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ABSTRACT

Image watermark techniques provide an effective way to assert ownership, de-
ter misuse, and trace content sources, which has become increasingly essential in
the era of large generative models. A critical attribute of watermark techniques
is their robustness against various manipulations. In this paper, we introduce
a watermark removal approach capable of effectively nullifying state-of-the-art
watermarking techniques. Our primary insight involves regenerating the water-
marked image starting from a clean Gaussian noise via a controllable diffusion
model, utilizing the extracted semantic and spatial features from the watermarked
image. The semantic control adapter and the spatial control network are specifi-
cally trained to control the denoising process towards ensuring image quality and
enhancing consistency between the cleaned image and the original watermarked
image. To achieve a smooth trade-off between watermark removal performance
and image consistency, we further propose an adjustable and controllable regen-
eration scheme. This scheme adds varying numbers of noise steps to the latent
representation of the watermarked image, followed by a controlled denoising pro-
cess starting from this noisy latent representation. As the number of noise steps
increases, the latent representation progressively approaches clean Gaussian noise,
facilitating the desired trade-off. We apply our watermark removal methods across
various watermarking techniques, and the results demonstrate that our methods
offer superior visual consistency/quality and enhanced watermark removal perfor-
mance compared to existing regeneration approaches. Our code is available at
https://github.com/yepengliu/CtrlRegen.

1 INTRODUCTION

As the large generative models continue to advance, the realism of AI-generated content has reached
unprecedented levels. Those AI-generated contents are nearly indistinguishable from content cre-
ated by humans. While this technological progress brings about excitement and efficiency, the diffi-
culty of distinguishing AI-generated and human-made content can lead to severe problems, such as
the spread of misinformation and the potential erosion of trust in digital media. In response, water-
marking AI-generated content (Wen et al., 2024; Zhao et al., 2023a; Saberi et al., 2023; Zhao et al.,
2023b; Lukas et al., 2023; Yang et al., 2024; Ci et al., 2024b;a; Kirchenbauer et al., 2023; Zhang
et al., 2024a; Liu & Bu, 2024; Rezaei et al., 2024; He et al., 2024) has emerged as an effective
solution, providing a proactive and reliable method to embed hidden information into AI-generated
content for identification and traceability.

Recently, several promising watermarking methods for AI-generated images have emerged, typi-
cally embedding watermarks by perturbing the pixels or latent representations of the image. Low
perturbation watermarks (Fernandez et al., 2023; Zhu, 2018; Fernandez et al., 2022; Zhang et al.,
2019; Cox et al., 2007) lead to a small ℓ2 distance between watermarked and un-watermarked im-
ages in both pixel and latent space, making them potentially more vulnerable. On the other hand,
watermark methods that induce high perturbation (Saberi et al., 2023; Zhao et al., 2023a) usually
significantly modify the image or its representation, thereby resulting in enhanced robustness against
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Figure 1: The left chart computes the ℓ2 distance between watermarked and un-watermarked images
across different watermarking methods in both pixel and latent spaces, identifying StegaStamp and
TreeRing as the high perturbation watermarks. The right chart shows the watermark removal perfor-
mance of our method versus existing regeneration attacks across different watermarking techniques,
highlighting the challenges of neutralizing high-perturbation watermarks with current methods.

various malicious manipulations, as shown in Figure 1. The robustness of image watermarks, being
a crucial attribute, is targeted by numerous attacks aimed at removing the watermark.

For low perturbation watermarks, the regeneration attack (Zhao et al., 2023a; Saberi et al., 2023) is
proposed to remove the invisible watermark that disturbs the image within a bounded ℓ2 distance
range. Specifically, this method encodes the watermarked image from pixel to latent space, then uses
the diffusion model’s (Rombach et al., 2022) forward and reverse processes to add limited noise to
the latent representation and denoise it to reconstruct the image. This method is effective for low-
perturbation watermarks, which only cause limited pixel/representation perturbation and can thus
be easily removed through limited noising and denoising steps. However, it struggles with high-
perturbation watermarks like StegaStamp (Tancik et al., 2020) and TreeRing (Wen et al., 2024),
which significantly alter the ℓ2 distance between watermarked and un-watermarked images in both
pixel and latent spaces, as illustrated in Figure 1. The main reason is that the starting noise used for
image reconstruction is derived by adding only a small amount of noise to the latent representation
of the watermarked image. As a result, some hidden watermark information may still be retained
and could be diffused into the regenerated image during the reverse process.

In terms of high perturbation watermarks, increasing the number of noising steps of regeneration
or implementing the regeneration multiple times (An et al., 2024) can make the starting noise more
closely resemble the pure Gaussian noise. This additional noise helps further disrupt the watermark
structure, thereby enhancing the effectiveness of the watermark removal. However, as the number of
noising steps increases, there is a significant sacrifice in image quality, as illustrated in Figure 5 and
7. This results in visible distortion and artifacts, and the image may even lose its semantic integrity.

