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ABSTRACT

Object removal requires more than erasing a target—it must reconstruct the miss-
ing region with high structural fidelity while preserving diverse background con-
text. Existing diffusion-based dataset-free approaches attempt to redirect self-
attention away from the masked target but fail in two critical ways: (1) non-
target foregrounds are often misinterpreted as background, causing unintended
object regeneration, and (2) disruption of short-range activations degrades fine
details and prevents coherent integration of multiple background cues. We in-
troduce EraseLoRA, a dataset-free object-removal framework that leverages the
visual reasoning power of multimodal large-language models (MLLMs) to ex-
clude foreground distractions and assemble rich background content. The first
stage, BRF (Background Reconstruction with Foreground Exclusion), iso-
lates and removes non-target objects through MLLM-guided reasoning on a single
image–mask pair, producing clean background candidates without ground-truth
supervision. The second stage, Background Subtype Aggregation (BSA), re-
stores the masked region by treating each inferred background subtype as a puzzle
piece, enforcing their consistent integration to preserve both local detail and global
context. EraseLoRA achieves state-of-the-art object-removal performance across
diverse diffusion backbones without any additional training data or ground-
truth background, demonstrating that MLLM reasoning—applied here for struc-
tural reconstruction rather than object generation—can directly guide diffusion
models to rebuild complex scenes from a single image with unprecedented struc-
tural and contextual coherence.

1 INTRODUCTION

With the development of diverse generative models, the field of image generation has advanced
significantly to enable the synthesis of realistic and high-quality images. Early approaches leveraged
generative adversarial networks (GANs) (Goodfellow et al., 2021), which enable fast single-step
image generation but often suffer from instability, blurring, and visual artifacts. Recently, diffusion
models (DMs) have emerged as a powerful alternative of GANs, generating more consistent and
high-fidelity images through a multi-step denoising process (Ho et al., 2020; Rombach et al., 2022).
In particular, Text-to-Image (T2I) diffusion models like Stable Diffusion (Rombach et al., 2022)
enable more controllable synthesis through conditions such as text prompts and reference images,
and have become the dominant backbone for various image generation tasks (Rombach et al., 2022;
Podell et al., 2023; Esser et al., 2024). Image inpainting, a key task of this field, aims to reconstructs
missing region based on the surrounding visible context. Prior works (Avrahami et al., 2021) have
finetuned T2I diffusion models (Rombach et al., 2022; Xie et al., 2022; Zhuang et al., 2024) with
text condition, so that the masked region can be filled according to the wanted intent.

Object removal is a representative subtype of inpainting whose goal is to remove the masked target
object and to reconstruct background without the regeneration of object-like artifacts. However,
previous finetuned T2I diffusion models (Rombach et al., 2022; Xie et al., 2022) for inpainting
are unsuitable for object removal as they primarily aim to generate plausible new object inside the
mask. Therefore, effective object removal requires either additional training signals or strategies.
Existing object removal methods can be grouped into two categories: Dataset-Driven and Dataset-
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Figure 1: Qualitative comparison between existing dataset-free SOTA methods (DesignEdit,
Attentive-Eraser) and our proposed EraseLoRA framework. Previous methods often misinterpret
non-target foregrounds as background, leading to regeneration, as they simply reference unmasked
regions without explicit background cues. In contrast, our method explicitly identifies and excludes
non-target foregrounds while leveraging background cues, resulting in accurate background filling
and clean object removal.

Free. Dataset-driven methods (Zhuang et al., 2024; Liu et al., 2025; Jiang et al., 2025) generally
finetune diffusion models with additional paired training dataset—images before and after object
removal. Despite their effectiveness, these methods require paired dataset difficult to construct at
scale. Therefore, dataset-free methods (Ekin et al., 2024; Jia et al., 2025; Sun et al., 2025) based on
powerful pretrained T2I diffusion models have recently been proposed to overcome these limitations.
Recent state-of-the-art (SOTA) approaches commonly redirect self-attention by suppressing masked
regions and enhancing unmasked regions for object removal, a strategy we term hard self-attention
suppression (HSAS), thereby encouraging the model to focus on surrounding context rather than
masked context.

While the HSAS methods alleviate the generation of a new object, they still have two critical lim-
itations. First, they are background-unaware: by treating all unmasked pixels as background to
reference, they often misinterpret non-target foreground objects as background, causing unintended
object regeneration as shown in Fig. 1. To prevent this, identifying pure background without any
foreground objects is crucial to achieve successful object removal. Second, HSAS methods disrupt
short-range activations of self-attention, referring to the local interactions where latent tokens mainly
attend to their nearby neighbors. These activations are crucial for preserving fine-grained details,
and their disruption leads to blur artifacts. Furthermore, recent diffusion transformers DiT T2I dif-
fusion models (Esser et al., 2024) (e.g., FLUX, SD3.5) adopt a patchified latent representation that
enables efficient computation and has become a widely used backbone with strong generative per-
formance. However, when HSAS is applied to such architectures, it further yields checkerboard-like
group-wise artifacts due to instability in patch-wise attention computation (Fig. 2). These structural
artifacts show that SOTA methods are neither detail-preserving nor robust when extended to recent
powerful DiT T2I diffusion architectures.

