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Supplementary Note 1: Data Generation 
1.1 Molecular dynamics 
The molecular dynamics simulations were performed via the LAMMPS package.1 we utilized 
EAM potentials for nickel2 and aluminum.3 The potentials have been developed to describe 
liquid/amorphous and crystalline phases. To compare the conventional isobaric-isothermal 
and MOMT ensemble methods, we prepared a 108 nickel atoms system. We performed a 
short relaxation through MD simulation at T0 = 2,000 K and P0 = 1 bar for 50,000 steps 
before sampling. Then, we sampled configurations every 100 steps (0.1 ps with a 1 fs 
timestep) for 200 ps. The number of obtained data is 2,000 from liquid and FCC phases. Both 
phases are stable under the conditions based on the initial state, and there is no transition 
between the two phases through the conventional approach.  
 
1.2 Multiorder-multithermal ensemble molecular dynamics 
Using the Wang-Landau algorithm,4 we performed MOMT MD simulation based on the 
order parameters defined by reciprocal vectors. This method can efficiently sample both 
liquid and solid phases of crystalline materials, e.g., silicon and MgO.5,6 Also, 
thermodynamic quantities as a function of temperature from the reweighting technique were 
demonstrated in agreement with other estimations in the Lennard-Jones system.7  In this 
study, we utilized the method for sampling configurations to evaluate the sampled data for 
the NNP training. The detailed values for setting nickel and aluminum are listed in Table S1.  
 
In the isobaric-multiorder multithermal (MOMT) ensemble method, the partial enthalpy is 
defined as functions of H and O as  

,         (1) 
where O is an order parameter function to evaluate the order of the system as a function of 
coordinates, r, given by5 

,        (2) 

where g, Nfcc, and NA are the shortest reciprocal vectors of FCC, the number of reciprocal 
vectors, and the number of atoms, respectively. For a more detailed description of methods, 
we refer to the previous study.7 
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Supplementary Note 2: Neural Network Potentials  
We utilized the ANI type NNP through TorchANI8 library. The NN structure in our study is 
listed in Table S2. We utilized Gaussian error linear unit (GELU) activation function9. 
Atomic environment vectors (AEV), or symmetry function,10 capture the atomic 
environmental feature for the NN input. We followed the parameters of the AEV from ANI-
2x11 model except for a longer radius cutoff of 6.9Å with additional Gaussian centers. 
 
For training iteration, 20% was used for validation, and 80% of the data was used to train the 
model with a mini-batch size 64. The data was shuffled when they were loaded.  
 
The loss function is defined as  
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where α was set to 0.1, a parameter to determine the contribution of forces. The basic training 
conditions are the same as in the previous study.12 The maximum epochs was set as 300 and 
we took the best parameters for the validation set during the training. We did not prepare an 
explicit test set. However, we performed structural optimization to check physical properties 
and evaluated the performance with other data not explicitly included in both train/validation 
sets.  
 
 
Supplementary Note 3: Structural Optimization 
To evaluate the NNPs, we performed the structural optimization for three different closed-
pack crystal structures (FCC, BCC, and HCP) and compared the energy rank and bond 
lengths. Although we sampled the FCC-based solid phase, we did not include the energy-
optimized (or at a very low temperature) structure in the training set. The perfectly aligned 
crystalline structure is less likely to be sampled at a finite temperature, especially near the 
melting temperature. Whether the trained NNPs can derive the optimized structures can be a 
valuable indicator of the reliability of NNP models. The optimized shortest bond length and 
the total energy/atom from the EAM potential are compared using a previously developed 
interface with LAMMPS12, we applied the same relaxation process to each structure based on 
the trained NNPs. 