The existing regeneration method struggles with balance: few noising steps are inadequate to elim-
inate high perturbation watermarks, while more noising steps significantly compromise the image
quality and consistency between the watermarked and cleaned images. Therefore, it is a significant
challenge to implement a regeneration attack that effectively removes watermark structures for both
low and high perturbation watermarks while maintaining image quality and consistency.

In this paper, we introduce a novel watermark removal method, CtrlRegen, designed to remove im-
age watermarks through a controllable regeneration process. Our core idea is to use clean noise
sampled from the Gaussian distribution as a starting point for the denoising process of the diffu-
sion model. This strategy ensures that watermark information is thoroughly cleaned up from both
pixel and latent spaces. One significant challenge is controlling the diffusion model to generate
the cleaned image from a clean Gaussian noise while maintaining image quality and content consis-
tency. To address this, we train a plug-and-play semantic control adapter and spatial control network.
These components extract semantic and spatial information from the watermarked image and use
this information as conditions to guide the denoising process towards a high degree of consistency
between the watermarked and cleaned images.

To offer a versatile solution that adapts to varying degrees of watermark robustness, we further
propose an adjustable and controllable regeneration method, CtrlRegen+, as shown in Figure 2.
This method begins by noising the latent representation of the image, and then controls the forward
process starting from this noised latent representation. We can adjust the number of noising steps
to regulate the degree of watermark destruction. With an increased number of noising steps, the
latent representation becomes closer to pure noise, resulting in a more thorough destruction of the
watermark information. It is worth noting that, unlike the uncontrolled regeneration method, our
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Figure 2: Overview of the proposed method. CtrlRegen controls the regeneration of watermarked
images from a clean noise without any watermark information. CtrlRegen+ first encodes the wa-
termarked image into a latent representation and introduces varying levels of noise based on the
robustness of the watermark. It then controls the denoising process to reconstruct the image.

controllable method still preserves high image quality and visual similarity with the watermarked
image, even with a high number of noising steps, as presented in Figure 5.

We conduct experiments to implement our watermark removal methods across various watermark
methods, including low and high perturbation watermarks. The results demonstrate that our Ctrl-
Regen effectively reduces the detection performance (TPR@1%FPR) of StegaStamp from 1.00 to
0.01 and of TreeRing from 0.99 to 0.12. Conversely, the uncontrolled regeneration method proves
less effective for these two watermark methods. Moreover, our CtrlRegen+ achieves better image
quality/consistency while maintaining the same watermark removal performance compared to the
uncontrolled regeneration approach.

2 RELATED WORK

2.1 IMAGE WATERMARK METHODS

Watermarking techniques offer an active and reliable method to trace the source of images or pro-
tect copyright. Traditional methods embed watermark information directly into the generated images
(Rouhani et al., 2018; Chen et al., 2019; Jia et al., 2021). With the development of large genera-
tive models, such as Stable Diffusion (Rombach et al., 2022), watermark information can now also
be integrated seamlessly into the process of creating digital content. We broadly categorize water-
marking methods into post-hoc methods and in-generation methods based on the stage at which the
watermark is embedded. Post-hoc methods embed watermarks into a given image using techniques
such as encoder-decoder (e.g., HiDDeN (Zhu, 2018), Stegastamp (Tancik et al., 2020)), optimization
(e.g., SSL (Fernandez et al., 2022)), or wavelet transforms (e.g., DwtDctSvd (Cox et al., 2007)). In
contrast, in-generation methods introduce watermarks during image generation by modifying com-
ponents of the generative model, such as initial noise (e.g., Tree-Ring (Wen et al., 2024), RingID (Ci
et al., 2024b)) or the VAE decoder (e.g., StableSignature (Fernandez et al., 2023), WMAdapter (Ci
et al., 2024a)). We evaluated the effectiveness of our proposed methods on both post-hoc and in-
generation watermarking methods.

2.2 IMAGE WATERMARK REMOVING METHODS

Robustness, a crucial attribute of image watermarking, is assessed through a range of watermark
removal attacks (Hu et al., 2024; Kassis & Hengartner, 2024), including editing attacks, regenera-
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tion attacks, and adversarial attacks. The editing attack comprises typical image manipulations such
as cropping, compression, rotation, brightness/contrast adjustments, and the addition of Gaussian
noise. These manipulations simulate common alterations that images might undergo in practice.
Most existing watermarking methods demonstrate robustness against these basic operations. Re-
cently, regeneration attack (Zhao et al., 2023a; Saberi et al., 2023), as a no-box attack, proposes
to remove the image watermark through the noising and denoising process of pre-trained diffusion
model or encoding and decoding process of variational autoencoder (VAE). The regeneration attack
demonstrates a powerful ability to remove watermarks for methods that cause minimal perturbation
to the pixel or latent space of a watermarked image. However, it tends to be less effective under
limited noising steps for watermarking methods that induce high perturbation. For those high per-
turbation watermarking methods, the adversarial attacks (Saberi et al., 2023; Lukas et al., 2023;
Jiang et al., 2023) provide an effective method to generate adversarial images that evade watermark
detection. These methods treat the watermark detector as a classifier and introduce adversarial per-
turbations to the watermarked image through optimization to deceive the detector. However, this
strategy demands more unrealistic capabilities from attackers, including knowledge of the water-
marking method (Lukas et al., 2023), access to the watermarked large generative models in the
white-box setting (Saberi et al., 2023), or the ability to make multiple uninterrupted queries to
the API of watermark detector (Jiang et al., 2023). Moreover, these methods are image-specific
and watermark-specific, which means that attackers need to tailor the perturbation for each image
according to different watermarking methods. This process is both time-consuming and compu-
tationally intensive. In this paper, we focus on the regeneration attack and propose a controllable
regeneration attack combined with our proposed control techniques.

