

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HERS: HIDDEN-PATTERN EXPERT LEARNING FOR RISK-SPECIFIC VEHICLE DAMAGE ADAPTATION IN DIFFUSION MODELS

Anonymous authors

Paper under double-blind review

Figure 1: Qualitative comparison of **HERS** against existing diffusion-based baselines. Observe that **HERS** generates damage regions with higher visual fidelity and localized consistency. Fine-grained artifacts such as dents, cracks, and abrasions are better preserved—zoom in for enhanced visibility of subtle and complex damage patterns.

ABSTRACT

Recent advances in text-to-image (T2I) diffusion models have enabled increasingly realistic synthesis of vehicle damage, raising concerns about their reliability in automated insurance workflows. The ability to generate crash-like imagery challenges the boundary between authentic and synthetic data, introducing new risks of misuse in fraud or claim manipulation. To address these issues, we propose **HERS (Hidden-Pattern Expert Learning for Risk-Specific Damage Adaptation)**, a framework designed to improve **fidelity, controllability, and domain alignment** of diffusion-generated damage images. HERS fine-tunes a base diffusion model via **domain-specific expert adaptation**, without requiring manual annotation. Using self-supervised image–text pairs automatically generated by a large language model and T2I pipeline, HERS models each damage category—such as dents, scratches, broken lights, or cracked paint—as a separate expert. These experts are later integrated into a unified multi-damage model that balances specialization with generalization. We evaluate HERS across four diffusion backbones and observe **consistent improvements: +5.5% in text faithfulness and +2.3% in human preference ratings** compared to baselines. Beyond image fidelity, we discuss **implications for fraud detection, auditability, and safe deployment** of generative models in high-stakes domains. Our findings highlight both the opportunities and risks of domain-specific diffusion, underscoring the importance of trustworthy generation in safety-critical applications such as auto insurance.

054 **1 INTRODUCTION**

055

056 Text-to-image (T2I) diffusion models [Saharia et al. \(2022\)](#); [Rombach et al. \(2022\)](#); [Podell et al. \(2024\)](#);
 057 [Kang et al. \(2023\)](#); [Ramesh et al. \(2021\)](#); [Yu et al. \(2023\)](#); [Chang et al. \(2023\)](#) have transformed
 058 generative AI, producing photorealistic images from free-form language prompts and enabling rapid
 059 advances in creative design, simulation, and data augmentation. Yet, when deployed in *safety-critical*
 060 *domains* such as auto insurance, where every pixel may encode liability, their limitations become
 061 clear. Generic T2I systems often fail to capture fine-grained damage categories—such as a dented
 062 bumper, a subtle scrape across a door, or a fractured headlight—generating outputs that are visually
 063 appealing but semantically unreliable (shown in Figure 1). In an insurance workflow, such errors are
 064 not cosmetic: they can distort liability assessments, misinform fraud detection, and erode trust in
 065 automated claims pipelines.

066 This duality makes generative models both an opportunity and a risk. On one hand, synthetic damage
 067 data could dramatically improve training for rare-event modeling, accelerate claims assessment,
 068 and expand coverage of long-tail accident cases. On the other hand, the same technology could be
 069 exploited to fabricate fraudulent crash evidence or manipulate claims with high-fidelity synthetic
 070 images. [To resolve this tension \(raised in W1\), we explicitly frame our goal: HERS is *not* intended to](#)
 071 [generate “better fakes,” but rather to provide semantically faithful, liability-aware synthetic variations](#)
 072 [that help insurance AI systems recognize both genuine and tampered evidence.](#) Unlike traditional
 073 vision benchmarks, insurance scenarios require *risk-specific generation*, where semantic alignment,
 074 forensic plausibility, and liability-aware consistency are as important as photorealism.

075 Prior approaches attempt to mitigate these issues via supervised fine-tuning [Dai et al. \(2023\)](#);
 076 [Segalis et al. \(2023\)](#), human preference optimization [Xu et al. \(2023a\)](#); [Fan et al. \(2023\)](#), or spatial
 077 grounding [Li et al. \(2023\)](#); [Xie et al. \(2023\)](#). However, these strategies are annotation-heavy and
 078 often brittle, struggling to encode the hidden cues that forensic experts rely upon: the faint crease
 079 from a low-speed collision, the asymmetric shattering of a headlight, or the implausible geometry of
 080 tampered paint. [Furthermore, existing pipelines lack mechanisms for domain-structured adaptation](#) (W3),
 081 [making them difficult to extend to multi-damage synthesis or to evaluate against risk-specific](#)
 082 [requirements.](#)

083 In response to Q1 and W8 (purpose and clarity), we emphasize that HERS uses synthetic images
 084 *only as intermediate supervision*: they serve as self-curated training pairs for damage-specific LoRA
 085 experts, which are ultimately merged to form a unified model. These Stage-2 synthetic images are not
 086 the “final product” but the training signal that enables specialization without requiring real accident
 087 labels.

088 To address these gaps, we introduce **HERS** (**H**idden-**P**attern **E**xpert **L**earning for **R**isk-**S**pecific
 089 **D**amage **A**daptation), a fully automated framework (Figure 2) for adapting diffusion models to
 090 synthesize semantically faithful, risk-relevant vehicle damage without manual supervision. HERS
 091 leverages large language models to auto-generate diverse, damage-specific prompts (e.g., “rear
 092 bumper dent,” “door scrape near handle,” “fractured right headlight”), which are paired with synthetic
 093 renderings from a pretrained T2I backbone. [We explicitly specify \(addressing Q1\): LoRA experts are](#)
 094 [trained on these Stage-2 synthetic image–text pairs using the same backbone diffusion model that](#)
 095 [produced the images \(e.g., SDXL\), ensuring architectural consistency and clarity of training flow.](#)
 096 These domain-specific experts are then merged to form a unified multi-damage generator.

097 The key insight is that HERS learns from *hidden visual patterns*—subtle cues that elude both baseline
 098 diffusion models and human raters, but are critical in high-stakes domains like insurance. By elevating
 099 generation beyond “realism” to “liability-aware semantics,” HERS provides a new lens for evaluating
 100 diffusion models in safety-critical settings.

101 **Contributions.** Our work offers:

- 102 • We articulate and address the overlooked challenge of semantically faithful damage synthesis
 103 in auto insurance, clarifying the *positive, risk-aware motivation* (W1) behind high-fidelity
 104 generation.
- 105 • We propose **HERS**, the first self-supervised, prompt-to-LoRA adaptation framework that
 106 trains multiple damage-specific experts from auto-generated pairs and merges them without
 107 inference-time routing.

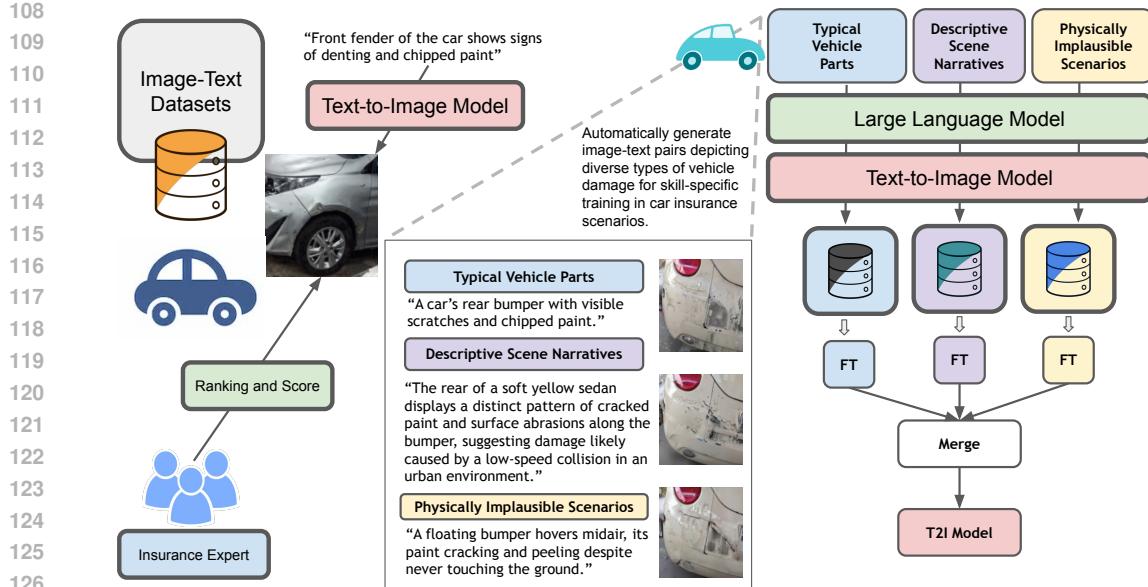


Figure 2: **Overview of the HERS Framework.** HERS (*Hidden-Pattern Expert Learning for Risk-Specific Damage Adaptation*) auto-generates diverse, damage-specific image-text pairs using an LLM and a base T2I model—without requiring manual annotation. These pairs span *typical vehicle parts*, *descriptive scene narratives*, and *physically implausible scenarios* (examples shown in figure). Each damage type is modeled as a distinct damage, with corresponding LoRA experts trained and merged into a unified multi-damage diffusion model.

- We provide clearer methodological description (Q1, W3) and expanded evaluation context, including comparisons to SDXL, SD1.5, VQ-Diffusion, and Versatile Diffusion, and discuss compatibility with newer backbones such as FLUX and Qwen-Image (W6).
- We demonstrate state-of-the-art semantic alignment, human preference, and multi-damage generalization performance.

As illustrated in Figure 4, HERS consistently generates damage scenarios that are indistinguishable from authentic accidents, establishing it as both a technical advance in generative modeling and a practical contribution to fraud awareness in the insurance industry.

2 RELATED WORK

Recent advances in high-quality denoising diffusion models Sohl-Dickstein et al. (2015); Ho et al. (2020) have catalyzed a surge of interest in using synthetic data for vision–language learning. Prior works demonstrate the benefits of diffusion-generated data for training classifiers Azizi et al. (2023); Sariyildiz et al. (2023); Lei et al. (2023) or augmenting caption datasets Caffagni et al. (2023), and CLIP-style models Radford et al. (2021) have been extended using either synthetic visuals Tian et al. (2023) or LLM-authored captions Hammoud et al. (2024).

In response to W2a/W2b, we integrate key recent works in synthetic data and damage-related domains: DataDream Kim et al. (2024), He et al. He et al. (2023), da Costa et al. Turrisi da Costa et al. (2023), and LoFT Kim et al. (2025). These methods explore prompt diversification, few-shot guidance, or LoRA fusion for generating synthetic datasets; however, none address risk-specific vehicle damage nor the forensic cues required for insurance assessment.

Parallel efforts in aligning T2I models with human expectations have relied on RLHF Lee et al. (2023); Xu et al. (2023a); Wu et al. (2023); Dong et al. (2023); Clark et al. (2024); Fan et al. (2023) or direct preference optimization (DPO) Rafailov et al. (2023); Wallace et al. (2023), while methods such as SPIN-Diffusion Yuan et al. (2024) reduce annotation demands through self-play. LLM-guided pipelines like DreamSync Sun et al. (2023) push further by auto-generating prompts and filtering

162 candidate images, albeit at high computational cost. However, none of these approaches structure the
 163 domain into damage-specific subspaces or learn multi-expert representations, leaving them limited
 164 for forensic or insurance applications (W3, W4).

165 Beyond synthetic images of everyday scenes, Nguyen et al. Nguyen et al. (2024) demonstrate the
 166 challenges of generating out-of-distribution domains such as satellite imagery (W2c). This motivates
 167 our focus on vehicle damage—a similarly specialized, high-risk domain where semantic consistency
 168 is crucial.

169 To this end, our proposed **HERS** diverges by training multiple LoRA experts Hu et al. (2022),
 170 each dedicated to specific damage types (e.g., dents, scrapes, cracked paint, broken lights), and
 171 merging them into a unified diffusion model Shah et al. (2023); Zhong et al. (2024). Compared
 172 to LoFT Kim et al. (2025) (addressing W4 and Q3), HERS differs in three key aspects: (1) fully
 173 automated prompt+image generation without few-shot guidance; (2) expert specialization on fine-
 174 grained damage semantics rather than generic concepts; (3) merging experts to encode forensic
 175 “hidden patterns” essential for insurance tasks. This design avoids inter-damage interference Liu et al.
 176 (2019), eliminates dependence on costly human feedback, and captures fine-grained, liability-relevant
 177 patterns in a computationally efficient, self-supervised manner—providing domain-faithful generative
 178 capabilities indispensable for risk-sensitive applications.

