control condition, 9/19 from the P⌃r -Trained condition, and 1/11 from the
Pregret-Trained condition. The data from 33/60 subjects in the Question experiment were removed:
11/20 from the Question-Control condition, 9/18 from the P⌃r -Question condition, and 13/22 from
the Pregret-Question condition.

D PRIVILEGED EXPERIMENT INTERFACE DETAILS

Figure 15: An episode from the grid-world domain used
for teaching subjects about the domain transition and re-
ward function, as well as to aid in their understanding
of partial return (i.e., “score”) and regret (i.e., “oppor-
tunity cost”).

For all conditions in the Privileged experiment,
when subjects interact with episodes from the
grid-world domain we display four segment
statistics: the “score” or partial return, the
“best possible score from start” or V ⇤

r (s
�
0 ), the

“best possible score given your moves” or r̃ +
V ⇤
r (s

�
|�|), and the “opportunity cost” or regret,

which is the difference between the previous
two components. We explain V ⇤

r (s
�
0 ) as “the

most money the vehicle could have made from
the start”, r̃+ V ⇤

r (s
�
|�|) as “the most money the

vehicle can make from the start, including the
route you’ve taken so far”, and regret as “the
difference between the two” and the “minimum
amount of money lost by taking your route in-
stead of the best route”. See Figure 15 for an
example of what humans see when interacting
with an episode from the domain.

For all conditions in the Privileged experiment,
we ask subjects to label preferences for 35�50 segment pairs using the question “Which shows better
behavior?”. Only the information shown during preference elicitation differs between conditions, as
detailed below.
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Table 1: The task comprehension survey, designed to test participant’s comprehension of the domain for the
purpose of filtering data. Each full credit answer earned 1 point; each partial credit answer earned 0.5 points.
The left most column indicates the experiment where the given question was used to filter subjects. We dis-
carded the data of participants who scored less than 4.5 points overall for the Privileged experiment, and less
than 3.5 points overall for the Trained and Question experiments.

Experiment Question Full credit answer Partial credit answer Other answer choices
Privileged, Trained,
Question

What is the goal of
this world? (Check
all that apply.)

• To maximize profit • To get to a specific loca-
tion.

• To maximize profit

Partial credit was given if
both answers were selected.

• To drive as far as possible
to explore the world.

• To collect as many coins as
possible.

• To collect as many sheep as
possible.

• To drive sheep to a specific
location.

Trained, Question What happens
when you run into
a house?

• You incur a gas cost and
don’t go anywhere.

• You incur a gas cost and a
cost for hitting the house,
and you don’t go anywhere.

• You incur a gas cost and a
cost for hitting the house,
and you drive over the
house.

• Nothing happens.

• The episode ends.
• You get stuck.
• To collect as many sheep as

possible.

Privileged What happens
when you run into
a house? (Check all
that apply.)

• You pay a gas penalty.
• You can’t run into a house;

the world doesn’t let you
move into it.

Full credit was given if both
answers were selected.

• You pay a gas penalty.
• You can’t run into a house;

the world doesn’t let you
move into it.

Partial credit was given if
only one answer was selected.

• The episode ends.
• You get stuck.
• To collect as many sheep as

possible.

Privileged, Trained,
Question

What happens
when you run into
a sheep? (Check all
that apply.)

• The episode ends.
• You are penalized for run-

ning into a sheep.

Full credit was given if both
answers were selected.

• The episode ends.
• You are penalized for run-

ning into a sheep.

Partial credit was given if
only one answer was selected.

• You are rewarded for col-
lecting a sheep.

Privileged, Trained,
Question

What happens
when you run into a
roadblock? (Check
all that apply.)

• You pay a penalty. • The episode ends.
• You get stuck.
• You can’t run into a road-

block; the world doesn’t let
you move into it.

Privileged, Trained,
Question

Is running into a
roadblock ever a
good choice in any
town?

• Yes, in certain circum-
stances.

• No.

Privileged What happens
when you go into
the brick area?
(Check all that
apply.)

• You pay extra for gas. • The episode ends.
• You get stuck in the brick

area.
• You can’t go into the brick

area; the world doesn’t let
you move into it.

Privileged, Trained,
Question

Is entering the brick
area ever a good
choice?

• Yes, in certain circum-
stances

• No
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Figure 16: An example of the preference elicitation interface shown to subjects in the P⌃r -Privileged condition
(Left) and the Pregret-Privileged condition (Right).

Figure 18: In the Trained experiment, subjects are shown two sets of six segment pairs where, after labeling
their preference, they are given feedback on its correctness. For these practice segment pairs, subjects are given
an explanation of why one segment is preferable to another regardless of whether their preference is correct.
The left interface above displays an example of preference feedback for the partial return preference model and
the right interface for the regret preference model. Preference feedback is only given for domain tasks separate
from the delivery task used during the main preference elicitation session. To avoid technical jargon, we refer
to partial return as “score so far”, the end state value as “biggest possible score increase”, and regret as “biggest
possible final score”. Subjects are taught these concepts during training.