 

 

 

Supplementary Note 4: Data Distillation  
3.1 Active learning-based distillation 
Uncertainty quantification (UQ) of the NNPs is a central part of active learning because it 
allows us to identify valuable data likely to be informative and worth labeling with new 
calculations. In the current study, we employ the ensemble-based approach, utilizing the 
same NNP structure but with different training and validation sets for each model.13 We 
divided 20,000 data from MOMT sampling into 10 sequential data sets (each set is 2,000 data 
points). From the initial data set, we trained the NNP with 5 models. At each step, the atomic 
energy is predicted from each model, and the standard deviation from the model predictions 
is used as an uncertainty quantification (UQ) measure (atomic UQ). If the atomic UQ value is 
larger than μUQ + 4σUQ, we consider the configuration around that atom is not included in the 
dataset and included in the next iteration.  
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3.2 Order parameter & enthalpy based distillation 
For the baseline approach for distillation, we manually selected the data based on the physical 
properties: the order parameter and enthalpy values. Since the order parameter informs the 
states of structures, it can be a good indicator of configurational similarity. We utilized data 
reduction approach through a neighbor list as suggested in the previous study.12 Table S3 
shows the number of data (108 atoms system) selected and deselected based on the δO 
values.  
 
 

Supplementary Note 5: Distilled vs. Non-distilled. 
We checked the training speed and the performance for the structural optimization. As we did 
in the data distillation, we also trained 5 models for a non-distilled nickel system with 108 
atoms. We picked the best model based on their MAE of force. Due to the different numbers 
of configurations, their training speed is different. We checked the training speed based on 10 
epochs in the beginning through one Nvidia GPU in a personnel workstation. For 20,000 data 
points with a 108-nickel system, it takes 41s/epoch. For 3,500 data points with a 32-nickel 
system, it takes 2.1s/epoch. The speed-up is about 19.4x. We note that TorchANI provides a 
CUDA version of symmetry function calculations, but we did not utilize it. Also, the number 
of batches can affect the benchmark test. The comparison of the two models is shown in 
Table S6. Full data also results in a good model to predict the energy rank correctly. The sum 
of the absolute error of bond length indicates that the distilled one is better (Full data: 0.08Å 
vs Distilled data: 0.03Å). Also, the energy error (max residue of the energy/atom error  – min 
residue of the energy/atom error) shows that the distilled one performed better (Full data: 
50meV/atom vs Distilled data: 20meV/atom). It does not completely confirm that distilled 
one is better, but at least the model trained with the distilled data is comparable with the 
model with non-distilled data.  
 

Although we utilized empirical potential in the current demonstration, eventually, the 
applications should be done with DFT calculations. It is inevitable to perform a long-time 
integration (currently 2 ns) to sample a wide range of configurations in the current study. 
Since the time-space is not as parallelized as the length-space, running MD for 2ns suddenly 
becomes impractical with DFT calculations. However, embarrassing parallelization is 
possible with the sampled configurations (we can ignore time integration). In this context, we 
expect a clear speed-up, even considering the number of calls to Oracle in the proposed work. 
Furthermore, the MOMT sampling through NNP is at least two orders of magnitude faster 
than MOMT sampling through DFT, while the actual speed-up depends on the system size.  

 

Supplementary Note 6: BCC metal Niobium  
Nickel and Aluminum are FCC-type metals. We further tested whether the distilled data 
could be translated to BCC-type metal, Niobium (Nb). The parameters for Niobium are 
available in the empirical potentials we utilized for nickel. We first obtained the relaxed 
structure of Nb. Since the BCC structure is the most stable, we determined the scaling factor 
based on BCC as ~1.1867 (2.86/2.41). We did not perform the MOMT MD as the aluminum 
case, but comparing relaxed structures is still good to show how it would work. We included 
the results in Table S7. We realized that FCC and HCP of Nb have a very similar energy 
(2meV/atom difference). Therefore, it is difficult to say that it works perfectly. However, the 
results are promising, showing similar accuracy with aluminum cases.  
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Table S1. Conditions for the MOMT ensemble molecular dynamics. 

Type (# atoms) T (K) P (bars) H (eV) (# grids) O (# grids) 

Ni (108) 2,000 1 -540 ~ -410 (60) -5 ~ 108 (100) 

Ni (32) 2,000 1 -165 ~ -125 (60) -5 ~ 40 (110) 

Al (108) 1,000 1 -420 ~ -290 (60) -5 ~ 108 (100) 

 

Table S2. Neural network structures for Ni and Al in the current study. Gaussian error linear unit 
(GELU) activation function9 was utilized to add non-linearity between AEV-1st, 1st-2nd, and 2nd-3rd 
layers. The radius cutoff for the radial part is 6.9Å.  