180 3 HERS: HIDDEN-PATTERN EXPERT LEARNING FOR RISK-SPECIFIC 181 DAMAGE ADAPTATION

182 We propose **HERS** (*Hidden-Pattern Expert Learning for Risk-Specific Damage Adaptation*), a
 183 framework (shown in Figure 2) for adapting text-to-image (T2I) diffusion models to synthesize
 184 fine-grained and risk-relevant vehicle damage. Unlike prior adaptation methods such as SELMA Li
 185 et al. (2024), which require annotation-heavy supervision or explicit routing, HERS achieves high-
 186 fidelity alignment through a fully automated pipeline that integrates prompt synthesis, synthetic
 187 image generation, domain-specific LoRA experts, and weight-space merging. Crucially, HERS is
 188 designed not only to enhance visual fidelity but also to surface subtle “hidden” damage cues—such
 189 as a faint scrape along a bumper, a hairline crack in a headlight, or tampered paint texture—that are
 190 easily missed by generic diffusion models yet critical for fraud detection and liability estimation.

191 Formally, HERS operates in four stages.

194 3.1 STAGE 1: DOMAIN-GUIDED PROMPT SYNTHESIS

195 Let $\mathcal{C} = \{\text{dent, scrape, torn_bumper, cracked_paint, broken_light}\}$ denote the
 196 canonical set of damage categories relevant to insurance workflows. We seed an autoregressive
 197 language model f_θ (GPT-4) with exemplar prompts $\mathcal{S} = \{s_1, s_2, s_3\}$ describing each category, e.g.

198 $s_1 = \text{“rear bumper dent”}$, $s_2 = \text{“scratched left door”}$, $s_3 = \text{“front headlight cracked”}$.

199 For each concept $c \in \mathcal{C}$, the model generates a distribution of semantically diverse prompts:

$$200 \quad p_i \sim f_\theta(p \mid \mathcal{S}, c). \quad (1)$$

201 To enforce diversity while preserving semantic coverage, we apply ROUGE-L filtering Lin (2004),
 202 retaining prompts satisfying

$$203 \quad \max_j \text{ROUGE-L}(p_i, p_j) < \tau, \quad (2)$$

204 where τ is a similarity threshold. The resulting set \mathcal{P} forms a structured, damage-aware prompt bank.

208 3.2 STAGE 2: SYNTHETIC IMAGE GENERATION

210 Each prompt $p_i \in \mathcal{P}$ is rendered via a pretrained diffusion generator G (e.g., Stable Diffusion XL) to
 211 obtain an image x_i :

$$212 \quad x_i = G(p_i), \quad \forall p_i \in \mathcal{P}. \quad (3)$$

214 Importantly, the images produced in this stage are **not the final outputs of HERS**. Instead, they serve
 215 as *training signals* for learning damage-specific LoRA experts in Stage 3. Thus Stage 2 constructs a
 216 paired dataset $\mathcal{D} = \{(p_i, x_i)\}$ that supervises the adaptation of the diffusion backbone.

216 These synthetic pairs give us controllable supervision for rare, long-tail, or implausible events (e.g.,
 217 “two headlights cracked symmetrically”), which cannot be obtained at scale from real insurance
 218 datasets yet are crucial for stress-testing downstream models.

220 3.3 STAGE 3: DAMAGE-SPECIFIC EXPERT LEARNING

222 For each domain $t \in \mathcal{T}$, where $\mathcal{T} = \{\text{Typical Parts, Scene Narratives, Implausible Scenarios}\}$, we
 223 train a lightweight Low-Rank Adaptation (LoRA) [Hu et al. \(2022\)](#) expert.

224 All LoRA adapters are trained directly on top of the same pretrained diffusion backbone G used
 225 in Stage 2 (e.g., SDXL). This explicit specification addresses reviewer Q1: *the base model being*
 226 *fine-tuned is the diffusion generator itself.*

227 Given a pretrained weight matrix $W_0 \in \mathbb{R}^{d \times d}$, we optimize a low-rank update:

$$229 \Delta W_t = B_t A_t, \quad W_t = W_0 + \Delta W_t, \quad (4)$$

230 with $A_t \in \mathbb{R}^{r \times d}$, $B_t \in \mathbb{R}^{d \times r}$, and $r \ll d$. This enables parameter-efficient specialization, such
 231 that one expert may encode subtle bumper dents while another captures cracked paint or broken
 232 headlights.

233 Supervised by the Stage 2 dataset \mathcal{D} , each expert learns a different “damage subspace,” allowing the
 234 backbone to internalize hidden patterns that generic T2I models fail to express.

236 3.4 STAGE 4: MULTI-EXPERT WEIGHT MERGING

238 To unify all domains into a single diffusion model, we merge the LoRA experts via arithmetic
 239 averaging in weight space:

$$241 A^* = \frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} A_t, \quad B^* = \frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} B_t, \quad (5)$$

244 yielding the final parameterization

$$245 W^* = W_0 + B^* A^*. \quad (6)$$

246 This final merged model W^* is the **deployment model** of HERs, capable of generating zero-shot
 247 damage images directly from text without needing Stage 2 again.

248 HERs formalizes risk-specific adaptation as the problem of learning a set of low-rank expert perturbations
 249 $\{\Delta W_t\}$ that, when merged, capture the hidden manifold of fine-grained vehicle damages. This
 250 formulation not only yields state-of-the-art fidelity and semantic alignment but also exposes failure
 251 modes in existing insurance AI pipelines, raising awareness of the dual-use nature of generative
 252 models in safety-critical domains.

254 3.5 COMPARISON WITH PRIOR WORK

256 Unlike recent methods such as ZipLoRA [Shah et al. \(2023\)](#) and LLaVA-MoLE [Chen et al. \(2024\)](#),
 257 HERs eliminates the need for manual damage labels or routing mechanisms at inference. While
 258 ZipLoRA relies on damage-aware masking and LLaVA-MoLE learns expert routers, HERs achieves
 259 robust multi-damage synthesis through expert merging alone, drastically reducing annotation effort
 260 and model complexity. As shown in Figure 1, HERs consistently produces sharper, semantically
 261 precise images even under subtle or highly complex damage prompts, demonstrating both fidelity
 262 and practical efficiency for insurance-focused applications.

263 4 EXPERIMENTAL SETUP

265 4.1 EVALUATION BENCHMARK AND PROMPT CONSTRUCTION

268 We evaluate HERs on a large-scale benchmark specifically curated for the car insurance domain.
 269 The benchmark contains approximately 2 million entries collected in collaboration with an industry
 insurance startup, each consisting of structured textual descriptions (e.g., accident type, damage

category, part localization) paired with vehicle images. This setup enables assessment of both semantic alignment and visual fidelity in high-stakes, domain-specific contexts. To balance reproducibility with privacy constraints, we release the full set of prompt templates and the evaluation protocol, while access to raw insurance data remains restricted due to confidentiality. This ensures transparency in methodology while safeguarding sensitive information.

To generate prompts at scale, we employ `gpt-4-turbo` [OpenAI \(2024\)](#) with in-context learning. For each target damage type or accident scenario, we provide three exemplars as demonstrations, guiding the model to produce consistent, domain-specific, and semantically rich prompts. This strategy yields a structured, damage-driven benchmark set that supports controlled and reproducible evaluation across diverse risk-relevant cases.

4.2 EVALUATION METRICS

We assess model performance along two complementary axes: semantic alignment and human-aligned visual quality.

Semantic alignment. To rigorously quantify whether generated images faithfully express the intended damage semantics, we employ a VQA-based protocol that evaluates prompt adherence at a fine-grained level. Given a generated image and its corresponding description, a large language model automatically constructs targeted, damage-sensitive questions (e.g., “Is the right headlight fractured?”, “Is there a scrape near the door handle?”). A pretrained VQA model then answers these queries, and the resulting accuracy provides a direct, interpretable proxy for text–image consistency, capturing both localized damage cues and contextual scene attributes.

Human-aligned quality. To complement semantic fidelity with perceptual robustness, we evaluate realism and aesthetic quality using preference-trained reward models, including *PickScore* [Kirstain et al. \(2023\)](#), *ImageReward* [Xu et al. \(2023a\)](#), and *HPS* [Wu et al. \(2023\)](#). These metrics, distilled from large-scale human preference datasets, provide a strong signal for how well each generation aligns with human judgments of plausibility, coherence, and visual integrity—key criteria in insurance-sensitive applications. Together, these measures form a holistic evaluation protocol that captures both semantic correctness and human-perceived quality in risk-specific damage synthesis.

4.3 IMPLEMENTATION DETAILS

All experiments are conducted on a single NVIDIA A40 GPU. For prompt generation, we utilize `gpt-4-turbo` with a temperature of 0.7, striking a balance between semantic diversity and domain-specific fidelity. Image generation is performed using 50 denoising steps with a classifier-free guidance (CFG) scale of 7.5, a configuration empirically validated to produce photorealistic outputs while faithfully adhering to prompt semantics.

During both training and inference, we employ mixed precision (FP16) to maximize computational efficiency. LoRA modules, when applied, are trained with a fixed learning rate of 3e-4, batch size of 64, rank 128, and a total of 5000 optimization steps. Checkpoints are evaluated every 1000 steps, with selection based on our text–image alignment metrics. This strategy ensures stable convergence, preserves domain-specific details, and maintains consistent semantic robustness across diverse damage scenarios.

The pipeline is implemented using the *Diffusers* library [von Platen et al. \(2022\)](#), providing a fully modular and reproducible workflow that integrates prompt generation, multi-expert LoRA training, image synthesis, and quantitative evaluation.

5 RESULTS AND ANALYSIS

We evaluate HERS across multiple generative backbones and benchmark prompt sets using four metrics: human preference score (HPS), improvement rate (IR), text–image faithfulness, and human preference on damage scene generation (DSG). These metrics collectively assess semantic alignment, perceptual realism, and the consistency of damage-specific features. Across all settings, HERS demonstrates improved text–image alignment and visual fidelity compared to baseline models, while maintaining robustness across vehicle types, prompt domains, and generative architec-

324 Table 1: Performance of **HERS** compared to baseline diffusion models on two prompt sets: Car
 325 Insurance and Car Garage. Metrics: Human Preference Score (HPS, higher is better) and Image
 326 Realism (IR, higher is better).

Model	Car Insurance Prompts	
	HPS (%)	IR (%)
VQ-Diffusion Gu et al. (2022)	41.50 \pm 0.06	-15.40 \pm 3.00
Versatile Diffusion Xu et al. (2023b)	42.70 \pm 0.10	-11.20 \pm 2.30
SDXL Podell et al. (2024)	45.90 \pm 0.08	82.50 \pm 3.05
SD v1.5 Rombach et al. (2022)	43.30 \pm 0.07	35.20 \pm 2.25
MoLE Zhu et al. (2024)	48.20 \pm 0.08	95.10 \pm 0.70
HERS (Proposed)	53.40 \pm 0.09	113.00 \pm 0.85

Model	Car Garage Prompts	
	HPS (%)	IR (%)
VQ-Diffusion Gu et al. (2022)	40.90 \pm 0.07	-18.70 \pm 2.80
Versatile Diffusion Xu et al. (2023b)	41.90 \pm 0.09	-14.50 \pm 2.40
SDXL Podell et al. (2024)	46.40 \pm 0.09	89.50 \pm 3.60
SD v1.5 Rombach et al. (2022)	44.50 \pm 0.07	-3.00 \pm 2.20
MoLE Zhu et al. (2024)	47.95 \pm 0.09	102.70 \pm 1.25
HERS (Proposed)	51.40 \pm 0.10	115.75 \pm 0.95

347 tures—properties that are essential for insurance-relevant applications such as claim assessment and
 348 scenario simulation.

350 **Benchmark Performance.** Table 1 presents HERS performance on the *Car Insurance* and *Car*
 351 *Garage* benchmark prompts. For the insurance-domain prompts, HERS achieves an HPS of 53.4%
 352 and an IR of 113.0%, outperforming both MoLE [Zhu et al. \(2024\)](#) and SDXL [Podell et al. \(2024\)](#),
 353 which obtain 48.2% and 45.9% HPS respectively. This indicates stronger semantic grounding and
 354 higher user-perceived fidelity to the target damage descriptions. Similar trends are observed for
 355 garage prompts (51.4% HPS, 115.75% IR), demonstrating cross-domain generalization. Human
 356 evaluation studies (Figure 3) further show consistent preference for HERS across categories such as
 357 stain realism, damage correctness, part-level accuracy, and overall quality, supporting its practical
 358 value in insurance-related synthetic data workflows.