During preference elicitation, we display the “score”, or the partial return, for the vehicle’s path and
each corresponding reward component. See Figure 16 for the preference elicitation interface for the
P⌃r -Privileged condition.

D.1 Pregret-PRIVILEGED CONDITION INTERFACE DETAILS

During preference elicitation, we display the “best possible score from start” or V ⇤
r (s

�
0 ), the “best

possible score given your moves” or r̃ + V ⇤
r (s

�
|�|), and the “opportunity cost” or regret, which is

the difference between the previous two components. See Figure 16 for the preference elicitation
interface for the Pregret-Privileged condition.

D.2 PRIVILEGED-CONTROL CONDITION INTERFACE DETAILS

During preference elicitation, we do not display any segment statistics. See Figure 17 for the pref-
erence elicitation interface for the Privileged-Control condition.

E TRAINED EXPERIMENT INTERFACE DETAILS

Figure 17: An example of the preference elicitation in-
terface shown to subjects in the Privileged-Control con-
dition.

The interfaces employed for each condition in
the Trained experiment differ in what prefer-
ence model—if any—human subjects’ prefer-
ences are influenced towards. Therefore, the
concepts taught throughout the study and the
preference elicitation instruction differ between
conditions, as outlined below.
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E.1 P⌃r -TRAINED
CONDITION INTERFACE DETAILS

When subjects interact with episodes from the
grid-world domain, we display the “score so
far”, or the partial return, for the vehicle’s path.
We explain how the “score so far” is computed,
have them compute it for three trajectory seg-
ments while providing feedback, and then let them interact with additional episodes to observe the
“score so far”.

After understanding partial return, subjects were instructed to use it when generating preferences.
Initially, they labeled preferences for six segment pairs without specific guidance. Subsequently,
they were told to generate preference labels based on the “score so far” and walked through a detailed
example. They then labeled six more segment pairs, receiving feedback on the correctness of their
preferences. An example of this interface is shown in Figure 18. Finally, subjects were instructed
on how not to generate preferences (i.e., “do not select the path where the van looks like it might
achieve a higher score in the future”), and given another six segments pairs to label with feedback
on their preferences.

The trajectory segments used to teach subjects the partial return preference model were collected
from various delivery tasks, excluding the one depicted in Figure ??, which is reserved for the main
preference elicitation portion. These pedagogical segment pairs were selected to illustrate scenarios
where the partial return of both segments were equal, where one segment had a higher partial return
but higher regret than the other (i.e., the two competing preference models would disagree on the
preference label), and where one segment had a higher partial return and lower regret than the other.
These preferences were not used for reward learning.

After learning to use the partial return preference model, subjects interacted with the delivery task
shown in Figure ?? and generated preferences for 50 segment pairs from this task. When labeling
these segment pairs, subjects were asked “which path has the highest score so far?”. This is the
main preference elicitation phase, where no feedback or information about the ground-truth reward
function is provided. The preference elicitation interface is shown in Figure 4.

E.2 Pregret-TRAINED CONDITION INTERFACE DETAILS

We progressively teach subjects how to compute the regret of a trajectory segment by sequentially
introducing its components outlined in Equation 3. When subjects interact with episodes from the
delivery domain, we display the components of regret as we introduce them. First, we introduce
the “score so far,” ⌃�r. Next, we explain the “biggest possible score increase,” V ⇤

r (s
�
|�|). Finally,

we present the “biggest possible final score,” which combines both components as ⌃�r+ V ⇤
r (s

�
|�|).

For each component, we explain how it is computed and allow subjects to interact with various
tasks to observe the corresponding values. Additionally, we ask subjects to compute V ⇤

r (s
�
|�|) and

⌃�r + V ⇤
r (s

�
|�|) for three different trajectory segments each, providing feedback on their answers.

Since we always present segment pairs that share the same start state, we do not introduce V ⇤
r (s

�
0 )

to subjects because this component cancels out when computing preference distributions using the
regret preference model (See Appendix B.2).

After understanding regret, subjects are taught to use it when generating preferences following a
procedure similar to that in Section E.1. They are first asked to label preferences for six trajectory
segments. Then, they are instructed to generate preference labels based on the “biggest possible
final score” and shown a detailed example. Subjects label six more trajectory segments, receiving
feedback on the correctness of their preferences as illustrated in Figure 18. Following this, they are
instructed on how not to generate preferences (i.e., “do not select the path that merely has the higher
score so far”). Finally, they are given another six segment pairs to label, with feedback provided
on their preferences. Note that these pedagogical segment pairs are the same as those used in the
P⌃r -Trained condition, detailed in Appendix E.1.
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The subsequent preference elicitation procedure used to build the dataset of preferences for reward
learning is identical to the procedure outlined in Section E.1, except subjects are asked “which path
has the highest biggest possible final score” when generating preferences.