2.3 DIFFUSION MODELS

Diffusion probability models (Song et al., 2020; Ho et al., 2020) are advanced generative mod-
els that restore original data from pure Gaussian noise by learning the distribution of noisy data
at various levels of noise. With their powerful capability to adapt to complex data distributions,
diffusion models have achieved outstanding achievements in several domains, including image syn-
thesis (Rombach et al., 2022; Peebles & Xie, 2023), image editing (Brooks et al., 2023; Hertz et al.,
2022; Zhang et al., 2024c;d), and even 3D content creation (Poole et al., 2022). Among them, Stable
Diffusion (Rombach et al., 2022) (SD), a notable example, employs a UNet architecture and iter-
atively generates images with impressive text-to-image capabilities through extensive training on
large-scale text-image datasets. Alongside these developments, controllable image generation has
seen enhancements from methods like ControlNet (Zhang & Agrawala, 2023) and T2I-adapter (Mou
et al., 2023), which utilize multimodal inputs such as depth maps and segmentation maps to signif-
icantly increase the controllability over the generated images. Furthermore, subject-driven image
generation techniques now range from those requiring test-time fine-tuning (Gal et al., 2022; Ruiz
et al., 2022; Kumari et al., 2023; Hu et al., 2022) to those operating entirely fine-tuning-free (Ye
et al., 2023; Zhang et al., 2024b), each offering varying degrees of adaptability and computational
demand. In this paper, we propose an image watermarking removal algorithm for watermark re-
moval based on ControlNet Zhang & Agrawala (2023) and IP-Adapter Ye et al. (2023).

3 THE PROPOSED CONTROLLABLE REGENERATION ATTACK

3.1 OVERVIEW

The core idea behind our proposed method is to regenerate the watermarked image starting from
clean noise. A controllable diffusion model is then designed to maintain the consistency between
the watermarked image and the cleaned image during the denoising process, with the watermarked
image serving as a conditional input.

The workflow of our method is presented as Figure 3. Specifically, given a watermarked image
xw ∈ RN , starting latent representation z, and the generation function G : Rn×RN → RN , we can
obtain the cleaned image:

x̃ = G
(
z, xw, x̂w

)
, (1)

where x̂w = f(xw) ∈ RN represents the edge-detected image obtained from x using edge detection
algorithm. For CtrlRegen, input z is ϵ ∼ N (0, In). For CtrlRegen+, input z is given by zt∗ =
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Figure 3: Workflow of the controllable regeneration. The red modules represent the trainable pa-
rameters, while the blue modules represent the pre-trained and fixed parameters. Semantic control is
applied through inserted cross-attention modules using extracted image embedding as a condition.
Spatial control is achieved by integrating the outputs from the convolution layers of Spatial-Net into
the decoder blocks of the U-Net.

√
αt∗z0 +

√
1− αt∗ϵ, where t∗ ∈ [0, T ] is the number of noising steps, z0 = E(xw) is the latent

representation obtained by encoding the watermarked image using an encoder, and αt∗ represents
the variance schedule of the noise ϵ ∼ N (0, In), which gradually decreases from 1 to 0 as t∗

increases from 0 to T .

Compared to the previous uncontrolled regeneration methods, one important goal of our approach
is to control the generation process starting from z to maintain the consistency between xw and
x̃. To achieve this, we propose two methods designed to control the semantic content and spatial
distribution of the images, respectively.

3.2 REGENERATION CONTROL MODEL TRAINING

3.2.1 SEMANTIC CONTROL

One key challenge in semantic control is preserving the semantic content of watermarked images
while effectively destroying the watermark information. Previous uncontrolled regeneration meth-
ods achieved this by initially destructing the z0 with random Gaussian noise via the forward process
of the diffusion model, followed by reconstructing the image through an uncontrolled reverse pro-
cess. While this method of destructing through a limited number of noising and denoising steps
proves effective for removing low perturbation watermarks, it falls short in eliminating watermark
that causes high perturbation in the latent space. Drawing inspiration from SD model, which em-
ploys a text encoder to convert text prompts into text embeddings and then using the cross-attention
mechanism (Vaswani, 2017) to ensure the generated image semantically aligns with the text, we
compress the watermarked image into an image embedding that preserves only semantic content.
This embedding is then used to control the generation process via cross-attention, ensuring the re-
generated image retains semantic accuracy without the watermark information.