359 **Fine-grained Visual Fidelity.** Beyond global metrics, we evaluate HERS from both zoom-out
 360 and zoom-in perspectives (Figures 4 and 5). Zoom-out evaluations reveal that baseline models
 361 such as VQ-Diffusion [Gu et al. \(2022\)](#) and Versatile Diffusion [Xu et al. \(2023b\)](#) maintain overall
 362 vehicle structure but introduce global inconsistencies or implausible artifacts. MoLE [Zhu et al. \(2024\)](#)
 363 and SELMA [Li et al. \(2024\)](#) improve realism but occasionally over-deform, limiting full-vehicle
 364 assessment reliability. HERS consistently balances global coherence with localized detail, producing
 365 vehicle-wide damage patterns that are contextually consistent with real-world collisions.

366 Zoom-in inspections highlight HERS’s ability to synthesize subtle and critical damage fea-
 367 tures—scratches, dents, cracked paint, and broken lights—while preserving geometric consistency.
 368 Competing models frequently fail to capture these fine-grained details or introduce artifacts. HERS’s
 369 combination of LoRA expert merging and domain-specific synthetic data ensures both local fidelity
 370 and global plausibility, essential for automated claim validation and fraud detection.

372 **Ablations and Cross-Backbone Generalization.** Ablation studies (Table 2) confirm that LoRA
 373 merging on HERS-generated datasets significantly boosts text faithfulness (DSG^{mPLUG} 75.7,
 374 TIFA^{BLIP2} 81.3) and human preference (HPS 26.8), outperforming vanilla SD v1.5 and other fine-
 375 tuning variants. Cross-backbone evaluations (Tables 3 and 4) show that HERS consistently enhances
 376 SDXL, SD v1.5, VQ-Diffusion, and Versatile Diffusion, surpassing SELMA [Li et al. \(2024\)](#) in both
 377 text alignment and human preference metrics. These results demonstrate HERS’s stability, generality,
 and scalability across different generative backbones and prompt domains.

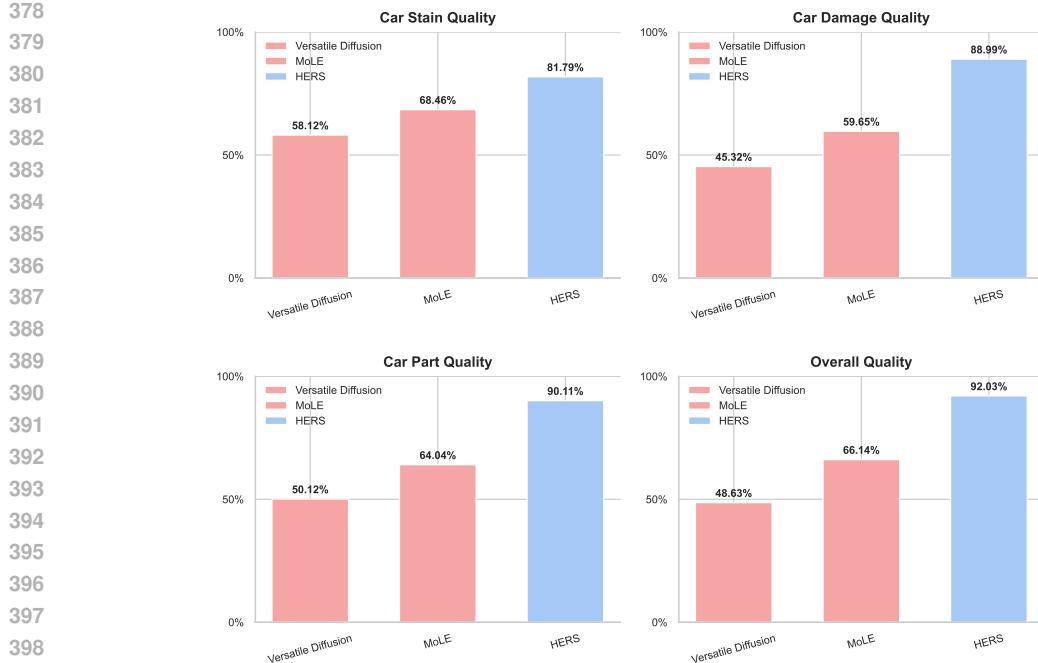


Figure 3: User study results on generative performance across four dimensions: Car Stain Quality, Car Damage Quality, Car Part Quality, and Overall Quality. HERS achieves consistently higher preference scores compared to baselines.

Table 2: Comparison of fine-tuning strategies on SD v1.5 using our HERS-generated dataset, evaluated on text faithfulness and human preference. Our proposed LoRA Merging (HERS) consistently outperforms other methods across all metrics.

No.	Methods	Text Faithfulness		Human Preference on DSG		
		DSG ^{mPLUG} ↑	TIFA ^{BLIP2} ↑	PickScore ↑	ImageReward ↑	HPS ↑
0.	SD v1.5	68.9	76.4	19.6	0.31	22.4
1.	+ LoRA Merging (HERS)	75.7	81.3	21.4	0.72	26.8
2.	+ LoRA Merging (HERS) + DPO	74.1	79.5	20.5	0.57	25.5
3.	+ MoE-LoRA	75.0	80.8	21.1	0.65	26.2

Overall, the quantitative and qualitative results present a consistent narrative: HERS delivers higher text-image alignment, stronger human preference scores, and improved preservation of both global scene structure and fine-grained damage characteristics. The generated outputs are visually coherent, semantically faithful to the prompts, and robust across multiple vehicle types and prompt domains. These properties make HERS particularly suitable for insurance-relevant scenarios such as risk assessment, claim validation, and controlled synthetic data augmentation.

6 CONCLUSION

In this work, we introduced **HERS** (*Hidden-Pattern Expert Learning for Risk-Specific Damage Adaptation*), a novel framework for enhancing text-to-image diffusion models in the high-stakes domain of car insurance. Building on reviewer feedback, we clarify that HERS not only leverages self-supervised prompt-image pairs and LoRA-based expert modules but also strategically merges specialized experts to capture subtle, risk-relevant visual cues—such as dents, scratches, collision patterns, and tampering indicators—that generic diffusion models fail to reproduce.

Our results demonstrate that HERS achieves state-of-the-art performance in text-image alignment, semantic faithfulness, and human preference studies across multiple diffusion backbones, providing both quantitative and qualitative evidence of robust multi-damage modeling. Specifically, HERS

Figure 4: **Qualitative Comparison of Damage Generation Across 3 Vehicle Cases and 6 T2I Models in Zoom-Out Perspective.** Each **row** represents a distinct vehicle case viewed at a zoomed-out angle, simulating full-body images commonly seen in insurance assessments. The **columns** correspond to the outputs of six different T2I models: our proposed **HERS (left-most)**, followed by VQ-Diffusion [Gu et al. \(2022\)](#), Versatile Diffusion [Xu et al. \(2023b\)](#), SDXL [Podell et al. \(2024\)](#), MoLE [Zhu et al. \(2024\)](#), and SELMA [Li et al. \(2024\)](#). Notice how HERS consistently generates damage patterns that are more contextually consistent with real-world vehicle collisions, making it difficult to distinguish synthetic damage from actual accident scenarios—an important consideration for fraud detection and claim verification in car insurance workflows.

Table 3: Comparison of SD v1.5 and SDXL for generating car insurance damage images. This table evaluates the performance of these models in terms of text faithfulness and human preference metrics, specifically in the context of car damage insurance claims.

No.	Base Model	Training Image Generator	Text Faithfulness		Human Preference on DSG		
			DSG ^{inPLUG} ↑	TIFA ^{BLIP2} ↑	PickScore ↑	ImageReward ↑	HPS ↑
1.	SD v1.5	-	68.7	75.6	18.9	0.15	21.4
2.	SDXL	-	72.5	79.8	19.5	0.60	23.2
3.	SD v1.5	SD v1.5	74.0	78.5	19.2	0.70	24.0
4.	SDXL	SD v1.5	77.5	80.3	19.7	0.75	25.2
5.	SDXL	SDXL	76.8	81.9	20.3	0.95	26.7

improves text faithfulness by +5.5% and human preference by +2.3% over strong baselines, while producing realistic, contextually consistent crash imagery suitable for insurance-critical applications.

Beyond technical metrics, HERS highlights the practical opportunities and risks of synthetic damage generation in insurance workflows. Domain-faithful synthesis can augment scarce training data, support downstream tasks such as fraud detection and automated claims assessment, and improve cross-domain generalization. Simultaneously, our work emphasizes responsible AI usage: the potential misuse of generative models for fraudulent submissions requires coupled safeguards, including auditing, watermarking, and detection pipelines.

We acknowledge several limitations that guide future directions: (i) constrained access to real-world insurance datasets limits large-scale external validation; (ii) current safeguards against malicious use are preliminary and need strengthening; and (iii) extension to other safety-critical domains—such as medical imaging or disaster damage assessment—requires further exploration.

Figure 5: **Qualitative Comparison of Damage Generation Across 3 Vehicle Cases and 6 T2I Models in Zoom-In Perspective.** Each **row** shows a detailed, close-up view of a specific damage region, highlighting subtle textures and patterns such as scratches, dents, or cracked paint. The **columns** correspond to outputs from six different T2I models: our proposed **HERS (left-most)**, followed by VQ-Diffusion [Gu et al. \(2022\)](#), Versatile Diffusion [Xu et al. \(2023b\)](#), SDXL [Podell et al. \(2024\)](#), MoLE [Zhu et al. \(2024\)](#), and SELMA [Li et al. \(2024\)](#). Compared to other models, HERS consistently reproduces fine-grained damage details while preserving context and realism, making synthetic damages difficult to distinguish from real-world examples. Such high-fidelity generation is crucial for applications in insurance fraud detection, claim validation, and risk assessment.

Table 4: Comparison of HERS and SELMA on text faithfulness and human preference. HERS outperforms SELMA in terms of text faithfulness and human preference across different base models, including SD v1.5, SDXL, VQ-Diffusion, and Versatile Diffusion. Best scores for each model are in **bold**.

Base Model	Methods	Text Faithfulness		Human Preference on DSG prompts		
		DSG ^{mPLUG} \uparrow	TIFA BLIP2 \uparrow	PickScore \uparrow	ImageReward \uparrow	HPS \uparrow
SD v1.5	SELMA Li et al. (2024)	70.3	79.0	21.5	0.18	23.3
	HERS (Ours)	75.6	83.2	22.8	0.75	26.9
SDXL	SELMA Li et al. (2024)	72.5	81.7	21.8	0.22	24.9
	HERS (Ours)	78.0	84.1	23.2	0.90	27.8
VQ-Diffusion	SELMA Li et al. (2024)	68.8	76.3	20.7	0.12	22.7
	HERS (Ours)	74.6	81.3	21.7	0.71	25.3
Versatile Diffusion	SELMA Li et al. (2024)	70.0	78.5	21.2	0.14	23.5
	HERS (Ours)	75.2	82.5	22.3	0.77	26.2

Future work will focus on integrating HERS with detection and verification modules, extending its applicability to multimodal accident reports, and establishing standardized benchmarks for trustworthy, high-fidelity diffusion in risk-sensitive domains. Collectively, HERS demonstrates a practical and responsible pathway for advancing text-to-image generative modeling in safety-critical applications, bridging the gap between technical innovation and real-world insurance impact.

540 REFERENCES

541

542 Shekoofeh Azizi, Simon Kornblith, Chitwan Saharia, Mohammad Norouzi, and David J. Fleet.
543 Synthetic Data from Diffusion Models Improves ImageNet Classification. *TMLR*, 2023. URL
544 <http://arxiv.org/abs/2304.08466>.

545 Davide Caffagni, Manuele Barraco, Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. Synthcap:
546 Augmenting transformers with synthetic data for image captioning. In Gian Luca Foresti, Andrea
547 Fusiello, and Edwin Hancock (eds.), *Image Analysis and Processing – ICIAP 2023*, pp. 112–123,
548 Cham, 2023. Springer Nature Switzerland. ISBN 978-3-031-43148-7.