E.3 TRAINED-CONTROL CONDITION INTERFACE DETAILS

When subjects interact with episodes from the grid-world domain, we display the “score so far”, or
the partial return, for the vehicle’s path and explain this statistic in the same way as for the P⌃r -
Trained condition. We do not train subjects to compute any segment statistic, nor do we instruct
them on how to generate preferences like in the other conditions. During preference elicitation, we
ask subjects “Which path do you prefer?”, a question that does not seek to influence subjects towards
any preference model. This preference elicitation procedure aims to be generally representative of
standard approaches for collecting feedback for RLHF.

E.4 TESTING SUBJECTS COMPREHENSION OF THE TAUGHT PREFERENCE MODEL

When teaching subjects to follow a specific preference model, we present them with two sets of
six practice segment pairs and provide feedback on their preference labels for these pairs. We test
the correlation between the subject’s adherence to the taught preference model during the last six
practice pairs and in the main preference elicitation portion of the study. We compute the Spearman
correlation coefficient between the fraction of human preferences that agree with the noiseless ver-
sion of the taught model in the last six practice segment pairs and in the fifty segment pairs shown
during the main preference elicitation portion.

We are not able to perform this analysis for the P⌃r -Trained condition; the fraction of human pref-
erences that agree with the noiseless version of the partial return preference model in the last six
practice segment pairs remains constant for all subjects and therefore the Spearman correlation co-
efficient is undefined. For the Pregret-Trained condition, we compute a Spearman correlation coef-
ficient of �0.137 with p = 0.706. We suspect that the high p-value is a result of the small sample
size of only 10 subjects.

E.5 SURVEYING SUBJECT AGREEMENT OF THE TAUGHT PREFERENCE MODEL

During the post-study task-comprehension survey, we assess subjects’ personal agreement with the
taught preference model. For the P⌃r -Trained condition, we ask, “We told you that the better path
is always the one with the higher SCORE SO FAR. How often did you agree with this?” For the
Pregret-Trained condition, we ask, “We told you that the better path is always the one with the
higher BIGGEST POSSIBLE FINAL SCORE. How often did you agree with this?” Responses
are given on a 7-point Likert scale, where 1 indicates “always disagreed” and 7 indicates “always
agreed.” The mean response for the P⌃r -Trained condition was 4.2 with a variance of 1.56, while
the Pregret-Trained condition had a mean response of 6.3 with a variance of 1.61. These results
suggest that subjects personally aligned more with the regret-based labeling of segment pairs than
with the partial return-based approach.

For both the P⌃r -Trained and Pregret-Trained conditions, we also asked subjects “How helpful were
our explanations on why one path was better than another path for your own decision making?” The
mean response for the P⌃r -Trained condition was 5.8 with a variance of 2.36, while the Pregret-
Trained condition had a mean response of 6.4 with a variance of 0.84. We interpret these results as
general satisfaction with our protocol for teaching subjects about a specific preference model.

E.6 NUMBER OF PREFERENCES PER COLLECTED DATASET

We collected 500 preferences for each condition outlined in the Trained experiment. Because we
discard samples where a subject chose “Can’t Tell” instead of a preference, each dataset contains a
different number of preferences indicated in Table 2.

F QUESTION EXPERIMENT INTERFACE DETAILS

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 2: The number of preferences in each preference
dataset resulting from the Trained experiment.

Condition Number of Preferences in
Dataset

P⌃r -Trained 497

Trained-Control 473

Pregret-Trained 491

The conditions in the Question experiment only
differ in what question is asked during pref-
erence elicitation. The control condition used
for the Question experiment is identical to that
used for the Trained experiment, detailed in Ap-
pendix E.3.

F.1 CHOOSING
THE PREFERENCE ELICITATION QUESTION

The authors of this paper were asked to propose possible questions to ask subjects during preference
elicitation that might influence their preferences toward either preference model. The first author se-
lected the three most appealing options for each preference model, each author ranked these options
in order of desirability, and then ranked-choice voting was employed to select the winner. For guid-
ing human preferences towards the regret preference model the three options ranked by each author
were “Which path shows better decision-making?”, “Which path reflects better decision-making?,
and “Which path is more likely to be taken by an expert?”. For guiding human preferences towards
the partial return preference model, the three options were “Which path would be better if the task
ended after the path?”, “Which path has better immediate outcomes?”, and “Which path looks better,
considering only exactly what happened during the path?”. After ranking these questions by their
likely ability to guide human preferences towards the regret or partial return preference models, the
second question won 80% and 60% of the time respectively.