We train a semantic control adapter to facilitate semantic control as depicted in the upper branch of
Figure 3, which includes an image encoder, projection network, and newly implemented decoupled
cross-attention layer. Our training approach for the projection network and cross-attention layer
draws on strategies similar to those used in the IP-Adapter (Ye et al., 2023). Specifically, we employ
pre-trained DINOv2 (Oquab et al., 2023) as our image encoder to extract the image feature from the
watermarked image, capitalizing on its high-performance capability to extract rich visual features.
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A trainable projection network is then used to transform the extracted image feature into image
embedding, which is used to control the generation through cross-attention in the following step.

To preserve the original SD model and control generation using image embedding as a condition,
an additional trainable image cross-attention layer is integrated into the U-Net within the SD model.
This layer is designed to compute the attention using the image embedding ϕ(x), such that

Attention(Q,K ′, V ′) = softmax

(
Q(K ′)T√

d

)
· V ′, (2)

where Q = WQ ·φ(zt), K ′ = W ′
K ·ϕ(x), and V ′ = W ′

V ·ϕ(x). Here, the φ(zt) is the intermediate
representation within the U-Net. W ′

K and W ′
V are learnable matrices specifically for image cross-

attention. WQ is the same projection matrix employed in the text cross-attention. During the training
and inference process, text cross-attention and image cross-attention operate concurrently. The com-
bined attention mechanism is expressed as Z = Attention(Q,K, V )+Attention(Q,K ′, V ′),
where K and V are the key and value matrices associated with text cross-attention, and K ′ and V ′

pertain to the image cross-attention. Specifically, we set the text prompt to be empty during both
the training and inference process. Therefore, only the image embedding influences and controls the
generation process.

During the training process, the parameters of the image encoder θe and the SD θd are kept frozen,
while only the projection network θp and the image cross-attention layer θa are trained. Given the
training image dataset X , the training objective can be expressed as:

Lθp,θa = Ex,ϵ∼N (0,In),t[∥ϵ− ϵθS (zt, ϕθe,θp(x), t)∥22], (3)

where x ∈ X is the input image, ϕθe,θp(x) maps the input image to an embedding. For t = 1, · · · , T ,
zt is the latent representation at different time steps, ϵθS (zt, ·, t) represents a sequence of U-Net used
to predict the noise given the input zt, t and condition ϕθe,θp(x), where θS includes fixed θd and θe,
and trainable θp and θa. We use only the image part of the dataset as the generation condition.

3.2.2 SPATIAL DISTRIBUTION CONTROL

The semantic control adapter facilitates a coarse-grained semantic content alignment between the
watermarked image and the regenerated image, ensuring that most of the semantic content is pre-
served. However, it struggles to control the finer details and layout during the generation process.
To address this, enhancing spatial control of regeneration is another key challenge. Incorporating
an edge-detected image as an additional condition offers an effective solution, as it provides crucial
spatial information without introducing extraneous watermark information. To better leverage spa-
tial information from the edge-detected image, we propose to use a spatial control network. This
network is designed to extract spatial features, which are then integrated into the denoising process
of U-Net, thus enhancing spatial distribution in the regenerated image.

An Edge-detected image emphasizes the boundaries and contours within an image by identifying the
rapid changes in intensity, which correspond to object edges. Typically rendered as a binary image,
it features edges marked in white against non-edge areas in black. Specifically, we use Canny edge
images extracted from the watermarked image using the Canny detection method (Canny, 1986). In
our method, we adopt the ControlNet (Zhang & Agrawala, 2023) structure for our spatial control
network, as shown in the lower branch of Figure 3. After applying the spatial control network to
U-Net, the output of the neural blocks within U-Net is expressed as:

ζ(zit, ϕθe,θp(x), x̂, t) = Fθu(z
i
t, ϕθe,θp(x), t) +HθC (x̂

i, t), (4)

where zit is the intermediate representation between different neural blocks within U-Net, x is the
original image, x̂ = f(x) represents the edge-detected image, Fθu(·) is the original neural block
of U-Net, HθC (·) represents the neural blocks and convolution layers of spatial network, x̂i refers
to the intermediate representation within the spatial control network that corresponds dimensionally
with zit, in which x̂0 is derived from x̂ through an encoder and a convolution layer.

To enhance compatibility and integration among the components, we combine the semantic control
adapter, spatial control network, and SD within a unified framework. We fix the parameters of the
already trained semantic control adapter and the SD and tune the spatial control network θC to opti-
mize its performance in conjunction with the other components. Now, with both image embedding
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and edge-detected image as conditions, the training objective is:

LθC = Ex,x̂,ϵ∼N (0,In),t[∥ϵ− ϵθ(zt, ϕθe,θp(x), x̂, t)∥22], (5)

where ϵθ(zt, ϕθe,θp(x), x̂, t) is the U-Net with zt and t as input and ϕθe,θp(x) and x̂ as condition, θ
includes both θS and θC .

3.3 REGENERATION WITH CONTROL

Once our semantic control adapter and spatial control network are fully trained, they are ready to
be deployed for direct watermark removal, requiring only a single watermarked image. The entire
inference process of CtrlRegen is outlined in Algorithm 1 of Appendix B. We sample the initial noise
from a pure Gaussian distribution. Then the extracted image embedding and edge-detected image
serve as conditions, providing the necessary semantic and spatial information. Two well-trained
networks are integrated with the backbone SD to denoise across T timesteps. Finally, the cleaned
image is obtained by decoding the denoised latent representation.