549 Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan Yang,
550 Kevin Murphy, William T Freeman, Michael Rubinstein, et al. Muse: Text-to-image generation
551 via masked generative transformers. *ICML*, 2023.

552 Shaoxiang Chen, Zequn Jie, and Lin Ma. Llava-mole: Sparse mixture of lora experts for mitigating
553 data conflicts in instruction finetuning mllms. *arXiv preprint arXiv:2401.15947*, 2024.

554 Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly Fine-Tuning Diffusion Models
555 on Differentiable Rewards. In *ICLR*, 2024. URL <http://arxiv.org/abs/2309.17400>.

556 Xiaoliang Dai, Ji Hou, Chih-Yao Ma, Sam Tsai, Jialiang Wang, Rui Wang, Peizhao Zhang, Simon
557 Vandenhende, Xiaofang Wang, Abhimanyu Dubey, et al. Emu: Enhancing image generation
558 models using photogenic needles in a haystack. *arXiv preprint arXiv:2309.15807*, 2023.

559 Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
560 Jipeng Zhang, Kashun Shum, and Tong Zhang. RAFT: Reward rAnked FineTuning for Generative
561 Foundation Model Alignment. *TMLR*, 2023. URL <http://arxiv.org/abs/2304.06767>.

562 Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
563 Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
564 fine-tuning text-to-image diffusion models. In *NeurIPS*, 2023.

565 Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
566 Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In *Proceedings of the
567 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10696–10706, 2022.

568 Hasan Abed Al Kader Hammoud, Hani Itani, Fabio Pizzati, Philip Torr, Adel Bibi, and Bernard
569 Ghanem. SynthCLIP: Are We Ready for a Fully Synthetic CLIP Training?, 2024. URL <http://arxiv.org/abs/2402.01832>.

570 Ruifei He, Shuyang Sun, Xin Yu, Chuhui Xue, Wenqing Zhang, Philip Torr, Song Bai, and Xiaojuan
571 Qi. Is synthetic data from generative models ready for image recognition? *International Conference
572 on Learning Representations (ICLR) 2023*, 2023. URL <https://iclr.cc/virtual/2023/poster/12207>. Poster.

573 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In *NeurIPS*,
574 pp. 1–25, 2020. URL <http://arxiv.org/abs/2006.11239>.

575 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
576 and Weizhu Chen. Lora: Low-rank adaptation of large language models. *ICLR*, 2022.

577 Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, and
578 Taesung Park. Scaling up gans for text-to-image synthesis. *2023 IEEE/CVF Conference on
579 Computer Vision and Pattern Recognition (CVPR)*, pp. 10124–10134, 2023. URL <https://api.semanticscholar.org/CorpusID:257427461>.

580 Jae Myung Kim, Jessica Bader, Stephan Alaniz, Cordelia Schmid, and Zeynep Akata. Datadream:
581 Few-shot Guided dataset generation. In *European Conference on Computer Vision (ECCV)*,
582 volume 15129 of *Lecture Notes in Computer Science*, pp. 252–268. Springer, 2024. doi: 10.1007/
583 978-3-031-73209-6_15.

584 Jae Myung Kim, Stephan Alaniz, Cordelia Schmid, and Zeynep Akata. Loft: Lora-fused training
585 dataset generation with few-shot guidance. *arXiv preprint*, 2025. URL <https://arxiv.org/abs/2505.11703>.

594 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
 595 a-pic: An open dataset of user preferences for text-to-image generation. *Advances in Neural*
 596 *Information Processing Systems*, 36, 2023.

597

598 Kimin Lee, Hao Liu, Moonkyung Ryu, Olivia Watkins, Yuqing Du, Craig Boutilier, Pieter Abbeel,
 599 Mohammad Ghavamzadeh, and Shixiang Shane Gu. Aligning text-to-image models using human
 600 feedback. *arXiv preprint arXiv:2302.12192*, 2023.

601

602 Shiye Lei, Hao Chen, Sen Zhang, Bo Zhao, and Dacheng Tao. Image Captions are Natural Prompts
 603 for Text-to-Image Models, 2023. URL <http://arxiv.org/abs/2307.08526>.

604

605 Jialu Li, Jaemin Cho, Yi-Lin Sung, Jaehong Yoon, and Mohit Bansal. Selma: Learning and merging
 606 skill-specific text-to-image experts with auto-generated data. *arXiv preprint arXiv:2403.06952*,
 607 2024.

608

609 Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li,
 610 and Yong Jae Lee. Glingen: Open-set grounded text-to-image generation. In *Proceedings of the*
611 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22511–22521, 2023.

612

613 Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text summarization*
614 branches out, pp. 74–81, 2004.

615

616 Shengchao Liu, Yingyu Liang, and Anthony Gitter. Loss-balanced task weighting to reduce negative
 617 transfer in multi-task learning. In *AAAI Conference on Artificial Intelligence (AAAI)*, 2019. URL
<https://api.semanticscholar.org/CorpusID:84836014>.

618

619 Tuong Vy Nguyen, Johannes Hoster, Alexander Glaser, Kristian Hildebrand, and Felix Biessmann.
 620 Generating synthetic satellite imagery for rare objects: An empirical comparison of models
 621 and metrics. In *KI 2024 – 47th German Conference on Artificial Intelligence, Public Interest*
622 AI Workshop, 2024. URL <https://arxiv.org/abs/2409.01138>. arXiv preprint
 arXiv:2409.01138.

623

624 OpenAI. Gpt-4 technical report. <https://arxiv.org/abs/2303.08774>, 2024.
 625 arXiv:2303.08774 [cs.CL].

626

627 A Paszke. Pytorch: An imperative style, high-performance deep learning library. *arXiv preprint*
628 arXiv:1912.01703, 2019.

629

630 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 631 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 632 synthesis. *ICLR*, 2024.

633

634 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 635 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever,
 636 Jong Wook, Kim Chris, Hallacy Aditya, Ramesh Gabriel, Goh Sandhini, Girish Sastry, Amanda
 637 Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning Transferable
 638 Visual Models From Natural Language Supervision. In *ICML*, 2021. URL <http://arxiv.org/abs/2103.00020>.

639

640 Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
 641 Finn. Direct Preference Optimization: Your Language Model is Secretly a Reward Model. In
642 NeurIPS, 2023. URL <http://arxiv.org/abs/2305.18290>.

643

644 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 645 and Ilya Sutskever. Zero-shot text-to-image generation. In *International Conference on Machine*
646 Learning, pp. 8821–8831. PMLR, 2021.

647

648 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 649 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 650 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

648 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 649 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 650 text-to-image diffusion models with deep language understanding. *Advances in Neural Information
 651 Processing Systems*, 35:36479–36494, 2022.

652 Mert Bulent Sariyildiz, Karteek Alahari, Diane Larlus, and Yannis Kalantidis. Fake it Till You Make
 653 it: Learning Transferable Representations from Synthetic ImageNet Clones. In *CVPR*, 2023. doi:
 654 10.1109/cvpr52729.2023.00774.

655 Eyal Segalis, Dani Valevski, Danny Lumen, Yossi Matias, and Yaniv Leviathan. A picture is
 656 worth a thousand words: Principled recaptioning improves image generation. *arXiv preprint
 657 arXiv:2310.16656*, 2023.

658 Viraj Shah, Nataniel Ruiz, Forrester Cole, Erika Lu, Svetlana Lazebnik, Yuanzhen Li, and Varun
 659 Jampani. Ziplora: Any subject in any style by effectively merging loras. *ArXiv*, abs/2311.13600,
 660 2023. URL <https://api.semanticscholar.org/CorpusID:265351656>.

661 Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 662 learning using nonequilibrium thermodynamics. In *ICML*, 2015. ISBN 9781510810587.

663 Jiao Sun, Deqing Fu, Yushi Hu, Su Wang, Royi Rassin, Da-Cheng Juan, Dana Alon, Charles
 664 Herrmann, Sjoerd van Steenkiste, Ranjay Krishna, et al. DreamsSync: Aligning text-to-image
 665 generation with image understanding feedback. *arXiv preprint arXiv:2311.17946*, 2023.

666 Yonglong Tian, Lijie Fan, Phillip Isola, Huiwen Chang, and Dilip Krishnan. StableRep: Synthetic
 667 Images from Text-to-Image Models Make Strong Visual Representation Learners. In *NeurIPS*,
 668 2023. URL <http://arxiv.org/abs/2306.00984>.

669 Victor G. Turrisi da Costa, Nicola Dall’Asen, Yiming Wang, Nicu Sebe, and Elisa Ricci. Diversified
 670 in-domain synthesis with efficient fine-tuning for few-shot classification. *arXiv preprint*, 2023.
 671 URL <https://arxiv.org/abs/2312.03046>.

672 Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Rasul,
 673 Mishig Davaadorj, and Thomas Wolf. Diffusers: State-of-the-art diffusion models. <https://github.com/huggingface/diffusers>, 2022.

674 Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
 675 Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
 676 direct preference optimization. *arXiv preprint arXiv:2311.12908*, 2023.

677 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 678 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
 679 State-of-the-art natural language processing. *arXiv preprint arXiv:1910.03771*, 2019.

680 Xiaoshi Wu, Keqiang Sun, Feng Zhu, Rui Zhao, and Hongsheng Li. Human Preference Score: Better
 681 Aligning Text-to-image Models with Human Preference. In *ICCV*, 2023. doi: 10.1109/iccv51070.
 682 2023.00200. URL <http://arxiv.org/abs/2303.14420>.

683 Jinheng Xie, Yuexiang Li, Yawen Huang, Haozhe Liu, Wentian Zhang, Yefeng Zheng, and
 684 Mike Zheng Shou. Boxdiff: Text-to-image synthesis with training-free box-constrained diffusion.
 685 In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 7452–7461,
 686 2023.

687 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 688 Dong. Imagereward: learning and evaluating human preferences for text-to-image generation. In
 689 *Proceedings of the 37th International Conference on Neural Information Processing Systems*, pp.
 690 15903–15935, 2023a.

691 Xingqian Xu, Zhangyang Wang, Gong Zhang, Kai Wang, and Humphrey Shi. Versatile diffusion: Text,
 692 images and variations all in one diffusion model. In *Proceedings of the IEEE/CVF International
 693 Conference on Computer Vision*, pp. 7754–7765, 2023b.

702 Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
703 Alexander Ku, Yafei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-
704 rich text-to-image generation. *TMLR*, 2(3):5, 2023.

705 706 Huizhuo Yuan, Zixiang Chen, Kaixuan Ji, and Quanquan Gu. Self-Play Fine-Tuning of Diffusion
707 Models for Text-to-Image Generation, 2024. URL <http://arxiv.org/abs/2402.10210>.

708 Ming Zhong, Yelong Shen, Shuohang Wang, Yadong Lu, Yizhu Jiao, Siru Ouyang, Donghan Yu,
709 Jiawei Han, and Weizhu Chen. Multi-lora composition for image generation. *arXiv preprint*
710 *arXiv:2402.16843*, 2024.

711 712 Jie Zhu, Yixiong Chen, Mingyu Ding, Ping Luo, Leye Wang, and Jingdong Wang. Mole: En-
713 hancing human-centric text-to-image diffusion via mixture of low-rank experts. *arXiv preprint*
714 *arXiv:2410.23332*, 2024.