F.2 NUMBER OF PREFERENCES PER COLLECTED DATASET

Table 3 displays the number of preferences collected for each condition in the Question experiment
after discarding samples where a subject chose “Can’t Tell” instead of a preference.
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G CORRELATIONS BETWEEN PREFERENCES AND SEGMENT STATISTICS

P⌃r -Privileged Privileged-Control Pregret-Privileged

P⌃r -Trained Trained-Control Pregret-Trained

P⌃r -Question Question-Control Pregret-Question

Figure 19: Proportions of subjects preferring each segment in a pair, plotted by the difference in segments’
change in state values (x-axis) and partial returns (y-axis). The areas of the circles are proportional to the
number of segment pairs at that point. The proportionality is consistent across across all plots for the Trained
and Question experiments, and separately for the Privileged experiments. The diagonal line indicates points of
indifference for Pregret, while indifference points for P⌃r are on the x-axis. The shaded gray area highlights
where the partial return and regret preference models disagree, each preferring a different segment. To visually
assess which preference model better fits the data: if subjects used the partial return preference model to
generate preferences, the color gradient would be orthogonal to the x-axis. Conversely, if they followed the
regret preference model, the gradient would be orthogonal to the diagonal line, as regret here is x+ y.

Table 3: The number of preferences in each preference
dataset resulting from the Question experiment.

Condition Number of Preferences in
Dataset

P⌃r -Question 437

Question-Control 434

Pregret-Question 442

Recall that we compute the regret of a trajec-
tory segment with deterministic transitions as
follows: regretd(�|r̃) = V ⇤

r̃ (s
�
0 ) � (⌃� r̃ +

V ⇤
r̃ (s

�
|�|)), where one of the 3 components of

regret is partial return, ⌃� r̃. We combine
two components of regretd(�|r) to simplify
analysis, introducing the following shorthand:
��Vr̃ , V ⇤

r̃ (s
�
|�|)� V ⇤

r̃ (s
�
0 ).

The change in state value, ��Vr̃, should have
a greater effect on human preferences that are
more aligned with the regret preference model,
and partial return should have a greater effect on human preferences more aligned with the partial
return preference model. The datasets of preferences are visualized in Figure 19. Note that on the
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diagonal line in Figure 19, regretd(�2|r) = regretd(�1|r), making the Pregret preference model
indifferent.

Figure 19 shows that, when influencing human preferences towards the regret preference model
in the Privileged and Trained experiments, ��Vr̃ has influence on the resulting preference dataset
independent of partial return. This is evident for the Pregret-Privileged and Pregret-Trained condi-
tion’s dataset plots when focusing only on points at a chosen y-axis value; if the colors along the
corresponding horizontal line reddens as the x-axis value increases, then ��Vr̃ appears to have in-
dependent influence. Visually, ��Vr̃ also exhibits independent influence on the preference datasets
from the control condition for all experiments. When influencing human preferences towards the
partial return preference model in the Privileged and Trained experiments, ��Vr̃, has significantly
less influence on the resulting preference dataset as evident by the x-axis–rather than the diagonal
line–partitioning most red and blue points in the P⌃r -Privileged and P⌃r -Trained condition’s dataset
plots.

Visual inspects leads us to conclude that ��Vr̃ independently influences human preferences for
all conditions in the Question experiment, indicating that regardless of the preference elicitation
question, the change in state value is still correlated with how subjects label preferences.

H LIKELIHOOD OF PREFERENCE DATASET

When we evaluate the likelihood of a preference dataset given a preference model (under the assump-
tion that it follows a Boltzmann distribution), we seek to evaluate which class of preference model
can better express the human data, given equivalent versions of the ground-truth reward function that
was taught to human subjects prior to preference elicitation. Specifically, we note that reward func-
tions that differ only by a constant scaling factor are equivalent under most definitions—including
how they order policies given a start state distribution and, by consequence, their sets of optimal
policies—and different scalings of the same ground-truth reward function are considered an equiv-
alence class. Concretely, to evaluate the likelihood of a dataset given a preference model class and
this equivalence class that includes the ground-truth reward function, we use the highest likelihood
across a predefined list of positive scaling parameters, each of which multiplies the output of the
ground-truth reward function. This scaling parameter can also be seen as scaling the difference in
the two segment statistics and it therefore affects entropy of the probabilities given to preferring
each segment, pushing them closer to 0.5 or to 0 and 1. Mathematically, it has the same effect as
using a Boltzmann temperature parameter, making such a temperature parameter redundant in most
settings and therefore not part of our standard description of the preference models. The predefined
list of scaling parameters was chosen to cover the space in which these preference models have rel-
atively high likelihoods. Alternatively, this scaling parameter could be learned via gradient descent
and tested on a heldout set, like in k-fold cross validation, but we decided against this approach
out of concerns that learning a scaling parameter is not representative of actually learning a reward
function, where the reward function has unknown parameters beyond its scale.