 

 

Table S3. Data distillation from the 20,000 configurational data sampled by the MOMT ensemble 
molecular dynamics. Firstly, we trained the 5 NNPs with the selected data (ΔO~3.0). Then, 7 AL 
iterations were performed from deleted data with a sparse grid (ΔO ~ 3.0) to fine grids (ΔO ~0.02).  

ΔO Selected Deleted Total 

0.02 17,900 2,101 20,001 

0.05 15,516 2,384 17,900 

0.1 12,640 2,876 15,516 

0.2 9,377 3,263 12,640 

0.4 6,234 3,143 9,377 

0.7 4,139 2,095 6,234 

3.0 1,506 2,633 4,139 

 

 

 

 

 

 

 

 

NN Model 1st 2nd 3rd Output 
(Energy) 

Ni/Al/Nb 224 192 160 1 
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Table S4. The obtained self-energy minimizes the MAE of training/validation sets of each data set 
sampled from different initial configurations and NPT and MOMT ensembles (108 nickel atoms). 

 
 

 

Table S5. The obtained self-energy minimizes the MAE of training/validation sets of systems 

 

 

Table S6. Results of energy minimization from the different initial structures, FCC, BCC, and HCP 
nickel through NNPs from distilled data and non-distilled data (Full data: 20,000 data points of 108 
atoms). (blue: lowest energy, red: highest energy, green: middle, lb: bond length). 

 

 

Table S7. Results of energy minimization from the different initial structures, FCC, BCC, and HCP 
Niobium (Nb) through NNPs from translated data. (blue: lowest energy, red: highest energy, green: 
middle, lb: bond length) 

 

 

 

 

 

 

Data Set FCC Data Liquid Data MOMT Data 

Self-Energy 
(Hartree) -0.167824160206977 -0.1610189932429113 -0.16532494629298 

Data Set Nickel Data Aluminum Data Niobium Data 

Self-Energy 
(Hartree) -0.16440532763410765 -0.11764409019342367 -0.2502205647745999 

Structure (#atoms) Ni-FCC (32) 
lb(Å); Etot/atom (eV) 

Ni-BCC (54) 
lb(Å); Etot/atom (eV) 

Ni-HCP (48) 
lb(Å); Etot/atom (eV) 

Reference (EAM) 2.49/-4.876 2.41/-4.833 2.44/-4.847 

NNP (Full Data) 
(errors) 

2.46/-4.896 
(-0.03/-0.020) 

2.45/-4.803 
(+0.04/+0.030) 

2.43/-4.848 
(-0.01/-0.001) 

NNP (Distilled Data) 
(errors) 

2.50/-4.875 
(+0.01/+0.001) 

2.41/-4.812 
(0.00/+0.021) 

2.46/-4.835 
(+0.02/0.012) 

Structure (#atoms) Nb-FCC (32) 
lb(Å); Etot/atom (eV) 

Nb-BCC (54) 
lb(Å); Etot/atom (eV) 

Nb-HCP (48) 
lb(Å); Etot/atom (eV) 

Reference (EAM) 3.05/-7.159 2.86/-7.347 2.94/-7.157 

NNP (Translated Data) 
(errors) 

3.07/-7.173 
(0.02/-0.014) 

2.86/-7.350 
(+0.00/-0.003) 

2.93/-7.166 
(-0.01/-0.009) 
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Figure S1. Time evolutions of energy (E) of nickel at T0=2,000 K, P0=1.0 bar for 200 ps. (a) 
Conventional NPT ensemble with different initial phases, FCC, and liquid phases. (b) Time evolution 
of E through MOMT ensemble. It shows that the transition between the two phases and the energy 
range where the liquid and FCC phases can be efficiently sampled.  
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Figure S2 Mean absolute error (MAE) of NNPs trained from three different sampled data. (a) MAE 
of training/validation sets (b) MAE of other data (unseen) sets for each NNP model.  
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Figure S3 Times series of the MOMT ensemble MD simulations: (a) 108 nickel atoms at 2,000 K and 
1 bar (b) 108 aluminum atoms at 1,000 K and 1 bar. The sampling region can change due to the 
reference temperature and maximum partial enthalpy. The range of the y label is set by scaling the y 
range of nickel. In the aluminum case, it can sample higher energy regions than nickel.  
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