The inference process of CtrlRegen+ is detailed in Algorithm 2 of Appendix B. Unlike CtrlRegen,
which utilizes pure Gaussian noise as a starting point, CtrlRegen+ first adds noise to the latent
representation and then uses this noised representation as a starting point to reconstruct the image.
The noising step can be selected based on the strength of different watermark methods.

4 EXPERIMENTS

4.1 EXPERIMENT SETTING

Datasets. We evaluate our watermark removal performance using two datasets. For the post-hoc
watermarking methods, we sample 1000 real photos from the MIRFLICKR (Huiskes & Lew, 2008),
which consists of a comprehensive image collection sourced from the social photography platform
Flickr. For the in-generation watermarking methods, we sample 1000 prompts from a large-scale
text-to-image prompt dataset, DiffusionDB (Wang et al., 2022), to generate watermarked images
using generative models. Additionally, we train the semantic control adapter using 10 million images
sampled from LAION-2B (Schuhmann et al., 2022) and COYO-700M 1. The spatial control network
is trained using 118k image-canny pairs from MSCOCO (Lin et al., 2014).

Image Watermark Methods. To demonstrate the effectiveness of our watermark removal method,
we evaluate it against seven diverse watermarking methods, including TreeRing (Wen et al., 2024),
StableSignature (Fernandez et al., 2023), StegaStamp (Tancik et al., 2020), HiDDeN (Zhu, 2018),
SSL (Fernandez et al., 2022), RivaGAN (Zhang et al., 2019) and DwtDctSvd (Cox et al., 2007).
These methods encompass both low and high-perturbation watermarks, providing a comprehensive
evaluation of our approach’s capabilities. For multi-bit watermarking methods, the specific number
of bits used for each method is provided in Table 4 of Appendix A.

Image Watermark Removal Baselines. Our method is compared with two regeneration methods
Regen (Zhao et al., 2023a) and Rinse (An et al., 2024). Regen employs the diffusion model to regen-
erate watermarked images through a process of noising and denoising. Rinse iteratively applies the
Regen method multiple times to improve the efficacy of watermark removal. For the experimental
results shown in Table 1, we set the noising and denoising steps to 70 for Regen, while Rinse applies
the Regen process twice.

Implementation Details. We employ Stable Diffusion-v1.5 (Rombach et al., 2022) as the backbone
for our model, maintaining its parameters in a frozen state to preserve the original capabilities. For
the semantic control adapter, we integrate DINOv2-giant (Oquab et al., 2023) as the image encoder,
also keeping its parameters frozen to leverage its pre-trained strengths. The training of the semantic
control adapter is conducted on 8 NVIDIA A100 GPUs, and the batch size is set to 8 per GPU. The
training of the spatial control network is carried out on 8 NVIDIA A100 GPUs with a batch size of
4 per GPU. At the inference stage, we conduct experiments on a single NVIDIA RTX 4090.

Evaluation Metrics. The watermark removal performance is evaluated using the TPR@1%FPR,
which calculates the True Positive Rate (TPR) when the False Positive Rate (FPR) is constrained

1https://github.com/kakaobrain/coyo-dataset
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to 1%. It is crucial to ensure a low rate of misclassification of the unwatermarked image as water-
marked. Moreover, we calculate the average bit accuracy for multi-bit watermark methods, which
measures the percentage of correctly recovered watermark bits. For better comparison, the average
bit accuracy and TPR@1%FPR before (Avg Bit Acc B and T@1%F B) and after (BitAcc A and
T@1%F A) the attack are both presented.

To evaluate visual similarity and quality, we employ two types of metrics: full-reference and non-
reference assessment. For full-reference assessment, we use CLIP-FID (Kynkäänniemi et al., 2022)
and Peak Signal-to-Noise Ratio (PSNR) to evaluate the visual similarity between watermarked im-
ages and regenerated images. For non-reference assessment, we adopt two state-of-art methods, Q-
Align (Wu et al., 2023) and LIQE Zhang et al. (2023), to evaluate the quality of regenerated images.
Q-align uses large multi-modality models to evaluate image quality by aligning machine-generated
scores with human judgment by leveraging discrete text-defined levels for scoring. The LIQE uses a
multitask learning approach, combining scene classification and distortion identification with CLIP-
derived embeddings, to assess image quality in a non-reference manner. These metrics allow us
to comprehensively analyze the image quality both with and without a reference image, ensuring a
thorough assessment of the visual outcomes.

Table 1: Comprehensive Performance of attacks between our CtrlRegen and other methods.