For each preference dataset resulting from each experimental condition, we evaluate how well
Pregret and P⌃r predict the dataset. We explore a range of possible reward scaling parameters
for Pregret and P⌃r , computing the mean cross-entropy loss for each parameter and model over the
dataset. The reward scaling parameters were selected to be exponentially spaced between approxi-
mately 1 and �1. The n-th reward scaling parameter is given by pn = arn�1. We used 25 reward
scaling parameters: the first 12 were generated with a = 0.01 and r = 1.236, the next 12 with
a = �0.01 and r = 1.236, and the final parameter was set to 0.

The plotted losses for each reward scaling parameter are illustrated in Figure 20 for the preference
datasets obtained from the Privileged experiment, Figure 21 for the Trained experiment, and Figure
22 for the Question experiment. Note that when fitting the regret preference model to a preference
dataset for these plots, we apply the scaling parameter to the negated regret of a segment for easier
visual comparison. These plots extend the results shown in Figures 5, 7, and 9. One incorrect
conclusion to draw from those figures is that the proposed interventions simply train humans to
better understand the ground-truth reward function, rather than to follow a specific preference model.
We acknowledge the possibility of entangled effects relating to learning more about the ground-truth
reward function rather than a specific preference model. However, we expect that in our experiments
such effects are relatively minimal. Firstly, all human subjects already had a good understanding of
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Figure 20: The mean cross entropy loss over each preference dataset resulting from the Privileged experi-
ment (see Section 5.1) for all scaling parameters given the regret preference model (Left) and the partial return
preference model (Right). If the loss is lower for the dataset of preferences influenced towards the target pref-
erence model than the control condition’s dataset at a specific scaling parameter, it means the former is better
predicted by—and more likely under—the target preference model given that scaling parameter. The regret
preference model achieves the lowest mean cross-entropy loss over—and is therefore most predictive of—the
Pregret-Trained dataset for all scaling parameters greater than 0. Similarly, the partial return preference model
best predicts the P⌃r -Trained dataset for all scaling parameters greater than 0. This supports our hypothesis
that showing subjects privileged information about each segment’s regret or partial return during preference
elicitation does influence their preferences towards a specific preference model.

the ground-truth reward function; we employed a comprehension test to filter out subjects who
did not (see Appendix C.4). Further, in Figures 5, 7, and 9, we see that for all experiments the
loss over a condition’s dataset is lower under the target preference model than all other conditions
datasets under the same preference model. Had one condition trivially resulted in subjects better
understanding the ground-truth reward function rather than the target preference model, we would
expect to see that condition’s dataset induce the lowest loss under either preference model. Figures
5, 7, and 9 illustrate that this is not the case.

Figure 21: The mean cross entropy loss over each preference dataset resulting from the Trained experiment (see
Section 5.2) for all scaling parameters given the regret preference model (Left) and the partial return preference
model (Right). See Figure 20 for details on how to interpret this graph. For scaling parameters greater than 0,
the regret preference model achieves the lowest mean cross-entropy loss over—and is therefore most predictive
of—the Pregret-Trained dataset, followed by the Trained-Control dataset, and finally the P⌃r -Trained dataset.
Similarly, the partial return preference model best predicts the P⌃r -Trained dataset followed by the Pregret-
Trained and Trained-Control condition’s datasets. This supports our hypothesis that teaching subjects about a
specific preference model does influence their preferences towards that model.

We also seek to test whether there is a difference in the likelihood of the control condition’s dataset
and the likelihood of the dataset that arises from influencing humans towards a specific preference
model. The dataset of preferences in the Privileged experiment is unpaired so we perform a Mann-
Whitney U test, while the dataset of preferences in the Trained and Question experiments are paired
so we perform a Wilcoxon paired signed-rank test. See Appendix C.2 for more details on how these
datasets were constructed. All statistical tests are applied between the likelihoods over each dataset
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Figure 22: The mean cross entropy loss over each preference dataset resulting from the Question experiment
(see Section 5.3) for all scaling parameters given the regret preference model (Left) and the partial return
preference model (Right). See Figure 20 for details on how to interpret this graph. The regret preference
model achieves the lowest mean cross-entropy loss over the Pregret-Question dataset, closely followed by the
Question-Control dataset, for all scaling parameters greater than 0. The partial return preference model best
predicts the P⌃r -Question condition’s dataset, closely followed by the Pregret-Question dataset and then the
Question-Control dataset for all scaling parameters greater than 0. These results suggest that changing the pref-
erence elicitation question to influence preferences towards the regret preference model may not be effective,
though the loss over the Question-Control dataset given the regret preference model is already relatively low.
Modifying the question to guide preferences towards the partial return preference model has a moderate effect
on the datasets conformity to the preference model.

that result from the best scaling parameter—meaning the scaling parameter that induces the lowest
mean cross-entropy loss.