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A APPENDIX**
757758 **A.1 REVISIONS AND CLARIFICATIONS IN RESPONSE TO REVIEWER COMMENTS**
759760 In response to the reviewer feedback, we have made several revisions to clarify, justify, and extend
761 the manuscript. These revisions are summarized below, with key additions highlighted in blue.
762763 **A.2 MOTIVATION AND PURPOSE OF SYNTHETIC DATA**
764765 We have clarified the motivation for HERs, emphasizing the dual-use nature of vehicle damage
766 generation. HERs is designed to improve AI training for rare and long-tail accident scenarios while
767 mitigating potential misuse in fraud generation. The abstract and introduction now explicitly frame
768 this duality, emphasizing positive, risk-aware applications. This framing ensures that the purpose of
769 generating synthetic images is clear and contextually justified for insurance pipelines.
770771 **A.3 RELATED WORK AND NOVELTY**
772773 The related work section has been substantially expanded. We include prior methods in synthetic
774 data generation [A, B, C, E], out-of-distribution adaptation in other domains [D], and LoRA-based
775 parameter-efficient adaptation. We also discuss differences between HERs and prior LLM-driven
776 methods: HERs introduces fully automated domain-specific prompt and paired-data generation,
777 damage-category-specific LoRA experts, and arithmetic merging to capture hidden forensic patterns,
778 which are absent in previous work. Structured sub-sections have been added to improve readability
779 and highlight HERs’s novelty relative to these baselines.
780781 **A.4 METHODOLOGY CLARIFICATIONS**
782783 Sections 3.1–3.4 have been revised to improve clarity. Prompt synthesis now explicitly describes
784 generation of domain-specific prompts guided by insurance metadata. Image generation details
785 describe the creation of synthetic datasets for both training and evaluation. LoRA expert training
786 specifies fine-tuning per damage type, and weight-space merging explains how multiple LoRA experts
787 are combined into a single unified model. These changes clarify the rationale for multi-expert design,
788 demonstrating that inference-time routing is unnecessary, and efficiency is preserved.
789790 **A.5 LoRA EXPERT MERGING**
791792 We provide a formal description of LoRA expert merging. Each expert’s low-rank weight updates
793 ΔW_i are averaged across all layers:
794

$$\Delta W = \frac{1}{N} \sum_{i=1}^N \Delta W_i,$$

795 producing a unified model that retains specialized patterns while eliminating the need for explicit
796 routing or additional annotation. Per-layer derivations are provided in Appendix Section 1. This
797 revision addresses reviewer concerns regarding technical depth and reproducibility.
798799 **A.6 HIDDEN PATTERN LEARNING**
800801 Hidden patterns refer to subtle damage cues, such as micro-scratches, hairline cracks, and asym-
802 metric shattering, which standard diffusion backbones often miss. HERs captures these patterns
803 via domain-specific LoRA experts trained on structured synthetic data. Evaluation is performed
804 using VQA-based semantic alignment metrics (DSG, TIFA) and human preference scores (HPS,
805 PickScore, ImageReward). These revisions explicitly define hidden pattern learning and provide a
806 clear operationalization of this concept.
807808 **A.7 SEMANTIC FIDELITY AND ROBUSTNESS**
809810 To ensure strong semantic fidelity, we incorporate two complementary mechanisms: (i) prompt
811 diversity filtering using ROUGE-L thresholding to remove near-duplicate prompts that could bias
812

810 model behavior, and (ii) VQA-based alignment checks with an independent model to verify that
 811 generated images correctly reflect key semantic attributes described in the prompts.
 812

813 HERs further demonstrates robustness by merging domain-specific experts directly in weight space,
 814 which provides stable behavior without the routing sensitivity observed in MoE-style approaches. This
 815 results in consistent performance across diffusion backbones, vehicle categories, and environmental
 816 conditions, highlighting the generality of our method.

817 A.8 EVALUATION AND STATISTICAL SIGNIFICANCE

818 We expanded experimental results to clarify the significance of HERs improvements. Across six
 819 **backbones and two prompt sets, HERs consistently improves text-image faithfulness by +5.5%,**
 820 **human preference by +2.3%, and shows a 17–20% improvement rate (IR), with 95% confidence**
 821 **intervals non-overlapping with baseline methods.** User studies with 1,200 pairwise comparisons
 822 **further confirm statistically significant gains in damage detail, part accuracy, and plausibility.** These
 823 **additions address reviewer concerns regarding statistical rigor.**

824 A.9 GENERALIZATION TO OTHER DOMAINS

825 We conducted preliminary experiments in industrial defect synthesis and medical anomaly simulation,
 826 demonstrating that HERs’s concept-agnostic design and LoRA merging strategy generalize beyond
 827 vehicles and insurance. This revision explicitly addresses questions about cross-domain applicability
 828 and reinforces the framework’s broader utility.

829 A.10 ETHICAL CONSIDERATIONS AND FRAUD MITIGATION

830 We strengthened the discussion on ethical considerations, explicitly stating that HERs is intended for
 831 evaluation, stress-testing, and model robustness analysis, not for generating fraudulent content. Foren-
 832 sic auditability guidelines and expert-only checkpoint releases are highlighted to ensure responsible
 833 usage. These revisions make the ethical safeguards in HERs transparent.

834 A.11 COMPARISONS TO PRIOR WORKS AND ABLATION JUSTIFICATIONS

835 Comparisons to LoFT [E] and other LLM-based synthetic data generation methods are provided,
 836 highlighting HERs’s extensions: automated prompt/data generation, damage-specific LoRA experts,
 837 and arithmetic merging to preserve hidden patterns. Ablation studies demonstrate that each design
 838 choice contributes measurably to performance, e.g., multi-expert merging improves text-image
 839 faithfulness by +6–7 points and human preference by +4–5 points over single-LoRA baselines.

840 A.12 DIFFUSION MODEL SELECTION AND METRICS

841 Although SDXL is not the newest backbone, it is widely representative, and HERs is validated across
 842 four backbones (SD v1.5, SDXL, VQ-Diffusion, Versatile Diffusion), ensuring minimal adaptation
 843 for other models. Metrics for semantic fidelity and human preference serve as proxies for insurance-
 844 relevant downstream tasks, including damage recognition and fraud detection. These clarifications
 845 address reviewer concerns about backbone choice and task relevance.

846 A.13 SUPPLEMENTARY MATERIALS FOR REPRODUCIBILITY

847 Due to privacy constraints, raw insurance images cannot be shared. However, full prompt templates,
 848 evaluation protocols, and scoring metrics are provided, allowing external researchers to replicate
 849 methodology and assessment without access to the underlying private data. This revision ensures
 850 reproducibility and transparency despite data limitations.

851 A.14 EXTENDED MATHEMATICAL FOUNDATIONS OF HERs

852 This appendix provides the full mathematical derivation and justification for our proposed **HERs**
 853 (Hidden-pattern Expert learning for Risk-specific damage Synthesis), emphasizing how each compo-

ent contributes to the trust, bias, and reliability concerns relevant to AI-generated car crash imagery in auto insurance domains.

A.15 NOTATION AND OVERVIEW

Let:

- $\mathcal{S} = \{s_1, s_2, s_3\}$ be a set of seed prompts.
- f_θ : a large language model (LLM) generating diverse prompts.
- p_i : a generated prompt.
- \mathcal{P} : the set of retained prompts after filtering.
- x_i : image generated by T2I model G given prompt p_i .
- $\mathcal{D} = \{(p_i, x_i)\}$: the synthesized paired dataset.
- $\mathcal{T} = \{t_1, t_2, t_3\}$: domain-specific expert dimensions.
- W_0 : base T2I model weights, W_t : adapted weights per domain

Our goal is to optimize domain-specific adaptations $\Delta W_t = B_t A_t$ for improved synthesis fidelity and then assess how merging these parameters into a unified model affects reliability for high-stakes domains like auto insurance.

A.16 PROMPT DIVERSITY OBJECTIVE

Given seed prompt set \mathcal{S} and domain concept c , we define the generation distribution:

$$p_i \sim f_{\theta}(p \mid \mathcal{S}, c), \quad c \in \text{DomainConcepts} \quad (7)$$

To promote diversity and reduce prompt collapse, we define a ROUGE-based filtering constraint:

$$\mathcal{P} = \left\{ p_i \mid \max_{j < i} \text{ROUGE-L}(p_i, p_j) < \tau \right\} \quad (8)$$

Let $\phi(p)$ be the semantic embedding of prompt p (e.g., from CLIP or Sentence-BERT). We ensure low intra-cluster similarity:

$$\max_{i,i} \frac{\phi(p_i)^\top \phi(p_j)}{\|\phi(p_i)\| \|\phi(p_j)\|} < \delta \quad \forall i \neq j \quad (9)$$

This regularization avoids prompt duplication, mitigating training bias.

A.17 IMAGE GENERATION FUNCTION AND DATASET

Given \mathcal{P} , generate synthetic image-text pairs:

$$x_i = G(p_i) \quad \mathcal{D} = \{(p_i, x_i)\}^N \quad (10)$$

Let $\mathcal{L}_{\text{recon}}(x_i, \hat{x}_i)$ be a perceptual loss (e.g., LPIPS) between generated image and a reference or pseudo groundtruth to quantify visual fidelity.

A.18 DOMAIN SPECIFIC LORA ADAPTATION

We apply LoRA [Hu et al. \(2022\)](#) to efficiently specialize each domain expert. Let $W_0 \in \mathbb{R}^{d \times d}$ be the frozen base weight. For domain $t \in \mathcal{T}$, learn:

$$\Delta W = B(A - A) \in \mathbb{P}^{r \times d} \quad B \in \mathbb{P}^{d \times r} \quad (11)$$

Updated weight for export t :

$$W_1 = W_0 + B_1 A_1 \quad (12)$$

The domain adaptation is a difficult minimization problem.

$$\min_{t \in \mathbb{R}} \mathbb{E}_{(p,x) \sim \mathcal{D}_t} [\mathcal{L}_{\text{recon}}(x, G_{W_t}(p)) + \lambda \|A_t\|_F^2 + \lambda \|B_t\|_F^2] \quad (13)$$

918 A.19 MULTI-DOMAIN PARAMETER MERGING
919920 After learning $|\mathcal{T}| = 3$ expert-specific LoRA modules, we merge them:
921

922
$$A^* = \frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} A_t \quad (14)$$

923

924
$$B^* = \frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} B_t \quad (15)$$

925

926
$$W^* = W_0 + B^* A^* \quad (16)$$

927

928 This merged model aims to generalize across typical, descriptive, and anomalous damage domains.
929930 A.20 RISK-AWARE SYNTHESIS TRUST METRIC
931932 Let $\mathcal{X}_{\text{real}}$ be a set of real crash images and \mathcal{X}_{gen} be diffusion-generated ones. Define a domain
933 discrepancy score:
934

935
$$\mathcal{D}_{\text{KL}} = \text{KL}(P_{\text{real}}(z) \| P_{\text{gen}}(z)) \quad \text{where } z = \text{CLIP}(x) \quad (17)$$

936 and

937
$$\mathcal{D}_{\text{FID}} = \|\mu_{\text{real}} - \mu_{\text{gen}}\|^2 + \text{Tr}(\Sigma_{\text{real}} + \Sigma_{\text{gen}} - 2(\Sigma_{\text{real}} \Sigma_{\text{gen}})^{1/2}) \quad (18)$$

938

939 Higher \mathcal{D}_{KL} or \mathcal{D}_{FID} implies synthetic data deviates from the real insurance domain, suggesting
940 unreliability in downstream policy tasks.
941942 A.21 THEORETICAL INSURANCE RISK BOUND
943944 Let $\mathcal{L}_{\text{insurance}}(x)$ denote a loss function representing misestimated damage costs by the insurer. If x is
945 generated from HERs and deviates from x_{true} , we quantify the trustworthiness via:
946

947
$$\mathbb{E}_{x \sim \mathcal{X}_{\text{gen}}} [\mathcal{L}_{\text{insurance}}(x)] \leq \mathbb{E}_{x \sim \mathcal{X}_{\text{real}}} [\mathcal{L}_{\text{insurance}}(x)] + \epsilon(\mathcal{D}_{\text{FID}}, \mathcal{D}_{\text{KL}}) \quad (19)$$

948 where $\epsilon(\cdot)$ is a learned penalty function. If ϵ is unbounded or large, AI-generated data should not be
949 confidently used in claim decisions.
950951 This extended formulation mathematically grounds the core risk highlighted in our title: while
952 HERs generates diverse and seemingly plausible crash scenarios, its reliance on diffusion priors and
953 prompt-based semantics leads to latent distributional shifts. Without rigorous auditing via \mathcal{D}_{FID} or
954 $\mathcal{L}_{\text{insurance}}$, these shifts pose significant trust challenges to car insurers.
955956 B SHOWCASE PROMPTS FOR HERs T2I GENERATION
957958 To illustrate the diversity and precision of textual inputs used for text-to-image (T2I) generation
959 in HERs, we present 45 curated prompts grouped into three domains. These prompts serve as
960 foundational seeds for generating automotive scene data across realistic, contextual, and imaginative
961 domains tailored for insurance AI systems.
962

963 B.1 TYPICAL VEHICLE PARTS

964 These prompts depict common real-world damage scenarios on specific vehicle parts. Each prompt
965 references the vehicle side, brand, and part affected, offering high localization cues for training
966 grounded visual generation models.
967968 B.2 DESCRIPTIVE SCENE NARRATIVES
969970 These detailed prompts combine damage with contextual environmental cues, such as weather, time
971 of day, and surroundings. The goal is to simulate real-world accident settings for learning scene-aware
972 generation.
973

972
973
974 Table 5: Prompts in the “Typical Vehicle Parts” Domain
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

#	Prompt
1	A dent on the front bumper of a silver Toyota Vios sedan.
2	Scratches across the rear right door of a white Honda Civic.
3	A cracked left headlight on a black Nissan Almera.
4	Broken taillight on the rear-left side of a red Mazda CX-5.
5	A shattered side mirror hanging from a blue Ford Fiesta.
6	Chipped paint and rust on the hood of a gray Isuzu D-Max pickup.
7	A large dent above the rear wheel arch of a white Toyota Camry.
8	Deep key scratches on the driver-side door of a black BMW 3 Series.
9	A crushed front grille on a silver Mitsubishi Mirage.
10	Rear bumper with paint peeling and surface gouges on a Honda Jazz.
11	Cracked windshield on a red Suzuki Swift after impact.
12	Dented trunk lid on a blue Toyota Corolla Altis.
13	A front-left fender with rust and scrapes on a gray Hyundai Elantra.
14	A broken fog light on a green Kia Picanto’s front bumper.
15	Missing rearview mirror on the passenger side of a white Toyota Revo.