Watermarks Attacks BitAcc B ↑ BitAcc A ↓ T@1%F B ↑ T@1%F A ↓ CLIP-FID ↓ PSNR ↑ Q-Align ↑ LIQE ↑

DwtDctSvd
Regen 1.00 0.64 1.00 0.39 8.91 26.01 3.34 2.82
Rinse 1.00 0.53 1.00 0.11 11.50 23.83 2.95 2.27

CtrlRegen 1.00 0.46 1.00 0.00 8.68 19.13 3.63 3.76

RivaGAN
Regen 1.00 0.55 1.00 0.07 4.44 25.93 3.26 2.68
Rinse 1.00 0.50 1.00 0.02 7.39 23.72 2.87 2.11

CtrlRegen 1.00 0.48 1.00 0.00 4.24 19.53 3.62 3.69

SSL
Regen 0.99 0.68 1.00 0.39 6.06 22.25 2.66 2.54
Rinse 0.99 0.59 1.00 0.10 8.89 20.34 2.28 1.93

CtrlRegen 0.99 0.56 1.00 0.06 5.64 19.07 3.22 3.15

StableSignature
Regen 0.99 0.49 1.00 0.02 1.91 24.16 3.86 3.67
Rinse 0.99 0.47 1.00 0.10 4.15 21.85 3.50 2.98

CtrlRegen 0.99 0.49 1.00 0.02 1.83 19.03 3.97 4.02

StegaStamp
Regen 1.00 0.88 1.00 0.99 6.48 22.34 3.06 3.53
Rinse 1.00 0.77 1.00 0.94 10.73 21.31 2.67 2.71

CtrlRegen 1.00 0.49 1.00 0.01 5.27 19.10 3.62 3.77

TreeRing
Regen − − 0.99 0.87 2.84 25.59 4.03 3.96
Rinse − − 0.99 0.61 5.83 23.28 3.69 3.29

CtrlRegen − − 0.99 0.12 1.63 19.32 4.17 4.34

4.2 MAIN RESULTS

4.2.1 CTRLREGEN

Watermark Removal Performance of CtrlRegen. Table 1 presents the watermark detection per-
formance across various watermarking methods, both before and after the application of different
watermark removal attacks. It shows that all watermarking methods have great detection perfor-
mance before attacks. For low perturbation watermarking methods such as DwtDctSvd, RivaGAN,
SSL and StableSignature, the Regen and Rinse exhibit effective watermark removal performance.
However, for high perturbation methods like StegaStamp and TreeRing, Regen and Rinse become
ineffective. This is because StegaStamp and TreeRing induce significant disturbances in both pixel-
space and latent-space. Specifically, Regen’s noising and denoising process is applied to the latent
representation of the watermarked image, and the limited number of noising steps is insufficient to
completely disrupt the watermark structure embedded within the latent representation. This limi-
tation hinders its ability to effectively manage substantial perturbations in the latent space. Rinse
extends the approach by running Regen multiple times in an attempt to further disrupt the watermark
structure. Despite the enhancement, the effectiveness is still limited, especially for StegaStamp,
which still has 0.94 TPR@1%FPR. Our method regenerates the watermarked image by starting
from a clean Gaussian noise in the latent space, which inherently contains no watermark structure
within the latent representation. Therefore, our watermark removal approach achieves notable per-
formance, reaching 0.01 and 0.12 TPR@1%FPR for StegaStamp and TreeRing, respectively.
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Figure 4: Examples of different watermark removal attacks on different watermarking methods.

Visual Similarity and Quality of CtrlRegen. The regenerated images are assessed from two key
aspects: visual similarity and quality. Table 1 presents these measurements for various watermark
removal methods. For visual similarity, our CtrlRegen achieves a lower CLIP-FID score compared
to baselines. This lower score suggests that the distribution of our regenerated images more closely
approximates that of the original watermarked images, reflecting better preservation of visual char-
acteristics and overall image integrity. CtrlRegen exhibits a lower score for pixel-level measurement,
PSNR, compared to baselines. However, it does not necessarily indicate severe degradation in sim-
ilarity. The changes that lead to a lower PSNR can actually harmonize well with the content of
the image without making the regenerated image appear unnatural. On the contrary, although the
Regen and Rinse may achieve higher PSNR scores, it results in visible artifacts and degradation
in the regenerated images compared to the original watermarked images, as illustrated in Figure 4.
We provide more discussion and examples (Figure 8) for this problem in Appendix A. To further
substantiate that images regenerated by our method exhibit superior image quality, we employ two
image quality measurements: Q-Align and LIQE. These metrics are used to quantitatively assess
and compare the quality of the regenerated images. From Table 1, our method achieves better image
quality compared to Regen and Rinse.

4.2.2 CTRLREGEN+

We evaluate our CtrlRegen+ against Regen across various aspects, including watermark removal
effectiveness, visual resemblance, and image quality, by varying the number of noising steps. For
high-perturbation watermarks, such as StegaStamp and TreeRing, we set the noising steps to be
{100, 200, 300, 400, 500, 1000} and sample from pure Gaussian noise. We do not set a noising step
number larger than 500 for Regen, as at this number of noising steps, the noised latent representation
approaches pure Gaussian noise. Consequently, the uncontrolled regeneration process would likely
produce an image completely unrelated to the original watermarked image.
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Figure 5: Performance of CtrlRegen+ compared to Regen with a varying number of noising steps
on high and low perturbation watermarks, respectively. We invert the CLIP-FID score to ensure that
the top-left represents better performance across all figures.