We propose a dataset-free object removal framework EraseLoRA, which explicitly excludes all
foreground distractions by utilizing multimodal large-language models (MLLMs) and aggregates
diverse background context in two stages: (1) Background Reconstruction with Foreground Ex-
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Figure 2: Limitations of SOTA methods. Comparison between the SD3.5-M baseline (top) and
the same backbone with Attentive-Eraser (bottom). While the baseline preserves short-range self-
attention within the mask, enabling detailed and stable reconstruction, Attentive-Eraser suppresses
local self-attention. This disruption breaks fine details and causes blur artifacts (left) as well as
checkerboard-like group-wise artifacts on DiT T2I diffusion backbone (right).

clusion(BRF):, we isolate non-target objects through MLLM-guided visual reasoning on a single
image–mask pair, predicting clean background candidates without ground-truth supervision. (2)
Background Subtype Aggregation (BSA): each predicted background subtype is treated as a puzzle
piece for filling the masked region, and their consistent integration ensures accurate background
completion while preserving both local detail and global context. Through foregrounds exclusion
and background subtype aggregation, EraseLoRA outperforms previous SOTA dataset-free methods
in both quantitative and qualitative evaluations across diverse T2I diffusion backbones.

The main contributions of our method can be summarized as follows:

• We first observe that the visual reasoning power of MLLMs in distinguishing foreground
and background cues consistently improves object removal performance, even when inte-
grated into existing state-of-the-art approaches.

• We propose EraseLoRA, dataset-free object-removal framework adopts the concept of test-
time adaptation, guide diffusion model to effectively assemble background cues with struc-
tural and contextual coherence without any ground-truth label through a newly introduced
Cross-Attention Puzzle Loss.

• EraseLoRA outperforms prior state-of-the-art methods across multiple metrics, achieving
superior quality and robustness.

2 RELATED WORK

2.1 IMAGE INPAINTING WITH GENERATIVE MODELS

Image Inpainting, one of the main task of image generation field, aims to reconstruct missing re-
gions consistently based on visible context. Early GAN-based approaches (Zhao et al., 2021; Zuo
et al., 2023; Sargsyan et al., 2023) trained a generator to fool a discriminator, but their single-step
generation often led to instability, blurring, and artifacts. In response to these challenges, diffusion
models (DMs) (Xie et al., 2022; Yang et al., 2022) have emerged as a powerful alternative, gener-
ating more detailed and high-fidelity images through a iterative denoising process. Text-to-image
(T2I) diffusion models (Manukyan et al., 2023; Xie et al., 2022) such as Stable Diffusion further
enable controllable synthesis via external conditions like text prompts and reference images.

Building on this controllability, recent works have further incorporated the reasoning capabilities of
MLLMs into T2I diffusion models, allowing more fine-grained control over the content generated
within masked regions (Fanelli et al., 2025; Tianyidan et al., 2025; Zhou et al., 2025). For example,
MLLMs have been employed to optimize user’s instructions, or propose descriptions that align with
the visible context. However, as illustrated in Fig. 3, these applications of MLLMs have been limited
to new content generation or holistic image understanding. We first observe and leverage the visual
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Table 1: Conceptual Comparison of our method with recent approaches.
Properties Image Inpainting Image Inpainting for Object Removal

[WACV’25]
I Dream

My Painting

[AAAI’25]
Anywhere

[ECCV’24]
PowerPaint

[NeurIPS’25]
CLIPAway

[CVPR’25]
Entity-
Erasure

[CVPR’25]
Erase-

Diffusion

[CVPR’25]
Smart-
Eraser

[AAAI’25]
Design-

Edit

[AAAI’25]
Attentive-

Eraser
Ours

Dataset-Free ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓
Identifies non-target
foregrounds across classes ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Uses MLLM for
content generation ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Uses MLLM for fill-in
background prediction ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Enforces consistent
background aggregation ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Model-agnostic
under attention refinement ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Figure 3: Comparison of MLLM usage between previous works and our EraseLoRA. (Left) Prior
works primarily employ MLLMs as content generators, predicting plausible objects within the mask
for object generation. (Right) In contrast, EraserLoRA leverages the visual reasoning power of
MLLMs to exclude non-target foregrounds and infer background cues for reconstructing the masked
region, which are further used to separate foreground and background areas.

reasoning capability of MLLMs to distinguish foreground distractions and background cues which
can be used as restoration after target elimination.