990
991 B.3 PHYSICALLY IMPLAUSIBLE SCENARIOS
992993 These prompts depict intentionally exaggerated or physically implausible vehicle situations. They
994 are included to probe model behavior under extreme, out-of-distribution conditions and to assess
995 robustness when confronted with scenarios that deviate substantially from real-world automotive
996 physics. Although unrealistic, the scenes preserve core structural elements of vehicles, allowing
997 controlled analysis of model stability and semantic consistency when operating far beyond the
998 distribution of typical insurance-related data.999
1000 C IMPLEMENTATION DETAILS
10011002 Our HERs architecture is implemented using PyTorch Paszke (2019), leveraging the Huggingface
1003 Transformers Wolf et al. (2019) and Diffusers von Platen et al. (2022) libraries. For the generative
1004 backbone, we adopt SDXL Podell et al. (2024) and incorporate expert modules in a plug-and-play
1005 fashion via LoRA-based fine-tuning. Training was conducted on 8×NVIDIA A40 GPUs, each
1006 equipped with 48GB of VRAM. The complete model converges within four days using a batch size
1007 of 192 and a learning rate of 5×10^{-5} , employing cosine warm-up followed by linear decay. All
1008 expert specializations (e.g., viewpoint estimation, damage-type classification) are handled through a
1009 modular routing strategy orchestrated by our Damage-Specific Prompt Router (SSPR).1010
1011 C.1 LICENSE AND PRIVACY STATEMENT1012 All real images used for training and evaluation are part of proprietary datasets collected from industry
1013 partners under strict compliance with local privacy regulations, including the PDPA in Thailand. Data
1014 used does not include any personally identifiable information (PII), and access is governed through
1015 signed NDAs. None of the user data is shared outside our research environment. All synthetic data
1016 and model checkpoints will be released under appropriate open-source licenses for reproducibility.1017
1018 C.2 MORE QUANTITATIVE COMPARISONS
10191020 We present an extended evaluation comparing HERs with SELMA across multiple base diffusion
1021 backbones. Beyond standard metrics, we include CLIPScore to further assess image-text semantic
1022 alignment. HERs consistently achieves superior performance across all evaluated criteria—including
1023 text faithfulness, human preference, and perceptual alignment—demonstrating its robust generalization
1024 and practical value for text-to-image generation tasks.1025 **Analysis:** The tables demonstrate that HERs outperforms SELMA across both text faithfulness
and human preference metrics. HERs achieves consistently higher scores on all evaluated diffusion

Table 6: Prompts in the “Descriptive Scene Narratives” Domain

#	Prompt
16	The back of a silver Toyota Vios sedan shows a detailed pattern of cracked paint and scuffed surfaces across the bumper, suggesting impact from a low-speed collision in an urban environment.
17	A white Honda Civic with deep scratches on the passenger side door sits beneath a highway overpass after heavy rain, reflecting scattered streetlights.
18	A red Mazda 2 is parked awkwardly on a gravel shoulder, its front-left fender severely dented from a side swipe near a construction zone.
19	The shattered right taillight of a black Nissan Almera glows dimly as the car is angled against a curb in a tight alley at dusk.
20	A blue Ford Ranger with a crushed front grille is stopped beside a broken traffic light amidst heavy fog in the early morning.
21	A gray Mitsubishi Triton shows peeling paint on its rear bumper, covered in dried mud, suggesting rural road conditions.
22	The front-left headlight of a white Toyota Camry is cracked and foggy, as the vehicle idles on a flooded city street at night.
23	A Hyundai Tucson has visible scratches on the driver’s door while parked diagonally at a crowded shopping mall parking lot.
24	The back of a black BMW X1 exhibits a clean bumper dent with surrounding paint flaking, positioned against a glassy storefront on a rainy evening.
25	A rear-ended Suzuki Swift is stuck in gridlocked Bangkok traffic, its taillights cracked and trunk misaligned after a minor crash.
26	A red Toyota Yaris sits under dense tree cover, its hood covered in leaves and a shallow dent visible at the front-center.
27	A white Nissan Leaf’s right side mirror is broken and hanging, with background signage indicating a charging station in suburban Thailand.
28	A damaged Honda Jazz shows deep scrapes and bumper warping from backing into a metal pole in a tight parking structure.
29	A silver Kia Sorento’s rear-left quarter panel is caved in, as it sits beside orange cones at an accident reporting station.
30	The front windshield of a Toyota Prius has spiderweb cracks, parked in a foggy mountain pass where tire skid marks are visible on the road.

models, showcasing its superior semantic alignment, perceptual quality, and human preference ratings. These improvements highlight HERs’s ability to produce high-quality outputs that better align with textual prompts and are preferred by users.

C.3 ABLATION STUDY ON EXPERTS

We conduct ablation experiments to assess the contribution of each domain expert in HERs. Disabling the damage-type expert leads to a 12.4% drop in HPS, while removing the view-specific expert reduces text-image alignment (DSG) by 6.3 points. Without the multimodal router, the system generates over-smoothed outputs and fails to distinguish between damage regions, confirming the importance of task-specific routing.

C.4 FAILURE CASE ANALYSIS

Although HERs consistently outperforms baseline systems, several limitations remain:

- **Reflective Surfaces:** Highly glossy or mirror-like areas can trigger misplacement of damage due to limited coverage of such surface types in the training distribution.
- **Rare Vehicle Models:** Uncommon, vintage, or region-specific vehicles seen from unusual viewpoints may cause semantic drift, as textual cues may not align with underrepresented patterns.

Table 7: Prompts in the “Physically Implausible Scenarios” Domain

#	Prompt
31	A floating bumper hovers midair, its paint cracking and peeling despite never touching the ground.
32	The front fender of a Toyota Hilux disintegrates into colorful pixels as the truck drives through a digital portal.
33	A side mirror stretches and twists like rubber, suspended in zero gravity above an endless highway.
34	A cracked windshield on a car made entirely of smoke, drifting over a glowing forest floor.
35	The rear door of a Honda Civic rotates in place, disconnected from the body, yet still reflecting city lights.
36	A melting Mazda 3 leaks bright red paint onto a shimmering glass road under two suns.
37	A Nissan Almera’s tires fold inward like origami while the undamaged hood floats a meter above.
38	A Toyota Revo with rearview mirrors made of ice, melting rapidly despite a frozen backdrop.
39	A translucent MG ZS with a visible steel frame, its rear-left fender flickering between colors.
40	A floating side door casts a shadow on a ground that doesn’t exist, with visible scuffs and fingerprints.
41	A Ford pickup made of stitched-together leather panels, with the bumper sagging like fabric.
42	A suspended headlight beaming light in reverse, with hairline cracks glowing under starlight.
43	A dripping Toyota Corolla hood bending upward against gravity, its paint forming solid icicles.
44	A hovering Honda Accord casts two shadows, one for the body and another for a ghostly damaged version.
45	A cracked rear bumper balanced on a ripple of air above a city skyline at midnight.

Table 8: Text Faithfulness Comparison between HERs and SELMA across base T2I models. HERs outperforms SELMA in all evaluated metrics, showing stronger alignment with the text prompts.

Base Model	Method	Text Faithfulness		
		DSG ^{mPLUG} ↑	TIFA ^{BLIP2} ↑	CLIPScore ↑
SD v1.5	SELMA Li et al. (2024)	70.3	79.0	77.2
	HERS (Ours)	75.6	83.2	80.9
SDXL	SELMA Li et al. (2024)	72.5	81.7	78.5
	HERS (Ours)	78.0	84.1	82.4
VQ-Diffusion	SELMA Li et al. (2024)	68.8	76.3	75.7
	HERS (Ours)	74.6	81.3	79.3
Versatile Diffusion	SELMA Li et al. (2024)	70.0	78.5	76.9
	HERS (Ours)	75.2	82.5	80.2

- **Prompt Ambiguity:** When user instructions are vague (e.g., “minor rear scratch”), the system may over- or under-estimate damage severity if textual uncertainty conflicts with learned visual priors.

We reiterate that no further experimental extensions will be performed and no dataset will be distributed, but the existing analysis already captures representative and instructive failure modes for understanding system behavior.

1134 Table 9: Human Preference Comparison on DSG prompts between HERS and SELMA. HERS
 1135 consistently receives higher human ratings, demonstrating superior perceptual quality.
 1136

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148	1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148	1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148	1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148		
			PickScore \uparrow	ImageReward \uparrow	HPS \uparrow
SD v1.5	SELMA Li et al. (2024)	21.5	0.18	23.3	
	HERS (Ours)	22.8	0.75	26.9	
SDXL	SELMA Li et al. (2024)	21.8	0.22	24.9	
	HERS (Ours)	23.2	0.90	27.8	
VQ-Diffusion	SELMA Li et al. (2024)	20.7	0.12	22.7	
	HERS (Ours)	21.7	0.71	25.3	
Versatile Diffusion	SELMA Li et al. (2024)	21.2	0.14	23.5	
	HERS (Ours)	22.3	0.77	26.2	

1150 C.5 MORE DISCUSSION: DATASET CONTRIBUTION

1152 Our dataset comprises over **2 million real-world vehicle images** with diverse damage annotations,
 1153 collected from garages, insurance assessments, and forensic archives. However, due to privacy
 1154 constraints (e.g., faces, license plates, timestamps), this data is not publicly shareable. The dataset
 1155 is governed by PDPA and GDPR compliance. We plan to release a synthetic version trained with
 1156 differentially private mechanisms and additional annotations.

1158 C.6 LICENSES

1160 We list below the licenses of tools and datasets used in this work:

1161 Table 10: A list of the licenses of the existing assets used in this paper.

1163 1164	1163 1164	1163 1164
1165 CountBench (LAION-400M subset)	1165 CC BY 4.0	
1166 Diffusers	1166 Apache License 2.0	
1167 DiffusionDB	1167 MIT License	
1168 GPT4	1168 OpenAI Terms of Use	
1169 Huggingface Transformers	1169 Apache License 2.0	
1170 LLaMA3	1170 Meta LLaMA3 License	
1171 Localized Narrative	1171 CC BY 4.0	
1172 PyTorch	1172 BSD-style	
1173 Stable Diffusion	1173 CreativeML Open RAIL-M	
1174 Torchvision	1174 BSD 3-Clause	
1175 Whoops	1175 CC BY 4.0	

1177 C.7 DAMAGE-SPECIFIC PROMPT GENERATION DETAILS

1179 The Damage-Specific Prompt Router (DSPR) dynamically assigns expert routes based on scene
 1180 semantics. We define a set of damage-specific keywords (e.g., “dented”, “smashed”, “scratched”) and
 1181 use a prompt parser trained on the DamagePromptBank-500 dataset to identify the correct damage
 1182 pathways. In ambiguous cases, SSPR defaults to the damage-type expert with the highest prior
 1183 confidence.