Performing the Mann-Whitney U test between P⌃r -Privileged and Privileged-Control datasets re-
sults in U = 1418607.0, p < 0.01, and between the Pregret-Privileged and Privileged-Control
datasets results in U = 1643392.5, p < 0.01. In the Trained and Question experiments, to ensure
that each condition contains the same segment pairs, we removed a segment pair from all condi-
tions if any subject selected ”Can’t Tell” instead of indicating a preference for that pair. Performing
the Wilcoxon test between the P⌃r -Trained and Trained-Control datasets results in W = 6366.0,
p < 0.01, and between the Pregret-Trained and Trained-Control datasets results in W = 12083.0,
p < 0.01. Additionally, performing the Wilcoxon test between the P⌃r -Question and Question-
Control datasets results in W = 7321.0, p < 0.05—which we consider statistically significant—and
between the Pregret-Question and Question-Control datasets results in W = 2217.5, p = 0.685—
which we do not consider statistically significant.

I ACCURACY OVER PREFERENCE DATASET

Computing the likelihood of a preference dataset given a preference model is an informative measure
of how well that preference model describes the dataset. But, computing that likelihood also requires
preference model P—defined in Equation 2 for partial return and 4 for regret—which rests on the
assumption that humans are Boltzmann-rational as instantiated via the logistic function. Therefore,
to circumvent this assumption, we also compute the accuracy of the noiseless version of a given
preference model over each dataset. These results are detailed below for all experiments.

We test the significance of these results using the Fisher’s exact test (Upton, 1992). When executing
the Fisher’s exact test, for each condition in each experiment we construct a 2x2 contingency table
where the first row is the number of preferences the noiseless target preference model classified cor-
rectly, the second row is the number of preferences the noiseless target preference model classified
incorrectly, the first column is the dataset where subjects are influenced towards the target preference
model, and the second column is the control condition’s dataset.

Privileged Experiment Table 4 shows that, consistent with the results in Section 5.1, the noiseless
version of the target preference preference model achieves higher accuracy on the preference dataset
influenced toward the target model compared to the control condition dataset.
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Table 6: The accuracy of each condition’s preference dataset from the Question experiment with respect to
the noiseless version of the target preference model. Higher is better. See Table 4 for more details on how to
interpret this table.

Condition Noiseless-P⌃r Accu-
racy

Noiseless-Pregret

Accuracy

Control Condition 54.8% 69.9%

Influenced Towards
Target Model 65.2% 68.7%

We conduct a Fisher exact test (Upton, 1992) to determine whether there is a significant difference in
the proportion of preferences that the noiseless target preference model correctly classifies between
the influenced preference dataset and the control condition dataset. We find a p-value of less than
0.001 when comparing the P⌃r -Privileged dataset to the Privileged-Control dataset, as well as when
comparing the Pregret-Privileged dataset to the Privileged-Control dataset.

Table 4: The accuracy of each condition’s preference dataset from the
Privileged experiment with respect to the noiseless version of the target
preference model. If the accuracy is higher for the dataset of prefer-
ences influenced towards the target preference model than the control
condition’s dataset, it means the former is better predicted by the noise-
less version of the target preference model.

Condition Noiseless-P⌃r Accu-
racy

Noiseless-Pregret

Accuracy

Control Condition 48.6% 55.9%

Influenced Towards
Target Model 75.3% 75.8%

Trained Experiment Table
5 presents the accuracy of
the noiseless target prefer-
ence model when predicting
the P⌃r -Trained and Pregret-
Trained datasets compared to
the Trained-Control dataset.
The accuracy over both the
P⌃r -Trained and Pregret-
Trained datasets is notably
higher than the accuracy over
the Trained-Control dataset
given the respective preference
model, supporting the results in
Section 5.2.

We conduct the Fisher exact test over the proportion of preferences predicted correctly by the noise-
less target preference model; we find a p-value of 0.0012 when comparing the P⌃r -Trained dataset
to the Trained-Control dataset, and of 0.0025 when comparing the Pregret-Trained dataset to the
Trained-Control dataset.

Table 5: The accuracy of each condition’s preference dataset from the
Trained experiment with respect to the noiseless version of the target
preference model. Higher is better. See Table 4 for more details on how
to interpret this table.

Condition Noiseless-P⌃r Accu-
racy

Noiseless-Pregret

Accuracy

Control Condition 53.7% 68.8%

Influenced Towards
Target Model 75.5% 75.4%

Question Experiment As
shown in Table 6, the accuracy
of the noiseless partial return
preference model is higher over
the P⌃r -Question dataset than
the Question-Control dataset.
This indicates that changing the
preference elicitation instruction
to influence preferences towards
partial return results in a prefer-
ence dataset that is better pre-
dicted by partial return. The
Pregret-Question dataset, on the
other hand, is not better pre-
dicted by regret than the control condition.

