DeepMind

 One Pass ImageNetHuiyi Hu, Ang Li, Daniele Calandriello, Dilan Gorur

In a nutshell

Traditional multi-epoch setup:

-90-epoch ResNet50: 76\% top-1 accuracy

- Not efficient and require full access to all data

The One Pass Imagenet (OPIN) benchmark:
how well can we learn in a single epoch/pass of Imagenet with limited replay memory?

Motivation

- Streaming data is common in real world with constraints on storage.
- Real world data is large scale. Imagenet is a first step towards that.
- Study accuracy/memory/compute trade-off
- One pass has implicit non-stationarity

	Accuracy (\%) \uparrow	Storage (\%) \downarrow	Compute (\%) \downarrow
Multi-epoch (90 epochs)	76.9	100	100
One-Pass (Naive)	30.6	0	1.1
One-Pass (Prioritized Replay)	65.0	10	10

Problem Setup

- One pass of Imagenet (train from random initialization)
- Multi-metrics: top-1 accuracy, replay memory, compute
- Random ordering of data

Ingredients of a baseline

Replay buffer

- Backend: Reverb server
- k replay steps with augmentation (effectively $\mathrm{k}+1$ epoch of compute)
Priority Sampling
- Uniform is very hard to beat!
- Error-based Priority Replay (EPR) with decay schedule
$P(x, y)=1-\alpha e^{-\ell(x, y ; \theta)}$

Importance Weight

- Priority sampling from Replay changes its data distribution from $p(x)$ to $q(x)$
- To compensate for the change such that

$$
\mathbb{E}_{q}[w(x) \ell(x ; \theta)]=\mathbb{E}_{p}[\ell(x ; \theta)]
$$

- we re-weight the loss on replay samples with:
$w(x) \propto 1 / \operatorname{Priority}(x)$

Experiments

- Trade-offs of accuracy / compute / memory
- Uniform replay sampling is a strong baseline. Priority replay brings small improvement:
64.7%-> 65.0% with std 0.07%
- Performance saturates as compute/ memory increase. Still room for improving the utilization of extra compute/ memory.
- Comparison to regular multi-epoch performance at 2, 4, 6, 9 epochs.

Effective Epochs	Computation	Storage 1%			(Prioritized Replay)
5%	10%	Multi-epoch			
100\% Storage					

Open questions

- Introduce explicit distributional shift?
- One pass learning starting from a pre-trained model?
- How to better utilize the extra memory and compute?
- What's a good sampling scheme for efficient learning?