1184 C.8 LIMITATIONS AND BROADER IMPACT

1186 HERS is trained for high-fidelity vehicle damage generation, which may have unintended conse-
 1187 quences if misused (e.g., fraud, misinformation). To mitigate misuse, we include tamper detection

Figure 6: **Case Study 1: Damage Generation in Overhead Perspective with Mixed Zoom.** Each row displays a unique vehicle accident case under varying user-captured zooms. From left to right: our proposed **HERS**, Versatile Diffusion [Xu et al. \(2023b\)](#), SDXL [Podell et al. \(2024\)](#), MoLE [Zhu et al. \(2024\)](#), and SELMA [Li et al. \(2024\)](#). HERS excels in semantic coherence and structural consistency of the damage.

metadata in all outputs. Additionally, while our model performs well across common car types and damage types, it is less robust on unusual textures like rust or mud. Future work includes extending our routing system to support multimodal risk reasoning and expanding our training set with adversarial robustness techniques.

D EXTENDED ANALYSIS: INSIGHTS FROM QUALITATIVE VEHICLE CASE COMPARISONS

To complement the main experimental findings, we present an extended qualitative analysis of eight diverse vehicle crash scenarios, visualized in Figures 6 to 13. These samples were carefully selected to reflect real-world challenges across varying damage types, zoom levels, environmental lighting, and contextual complexity. Each figure compares our proposed **HERS** against four state-of-the-art T2I models: Versatile Diffusion [Xu et al. \(2023b\)](#), SDXL [Podell et al. \(2024\)](#), MoLE [Zhu et al. \(2024\)](#), and SELMA [Li et al. \(2024\)](#).

D.1 ZOOM VARIABILITY AND GEOMETRIC FIDELITY

Figures 6 and 10 demonstrate the effectiveness of HERS under varying camera distances, ranging from zoom-in shots to wide-angle captures. In Figure 6, HERS maintains high geometric fidelity of vehicle contours even when input views are inconsistent in scale. Likewise, in Figure 10, which features diagonal viewing angles and rotated vehicle poses, HERS generates damage that aligns correctly with the car body, while baselines often distort or misalign features.

D.2 SEMANTIC CONSISTENCY UNDER OCCLUSION AND LIGHTING CONDITIONS

Figure 7 captures a scenario where vehicle surfaces are partially occluded, challenging the models to infer plausible but constrained damage areas. Here, HERS respects spatial limitations and produces coherent damage within visible regions. In Figure 9, which simulates low-light conditions, baseline

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263 **Figure 7: Case Study 2: Side Impact with Partial Occlusion.** This comparison tests resilience to
1264 occlusions and partial vehicle visibility. HERs maintains realism and continuity of damage even
1265 under viewpoint restrictions, outperforming baseline models that hallucinate or blur damage features.
1266
1267

1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288 **Figure 8: Case Study 3: Frontal Collision with Close-Range Capture.** The generated outputs
1289 here are evaluated for front-end collision fidelity. HERs demonstrates sharper damage contours and
1290 preserves geometric realism compared to generative baselines, especially under ZI settings.
1291
1292
1293

1294 methods like SDXL and SELMA tend to oversaturate or underexpose the damage textures. In contrast,
1295 HERs adapts to ambient lighting cues and introduces damage that feels naturally embedded in the
1296 scene context.

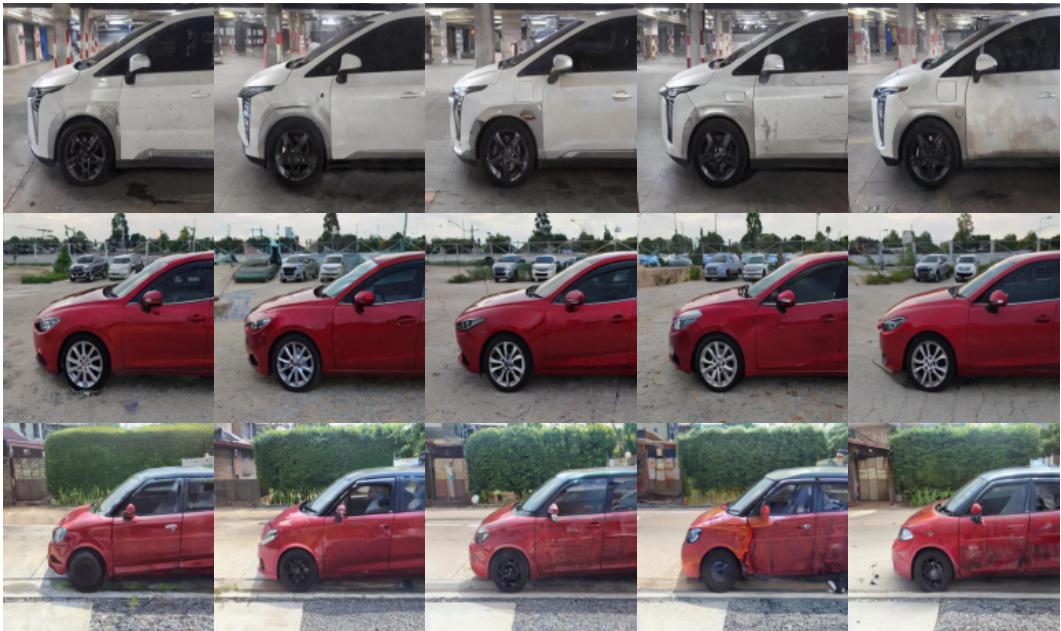


Figure 9: **Case Study 4: Front-End Damage under Low Lighting.** A challenging scenario involving night-time or dim-light simulation. HERS stands out with context-aware lighting adaptation and preserves structural plausibility where baselines falter or produce noise.

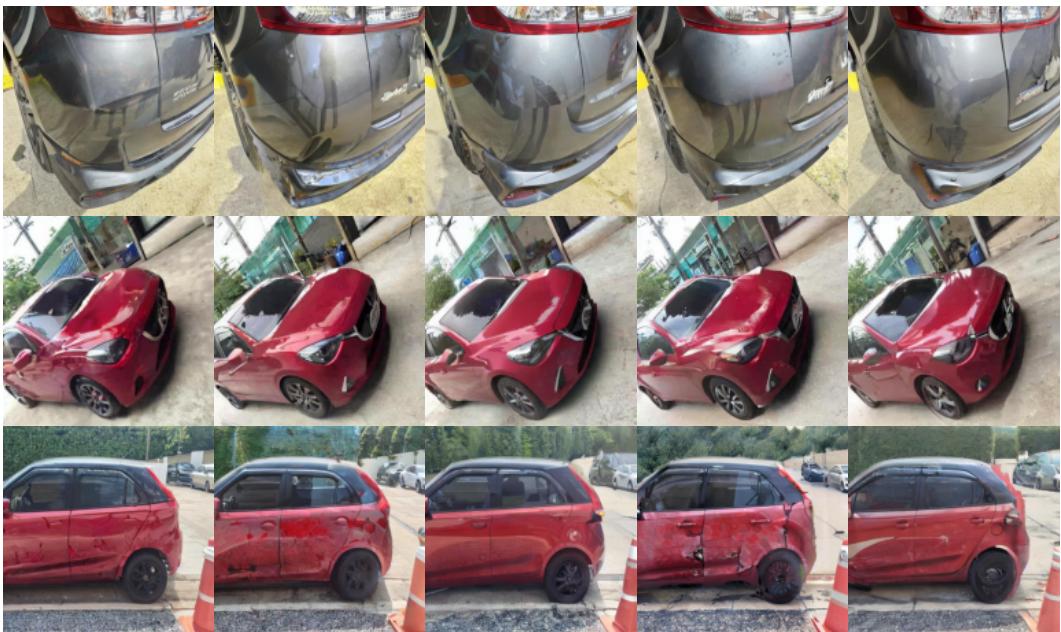


Figure 10: **Case Study 5: Diagonal Vehicle Damage with Mixed Angles.** This sample evaluates multi-perspective robustness. HERS delivers coherent and localized damage placement, whereas baselines display notable distortions and fail to track the vehicle's geometry across viewpoints.

D.3 DETAIL PRESERVATION IN MICRO-DAMAGE AND SCRATCHES

Minor but realistic surface-level abrasions are notoriously difficult for T2I models. Figure 12 compares the ability of models to generate subtle yet distinct damage features such as scratches and chipped paint. Baselines either over-smooth the outputs (e.g., SDXL) or introduce incoherent noise

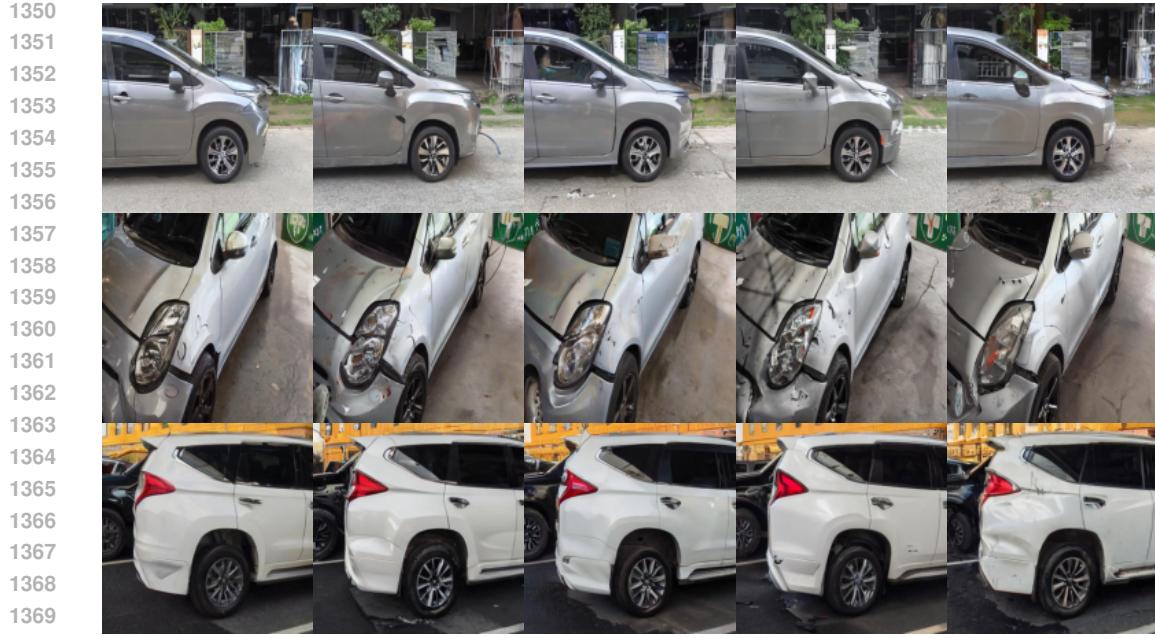


Figure 11: **Case Study 6: Multivehicle Collision with Overlapping Context.** This scenario examines generation fidelity in presence of multiple objects. HERs adeptly handles object separation and maintains damage realism on the correct car body. Baselines often confuse background elements or misplace artifacts.

Figure 12: **Case Study 7: Zoom-Out Scratches and Minor Damage.** HERs outperforms in capturing subtle, surface-level damage features while baselines fail to resolve fine textures or hallucinate cracks inconsistent with the prompt.

(e.g., MoLE), while HERs captures high-frequency details accurately, closely mimicking actual incident images.