We conduct Fisher’s exact test and find a p-value of 0.0157 when comparing the proportion of pref-
erences predicted correctly by the noiseless partial return preference model for the P⌃r -Trained
dataset versus the Trained-Control dataset, indicating statistical significance. We do not find a
statistically-significant p-value when comparing the Pregret-Trained dataset to the Trained-Control
dataset (p = 0.7144).
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J LEARNING REWARD FUNCTIONS FROM PREFERENCES

J.1 DESIGN PATTERN FOR LEARNING A REWARD FUNCTION FROM PREFERENCES

We follow the general procedure for learning a reward function from a dataset of preferences de-
picted in Figure 23. This procedure is executed for all preference datasets in each experiment, which
all share the same ground-truth reward function r.Evaluating a learned reward function

Ground 
truth 

Learned

evaluated by

Preferences dataset

Figure 23: An outline of the general procedure for learning a reward function from a preference dataset and
then evaluating that reward function. The generic gridworld shown is for illustrative purposes only. Figure
provided by Knox et al. (2024).

J.2 ADDITIONAL DETAILS FOR LEARNING A REWARD FUNCTION FROM PREFERENCES

Doubling the preference dataset by reversing preference samples When learning a reward
function from a preference dataset, we double the amount of data by duplicating each preference
sample and then flipping the preference label and segment pair ordering. This provides more train-
ing data and avoids learning any segment ordering effects.
The reward representation The ground-truth reward function r is assumed to be a linear combi-
nation of weights and features. Any reward function learned from a preference dataset r̂ takes the
same form. This linearity assumption enables us to use the tractable algorithm for learning a reward
function with Pregret proposed by Knox et al. (2022).
Discounting during value iteration The delivery domain is an episodic environment but a policy
derived from a poorly learned reward function can endlessly avoid terminal states, resulting in a
return of negative infinity. Therefore during value iteration and when computing a policy’s mean re-
turn with respect to r, we apply a discount factor of � = 0.999. We chose this high discount factor to
avoid returns of negative infinity while having a negligible effect on the returns of high-performing
policies and still allowing value iteration to converge within a reasonable time.
Early stopping when learning with Pregret Knox et al. (2022) found that when learning a reward
function using Pregret, the training loss tended to fluctuate cyclically. To handle this, they use the r̂
that achieved the lowest loss during training instead of the final r̂. We follow the same procedure.

J.3 HYPERPARAMETERS FOR LEARNING A REWARD FUNCTION FROM PREFERENCES

The following hyperparameters were used by Knox et al. (2024) and across all our experiments.
See Knox et al. (2024) for more details on how they were chosen.

Reward learning with the partial return preference model

learning rate: 2; number of training epochs: 30, 000; and optimizer: Adam (with �1 = 0.9 and
�2 = 0.999, and eps= 1e� 08).
Reward learning with the regret preference model

learning rate: 0.5; number of training epochs: 5, 000; optimizer: Adam (with �1 = 0.9, �2 = 0.999,
and eps=1e� 08); and softmax temperature: 0.001.

Additionally, learning with Pregret following the algorithm proposed by Knox et al. (2024) requires
a set of successor features from candidate policies which are used to approximate V ⇤

r̂ (.), a compo-
nent of the regret preference model. Because we use the same delivery ask as Knox et al. (2024), we
use the set of successor features that they generate.
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Figure 24: Learning a reward function with the partial return preference model (Left) and regret preference
model (Right) from the preferences collected in the Privileged experiment. This figure complements Figure 6.

Figure 25: Learning a reward function with the partial return preference model (Left) and regret preference
model (Right) from the preferences collected in the Trained experiment. This figure complements Figure 8.

When generating Figures 6, 8, 10, 25, and 26, we use random seeds 1� 10. The human preference
datasets contain varying numbers of preferences (see Table 2). For all datasets within an experiment,
we randomly subsample preferences to match the size of the smallest dataset—1793 preferences
for the Privileged experiment datasets, 473 preferences for the Trained experiment datasets and
434 preferences for the Question experiment datasets. This allows for easier comparison when
partitioning the resulting datasets.

J.4 COMPUTER SPECIFICATIONS AND SOFTWARE LIBRARIES USED

The computer used to run all experiments had the following specification. Processor: 2.8 GHz Quad-
Core Intel Core i7; Memory: 16 GB. Pytorch 2.0.1 (Paszke et al., 2019) was used to implement all
reward learning models, and statistical analyses were performed using Scikit-learn 1.3.0 (Pedregosa
et al., 2011).

J.5 ADDITIONAL RESULTS FOR LEARNING REWARD FUNCTIONS

Figure 24 complements Figure 6, Figure 25 complements Figure 8, and Figure 26 complements
Figure 10, showing the percentage of partitions where the learned reward functions results in better
performance than a policy that selects actions uniformly. In general, for each partition size, ranking
each preference dataset by the percentage of better-than-random performance induced by the learned
reward functions produces the same order as when using near-optimal performance.