The first two rows of Figure 5 illustrate the relationship between watermark removal performance
and visual similarity/quality across different noising steps for high perturbation watermarks. Com-
pared to Regen, CtrlRegen+ not only maintains high image quality and similarity but also achieves
superior watermark removal performance. Specifically, for Regen, using a high number of noising
steps can indeed remove the watermark but also lead to a significant degradation in the quality of
images, as shown in Figure 7 of Appendix A. It will make the watermark removal meaningless.

For low-perturbation watermarks, a small number of noising steps is sufficient to remove the water-
mark. Therefore, we evaluate the performance of CtrlRegen+ using a range of relatively low noising
steps, i.e., {20, 40, 60, 80, 100, 120, 140}. As shown in the third row of Figure 5, even with fewer
noising steps, our CtrlRegen+ method still demonstrates superior image quality and similarity com-
pared to the Regen approach while achieving comparable watermark removal performance. More
results of CtrlRegen+ on low perturbation watermarks are presented in Figure 6 of Appendix A.

Furthermore, we conduct an ablation study detailed in Appendix A to investigate the impact of
semantic and spatial control on consistency.

5 CONCLUSION

In this paper, we introduce a controllable regeneration attack that, combined with proposed control
techniques, effectively removes image watermarks by thoroughly eliminating the watermark infor-
mation in the latent space. Our experiments demonstrate improved visual consistency and image
quality compared to existing uncontrolled regeneration attacks under the same removal performance.
We note that our attack is a no-box approach, meaning that the attacker only needs one watermarked
image to remove watermarks without requiring knowledge of the watermarking scheme, detection
rules, or access to the detector. By demonstrating the ability to defeat robust watermarking tech-
niques, we highlight the urgent need to develop stronger watermarking solutions that can withstand
this attack. In this work, the consistency of regeneration may be constrained to a certain extent by the
backbone model we employed. In future work, we will explore more advanced backbone models,
such as SD-v3 (Esser et al., 2024), and refine our control techniques for further improvement.
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ETHICS STATEMENT

Our primary motivation for developing a more effective watermark removal method is to uncover
the vulnerabilities in current watermarking techniques. By demonstrating the weaknesses in ex-
isting watermarking methods, we aim to underscore the urgent need for more robust and resilient
watermarking solutions. Additionally, our methods will serve as a benchmark for assessing the
robustness of future watermarking techniques and fostering their advancement. The proposed
watermark removal techniques may pose ethical risks, including potential copyright infringement,
undermining digital rights management, and enabling the unauthorized use of protected content.
It is essential that our methods should be used responsibly and in compliance with local reg-
ulations, ensuring this work contributes to strengthening, rather than compromising, digital
watermarking security.
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A ADDITIONAL EXPERIMENTAL RESULTS AND ABLATION STUDY

CtrlRegen+ for Low perturbation watermarks. Figure 6 displays the results of CtrlRegen+ com-
pared to Regen across three low-perturbation watermarks: RivaGAN, SSL, and StableSignature. For
SSL, the number of noising steps is set to {20, 60, 100, 140, 180, 220, 260, 300, 340}. From the fig-
ure, it is evident that SSL remains relatively robust compared to other low perturbation watermarks
when number of noising steps is small. Our CtrlRegen+ presents better consistency compared to
Regen at the same TPR@1%FPR. Additionally, the quality of images regenerated by Regen deteri-
orates with an increase in noising steps, whereas the quality of images from CtrlRegen+ improves.
This improvement occurs because SSL introduces visible perturbations to the image, which are
gradually removed as the number of noising steps increases in the CtrlRegen+ process. For Riva-
GAN and StableSignature, the number of noising steps is set to {20, 40, 60, 80, 100, 120, 140}.
StableSignature is the most vulnerable to regeneration attacks, with even just 20 noising steps being
sufficient to remove its watermark.
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Figure 6: Performance of CtrlRegen+ compared to Regen on the remaining low perturbation water-
marks. The noising step number is set to {20, 60, 100, 140, 180, 220, 260, 300, 340} for SSL and
{20, 40, 60, 80, 100, 120, 140} for RivaGAN and StableSignature.

Examples of CtrlRegen+. Figure 7 shows the image regenerated by CtrlRegen+ and Regen at
various noising steps. From those examples, we can observe that, as the number of noising steps in-
creases, images regenerated by Regen become noisy and distorted. Conversely, images regenerated
by CtrlRegen+ maintain high visual consistency and quality.