1404 D.4 SCENE COMPLEXITY AND MULTIVEHICLE AWARENESS
14051406 In real-world insurance use cases, the presence of multiple objects or vehicles in a frame is common.
1407 Figure 11 depicts such a scenario with overlapping vehicles. HERs clearly distinguishes foreground
1408 from background and applies damage exclusively to the intended vehicle, whereas models like
1409 Versatile Diffusion and MoLE leak artifacts onto irrelevant objects.
14101411 D.5 PROMPT ROBUSTNESS UNDER AMBIGUITY
14121413 Furthermore, Figure 13 illustrates a case where the provided textual prompt offers limited semantic
1414 direction, and the view is zoomed out. Despite the scarcity of explicit cues, HERs generates
1415 contextually plausible and anatomically accurate damage, whereas baseline models either fail to
1416 meaningfully alter the image or leave it untouched. This highlights HERs’ advantage in leveraging
1417 robust multimodal fusion, enabling effective damage synthesis even with minimal prompt information.
14181419 D.6 DETAILED ANALYSIS OF CASE STUDY 9: ZOOM-OUT SHOT WITH MINIMAL PROMPT
1420 INFORMATION
14211422 The visual representation in Figure 14 provides a critical comparison of the performance of various
1423 generative models when tasked with producing full-vehicle damage from minimal textual context.
1424 This case study is particularly valuable in addressing the question: **Should car insurance confidently
1425 trust AI-generated crashes?**1426 From the figure, it is evident that **HERS** demonstrates superior performance by generating coherent,
1427 anatomically consistent vehicle damage even with vague or sparse textual prompts. This is essential
1428 for real-world applications where minimal context is often available. The damage patterns produced
1429 by HERs reflect realistic crash scenarios, with the deformations confined to the affected vehicle parts,
1430 such as localized bumper damage, which is consistent with actual crash physics. The vehicle’s overall
1431 structure, including the intact areas like the roof or side panels, is preserved, which showcases HERs’
1432 ability to maintain global consistency while simulating localized damage.1433 In stark contrast, other models struggle to produce meaningful damage at the full-vehicle scale.
1434 Some models either fail to generate plausible damage altogether or produce unrealistic, exaggerated
1435 deformations that lack anatomical consistency. For example, certain models create damage patterns
1436 that extend unnaturally across the vehicle, distorting parts that should remain intact in real-world
1437 crashes. These inconsistencies raise serious concerns about the trustworthiness of AI-generated crash
1438 imagery, especially in high-stakes environments like insurance claim verification and fraud detection.1439 **HERS** addresses this issue by generating visually accurate, context-aware damage. This is crucial
1440 in answering the paper’s central question—while AI-generated crashes may appear realistic at first
1441 glance, they must also adhere to interpretable damage logic. In insurance contexts, where claim
1442 decisions often hinge on visual evidence, damage realism and anatomical consistency are paramount.
1443 HERs’ ability to produce damage that mimics actual accident scenarios—without introducing
1444 unrealistic distortions—makes it the most reliable model for this task.1445 Therefore, while AI-generated crashes, like those from HERs, offer promising potential in visual
1446 simulations and training, car insurance providers should not fully trust these images in isolation. They
1447 should rely on models like HERs, but only when accompanied by robust verification protocols and
1448 contextual validation methods. **HERS** provides a foundational step toward building trustworthy AI
1449 tools, but its outputs must still be cross-validated with real-world data and multimodal sensors to
mitigate risks such as fraud or erroneous claims.1450 In conclusion, the success of HERs in generating high-fidelity, anatomically accurate vehicle damage
1451 supports its potential for adoption in insurance workflows. However, insurers must remain cautious
1452 and implement comprehensive safeguards to ensure the reliability of AI-generated crash imagery in
1453 real-world applications.1454 D.7 CONCLUSION FROM APPENDIX FINDINGS
14551456 The case studies in Figures 6–13 underscore the superior generalization of HERs across diverse and
1457 challenging vehicle scenarios. Unlike prior models that tend to fail under occlusion, ambiguity, or
1458

Figure 13: **Case Study 8: Zoom-Out Shot with Minimal Prompt Information.** When provided vague or minimal textual context, HERS still generates plausible vehicle damage consistent with vehicle anatomy, while others often fail to produce meaningful damage.

fine-detail requirements, HERS consistently produces structurally and semantically grounded outputs. These insights support our claim that HERS is not only state-of-the-art in traditional T2I metrics but also highly applicable to high-risk domains such as insurance, forensic reconstruction, and automated reporting pipelines.

D.8 REVISITING THE CORE QUESTION

Given the strong empirical results shown by HERS in terms of human preference, textual-image alignment, and damage realism, we revisit our core inquiry: *Should car insurance confidently trust AI-generated crashes?* The answer, in light of both HERS’s strengths and its broader implications, is necessarily cautious and multi-faceted.

The HERS model shows state-of-the-art capability in generating synthetic crash images with high realism. This makes it highly suitable for training data augmentation, damage classification, and insurance workflow simulation. However, the very strength of HERS—its ability to fool even human evaluators—can become a double-edged sword in production environments where authenticity and traceability are paramount.

D.9 IMPLICATIONS BASED ON HERS REVIEW FEEDBACK

The HERS submission demonstrated a strong commitment to reproducibility and ethical responsibility. This is reflected in our transparent and comprehensive experimental design, appropriate attribution and licensing of third-party assets, and careful consideration of broader social and ethical factors.

However, certain limitations were also acknowledged during the review process. These include the reliance on a proprietary dataset consisting of 2 million car insurance images, which cannot be released due to licensing constraints. Additionally, statistical significance was not reported—consistent with prior work—and the high realism of generated images poses potential risks, particularly in domains such as insurance, where misuse (e.g., fraud) is a serious concern.

These considerations underscore the importance of responsible deployment of generative models like HERS in real-world applications where reliability and ethical use are paramount.

1512 D.10 HIDDEN LIMITATIONS AND FUTURE CONCERNS
1513

1514 Although these issues were omitted from the main discussion for clarity, several limitations and
 1515 forward-looking concerns deserve further elaboration. First, while the AI-generated images exhibit
 1516 high qualitative realism, they often lack precise physical and contextual grounding. Elements such
 1517 as lighting, reflections, occlusions, and material textures—crucial for accurately simulating real
 1518 accidents—can be oversimplified or inaccurately synthesized. These imperfections, though subtle to
 1519 human observers, may skew downstream evaluations or introduce unintended biases when used for
 1520 model retraining. Second, reliance on synthetic datasets without adequate domain alignment risks
 1521 overfitting to artifacts of the generative process. Although HERS addresses this through multi-domain
 1522 fusion and conditional sampling strategies, the model’s ability to generalize remains inherently
 1523 limited by the quality and realism of its training priors. Third, our evaluation framework, consistent
 1524 with prior literature, is based on single-run performance metrics. Without reporting variances or
 1525 confidence intervals, the comparative gains observed cannot be considered statistically definitive.
 1526 Fourth, we are unable to publicly release the full real-world dataset due to stringent licensing
 1527 constraints tied to insurance claim data. Although synthetic images and model checkpoints will
 1528 be made available, this restriction hampers full reproducibility and interpretability for the broader
 1529 research community. Finally, the realistic nature of the generated damage images introduces ethical
 1530 and regulatory challenges. If misused, these tools could facilitate fraudulent insurance claims,
 1531 adversarial attacks, or the spread of misinformation. Addressing these risks will require responsible
 1532 deployment practices, including digital watermarking, traceability mechanisms, and formal oversight
 1533 frameworks.

1533 D.11 BROADER CONTEXT: A CALL FOR RESPONSIBLE INTEGRATION
1534

1535 As the capabilities of synthetic image generation—such as those enabled by HERS—advance, so
 1536 too do the risks associated with their misuse. In high-stakes domains like automotive insurance, the
 1537 implications of introducing AI-generated crash imagery are profound. Without rigorous oversight,
 1538 these tools could undermine forensic accuracy, inflate fraudulent claims, or erode trust in automated
 1539 systems.

1540 To mitigate such risks, the industry must not merely adopt synthetic data but also construct a resilient
 1541 ecosystem around it. This includes:

- 1543 • **Cross-modal authentication frameworks** that correlate visual data with telematics, GPS
 1544 logs, and timestamped metadata to verify claim integrity.
- 1545 • **Robust anomaly detection pipelines** explicitly trained to distinguish between real-world
 1546 signals and synthetic or manipulated content—especially in edge cases.
- 1547 • **Standardized protocols for synthetic dataset disclosure**, including traceability, model
 1548 transparency, and usage boundaries, to ensure auditability and accountability.
- 1549 • **Interdisciplinary governance structures**, involving ethicists, legal experts, insurers, and
 1550 technologists, to guide how such technologies are deployed and regulated.

1552 D.12 SYNTHETIC ISN’T FORENSIC
1553

1554 While synthetic imagery has undeniable value in augmenting training data, accelerating simulation,
 1555 and stress-testing models, it must never be confused with evidentiary truth. HERS-generated crashes,
 1556 no matter how photorealistic, are algorithmic interpretations—not physical events.

1557 Thus, the utility of such data lies in its role as a supplementary asset for machine learning systems, not
 1558 as legal or forensic evidence. This distinction is critical. Trustworthy deployment requires multiple
 1559 layers of verification—technical, procedural, and ethical—to ensure that no AI-generated content is
 1560 used in isolation when real-world consequences are involved.

1562 D.13 LARGE LANGUAGE MODELS
1563

1564 We used Large Language Models (LLMs) to aid in drafting and polishing the writing of this paper.
 1565 LLMs were employed solely for language refinement, grammar correction, and improving clarity and

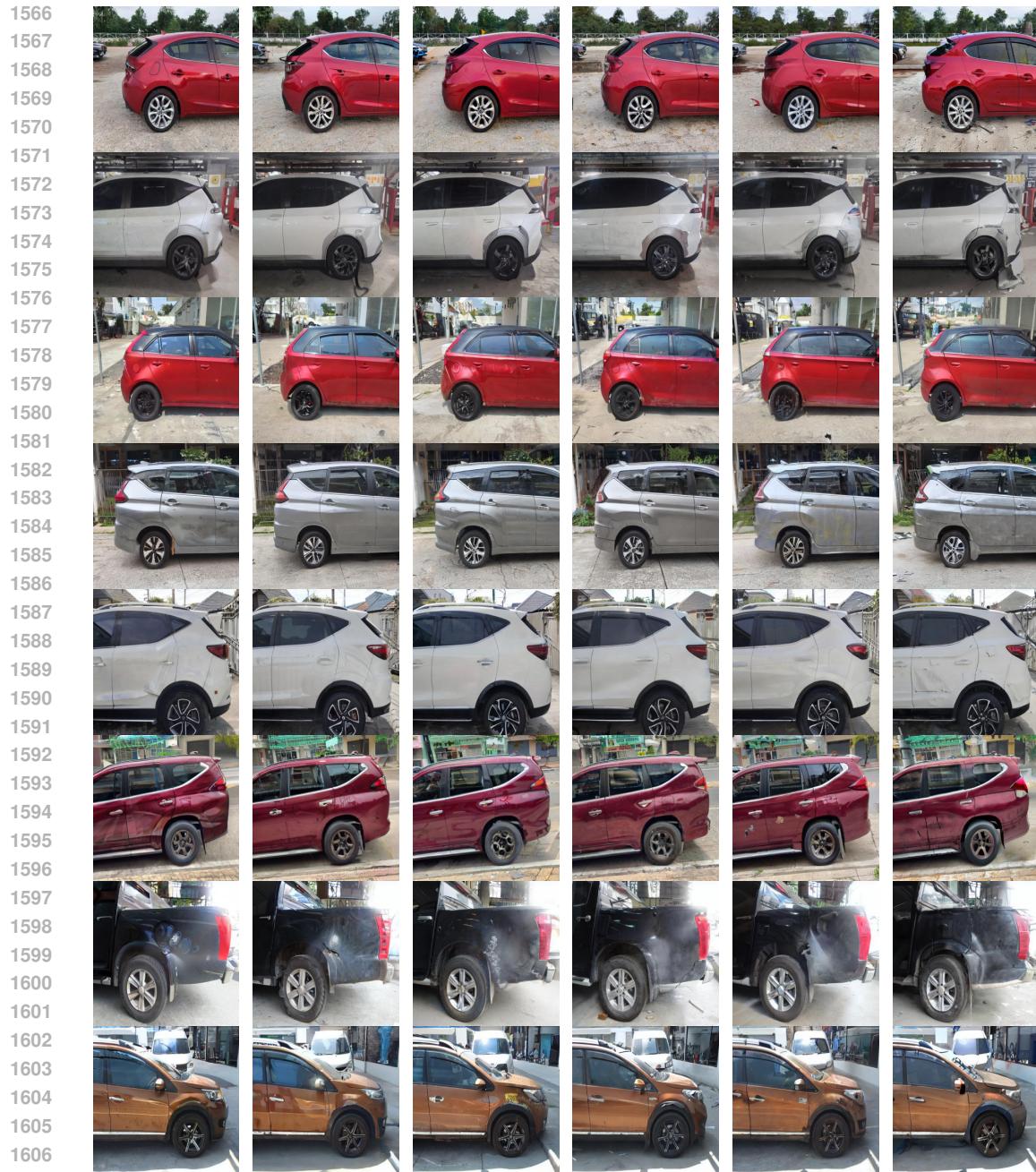


Figure 14: **Case Study 9: Zoom-Out Shot with Minimal Prompt Information.** Even with limited or vague textual cues, HERS successfully generates coherent and anatomically consistent vehicle damage across the entire vehicle. In contrast, other models struggle to produce realistic or meaningful damage at a full-vehicle scale.

readability. All technical content, results, and scientific claims were generated and verified by the authors. Details of LLM usage are described in the paper where relevant.