J.6 ADDRESSING THE PARTIAL RETURN PREFERENCE MODEL’S IDENTIFIABLITY ISSUES

Learning with the partial return preference model from the P⌃r -Trained and Trained-Control
datasets often fails to recover a reward function that induces near-optimal performance (see Fig-
ure 8). Knox et al. (2022) demonstrated that, in this grid-world domain, learning with the partial
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Figure 26: Learning a reward function with the partial return preference model (Left) and regret preference
model (Right) from the preferences collected in the Question experiment. This figure complements Figure 10.

return preference model requires preference labels over pairs of trajectory segments in which one
segment terminates earlier than the other at both the positive and negative terminal states (i.e., the
inverted teardrop and sheep in Figure ??). Such segment pairs help mitigate the identifiability issue
of the partial return preference model related to a constant shift in the reward function. To address
this issue, Knox et al. (2022) manually selected types of segment pairs for preference labeling. We
follow their segment pair selection methodology for the Privileged experiment, but for the Trained
and Question experiments, trajectory segments were constructed by randomly sampling actions to
emulate a more realistic preference elicitation procedure. Consequently the partial return preference
model may not recover the ground-truth reward function from the resulting preference datasets,
which we hypothesize as explaining the partial return preference model’s poor performance when
learning from the P⌃r -Trained and Trained-Control datasets in Figure 8. Knox et al. (2024) showed
that using preferences generated by Pregret to learn a reward function with the partial return prefer-
ence model results in a reward function that is equivalent to an optimal advantage function, which
may explain why the partial return preference model recovers performant reward functions from the
Pregret-Trained dataset. We leave an investigation into this hypothesis to future work.

To empirically test whether the absence of specific segment pairs contributed to the poor perfor-
mance of the partial return preference model when learning reward functions from the P⌃r -Trained
and Trained-Control datasets, we added 50 additional segment pairs to each dataset. In these ad-
ditional segment pairs, one segment terminates at the positive terminal state in fewer than three
time-steps while the other segment does not terminate after three time-steps. These segment pairs
would appear in the right-most graph in Figure 14, and were assigned preference labels by the partial
return preference model with the ground-truth reward function. Figure 27 present the results when
learning reward functions using these additional synthetic preferences.

Learning with the regret preference model using these additional preferences (bottom row of Figure
27) induces comparable results to those in Figure 8 and Figure 25 which matches our expecta-
tions; the regret preference model does not suffer from the same identifiability issues as the partial
return preference model. Learning with the partial return preference model when including the
additional preferences (top row of Figure 27) results in reward functions that induce near-optimal
behavior more often for all datasets across all partition sizes. Including these preferences also re-
sults in better-than-uniformly-random behavior significantly more often across all partition sizes and
datasets. These results therefore support our hypothesis that the partial return preference model’s
poor performance when learning from the P⌃r -Trained and Trained-Control datasets is, at least in
part, due to the datasets missing specific segment pairs that account for the partial return preference
model’s identifiability issues.
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Figure 27: Learning a reward function with the partial return preference model (Top Row) and regret prefer-
ence model (Bottom Row). The Training experiment’s preference datasets are partitioned following the same
methodology as when generating Figure 8. Each preference dataset contains 50 additional segment pairs that
aim to compensate for the identifaibility issues of the partial return preference model.

31


	Introduction
	Related Work
	Learning from human preferences
	Modeling human preferences

	Preliminaries: Preference Model Choices
	Reward Learning from Pairwise Preferences
	Preference Models: Partial Return and Regret

	Experimental task and preference elicitation procedure
	Experimental evaluation of three methods of influence
	Privileged experiment
	Trained Experiment
	Question experiment

	Conclusion
	On the practicality of the proposed interventions
	The regret preference model
	Intuition behind the regret preference model
	Comparing two segments with the same start state

	Additional information on the delivery domain and creating a human-labeled preference dataset
	The delivery domain and task
	Selecting segment pairs for preference elicitation
	Recruiting human subjects
	Filtering subject's data

	Privileged Experiment Interface Details
	Pregret-Privileged condition Interface details
	Privileged-Control condition Interface details

	Trained Experiment Interface details
	Pr-Trained condition Interface details
	Pregret-Trained condition Interface details
	Trained-Control condition Interface details
	Testing subjects comprehension of the taught preference model
	Surveying subject agreement of the taught preference model
	Number of preferences per collected dataset

	Question Experiment Interface details
	Choosing the preference elicitation question
	Number of preferences per collected dataset

	Correlations between preferences and segment statistics
	Likelihood of preference dataset
	Accuracy over preference dataset
	Learning reward functions from preferences
	Design pattern for learning a reward function from preferences
	Additional details for learning a reward function from preferences
	Hyperparameters for learning a reward function from preferences
	Computer specifications and software libraries used
	Additional results for learning reward functions
	Addressing the partial return preference model's identifiablity issues