Semantic Control and Spatial Control. Our controllable regeneration process comprises two cru-
cial components: semantic control and spatial control. The semantic control adapter extracts the
semantics from the watermarked image, ensuring the basic semantic integrity of the regenerated im-
age, though it may lack detailed accuracy. The spatial control network, on the other hand, manages
more detailed aspects of the regeneration process. To demonstrate this, we regenerate the water-
marked image using only semantic control and then again using both semantic and spatial controls
together, allowing us to observe the enhancements in visual similarity and quality. Table 2 displays
the corresponding results. It demonstrates that the usage of spatial control not only enhances the
consistency of the image but also improves its quality.
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Figure 7: Visual examples of CtrlRegen+ compared to Regen at different numbers of noising steps
are illustrated, with the noising step T set to {100, 200, 300, 400, 500}. The image is watermarked
using StegaStamp and TreeRing. It shows that our CtrlRegen+ preserves high visual consistency
and quality, even across various noising steps.

Table 2: The visual similarity and quality performance between approaches using only semantic
control versus those incorporating both semantic and spatial control. The results reveal that semantic
control alone provides only coarse-grained guidance, while incorporating both semantic and spatial
controls significantly enhances image consistency and quality across various watermarking methods.

Watermarks Attack Settings CLIP-FID ↓ PSNR ↑ Q-Align ↑ LIQE ↑

DwtDctSvd Semantic Only 13.06 15.41 2.84 2.55
Semantic&Spatial 8.68 19.13 3.63 3.76

RivaGAN Semantic Only 9.06 15.43 2.86 2.55
Semantic&Spatial 4.24 19.53 3.62 3.69

SSL Semantic Only 11.36 15.72 2.38 1.78
Semantic&Spatial 5.64 19.07 3.22 3.15

StableSignature Semantic Only 4.04 14.37 3.09 2.71
Semantic&Spatial 1.83 19.03 3.97 4.02

StegaStamp Semantic Only 9.97 15.72 2.78 2.52
Semantic&Spatial 5.27 19.10 3.62 3.77

TreeRing Semantic Only 3.93 15.24 3.40 3.24
Semantic&Spatial 1.63 19.32 4.17 4.34

Inference time of our watermark removal methods. To evaluate the inference time of our re-
generation methods, we conducted experiments to compute the average inference time, including
the backbone SD model using text as input, CtrlRegen, and CtrlRegen+ with different noising steps
(200, 400, 600, 800, 1000). The results are presented in the following table. From Table 3, it is evi-
dent that our regeneration method (CtrlRegne, CtrlRegen+ 800, and CtrlRegen+ 1000) introduces a
negligible time delay (less than 1 second) compared to the backbone Stable Diffusion model. Addi-
tionally, for CtrlRegen+ with noising steps smaller than 600, the inference time is even shorter than
that of the backbone SD model. This demonstrates the efficiency of our approach.
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Table 3: Inference time comparison of backbone SD, CtrlRegen, and CtrlRegen+ with varying nois-
ing steps for watermark removal. It highlights the efficiency of our methods.

Setting Backbone SD CtrlRegen CtrlRegen+ (200) CtrlRegen+ (400) CtrlRegen+ (600) CtrlRegen+ (800) CtrlRegen+ (1000)

Generation Time/s 1.74 2.56 0.69 1.19 1.71 2.15 2.64

Discussion about CtrlRegen Visual Similarity. In order to further illustrate that CtrlRegen pre-
serves the overall content and ensures the perturbation integrates well with the image, we provide
a visual comparison between CtrlRegen and Regen at the same PSNR level. Our experiments were
conducted on StegaStamp watermarks, with Regen using a noising step of 360, while CtrlRegen
generates images starting from clean noise. Under these settings, both methods achieve comparable
PSNR values. However, as shown in Figure 8, at similar PSNR levels, Regen introduces noticeable
distortions to the image content, whereas our method maintains strong alignment with the water-
marked image. This comparison effectively demonstrates that the relatively lower PSNR of our
approach does not compromise the overall integrity of the watermarked image content.
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Figure 8: Visual examples of CtrlRegen compared to Regen at similar PSNR levels, where Regen
uses a noising step of 360. The image is watermarked using StegaStamp. Regen introduces no-
ticeable distortions to the image content, whereas our method maintains strong alignment with the
watermarked image. This comparison effectively demonstrates that the relatively lower PSNR of
our approach does not compromise the overall integrity of the watermarked image content.

Table 4: Bit number we used in our experiments for different watermarking methods.

Watermark DwtDctSvd RivaGAN SSL StableSignature StegaStamp

Bits 32 32 32 48 96
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B ALGORITHM OF PROPOSED METHODS

Algorithm 1 CtrlRegen
Input: Watermarked image xw.

1: x̂w ← f(xw)
2: zT ← N (0, In)

3: for t = T, T − 1, · · · , 1 do
4: ξt ← ϵθ(zt, xw, x̂w, t)
5: zt−1 ← zt − ξt
6: end for
7: x̃← D(z0)

Output: Cleaned image x̃.

Algorithm 2 CtrlRegen+
Input: Watermarked image xw, Noising step t∗.

1: x̂w ← f(xw), z0 ← E(xw)
2: ϵ← N (0, In), zt∗ =

√
αt∗z0 +

√
1− αt∗ϵ

3: for t = t∗, · · · , 1 do
4: ξt ← ϵθ(zt, xw, x̂w, t)
5: zt−1 ← zt − ξt
6: end for
7: x̃← D(z0)

Output: Cleaned image x̃.
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