2.2 OBJECT REMOVAL DIFFUSION MODELS

Object removal, a representative subtype of inpainting, goes beyond simply erasing a masked target
and must reconstruct the masked region with structural fidelity and coherent background context.
Existing object removal methods can be broadly grouped into Dataset-Driven and Dataset-Free.
Dataset-driven approaches primarily adopt supervised learning, training models with paired images
before and after object removal. PowerPaint (Zhuang et al., 2024) leverages learnable task prompts
using positive and negative controls for object removal. SmartEraser (Jiang et al., 2025) integrates
a visual embedding of the masked object with a predefined removal prompt as guidance. EraseD-
iffusion (Liu et al., 2025) redefines and trains the object removal pathway from a noisy input to
post-removal image. Such pairs are typically constructed either by synthesizing target objects into
images or by extracting them from video frames. However, synthesized images are often unrealistic
and video-based collection is costly, making large-scale dataset construction challenging.

To overcome these limitations, dataset-free approaches leverage pretrained T2I diffusion models
without additional supervision. CLIPAway (Ekin et al., 2024) constructs a background-focused em-
bedding to suppress foreground information and uses as guidance. More generally, most methods
rely on hard self-attention suppression (HSAS), suppressing attention to masked tokens while redi-
recting it to visible context. DesignEdit (Jia et al., 2025) adopts a key-masking strategy that sup-
presses all keys within the masked region, forcing the model to focus only on the unmasked region.
AttentiveEraser (Sun et al., 2025) leverages the difference between the noise predicted by HSAS
and the original model’s predicted noise. This core mechanism has become a widely adopted strat-
egy, not only in dataset-free settings but also in many dataset-driven approaches to ensure effective
removal. For example, some methods introduce self-attention suppression in specific regions guided
by learned priors such as text embeddings or segmentation priors (Li et al., 2024; Zhu et al., 2025).

Although HSAS methods alleviate unwanted object generation, they remain background-unaware,
often misinterpreting non-target foregrounds as background, and they disrupt short-range self-
attention activation, leading to detail loss and poor robustness across diverse diffusion backbones.
In contrast, we leverage the visual reasoning ability of MLLMs to explicitly exclude non-target fore-
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Figure 4: Overview of our EraseLoRA. Stage 1: BRF excludes non-target foregrounds and re-
constructs pure background regions via a Background Reconstruction Loss. Stage 2: BSA inte-
grates MLLM-predicted background subtypes into the mask using a Cross-Attention Puzzle Loss,
achieving coherent reconstruction of local details and global structure. Both losses are applied si-
multaneously during test-time adaptation, guiding the diffusion model toward coherent background
completion.

grounds and coherently aggregate background cues, enabling structurally consistent object removal
under cross-attention refinement.

3 METHOD

Our proposed EraseLoRA, a dataset-free object removal framework, consists of two stages: (1)
Background Reconstruction with Foreground Exclusion (BRF), and (2) Background Subtype Ag-
gregation (BSA). The general framework diagram of EraseLoRA is illustrated in Fig.4 and each
stage will be described in detail below.

3.1 BACKGROUND RECONSTRUCTION WITH FOREGROUND EXCLUSION(BRF)

The first stage, BRF, prevents unintended regeneration of objects by explicitly excluding non-target
foregrounds and reconstructing pure background regions. It consists of two substages:

(a) Foreground/Background Distinction. Given an input image–mask pair, we leverage the visual
reasoning power of MLLMs to generate semantic tags distinguishing non-target foregrounds from
background. For each foreground tag, detection and segmentation modules (Grounding DINO (Liu
et al., 2024) and SAM (Ravi et al., 2025)) are used to localize its region. The union of these localized
regions defines the non-target foreground mask, while the pixels outside both target and non-target
foregrounds define the pure background region. The identified background cues—both regions and
semantic tags—serve as reliable guidance, with regions providing supervision for reconstruction and
tags guiding the subsequent filling process.

(b) Background Reconstruction. Existing HSAS methods disrupt short-range self-attention, caus-
ing local detail loss and structural artifacts. To overcome this, we introduce a test-time adaptation
(TTA) scheme tailored for object removal. In general, TTA adapts a pretrained model to each test
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Figure 5: Per-tag cross-attention map changes in Stage 2 (BSA). With background tags (e.g.,
“stadium, spectator, grass”), the model recognizes background subtypes (top) and fills the masked
region in a puzzle-like manner (bottom), achieving fine-grained semantic alignment and coherent
background completion.

input during inference using self-supervised objectives (e.g., in classification or segmentation), but
such supervision is unavailable inside the mask for removal task. We address this by exploiting the
pure background regions identified in Stage 1(a) as pseudo ground-truth, and define a Background
Reconstruction Loss (Lbg recon). Unlike HSAS methods, this loss softly guides self-attention at the
noise level (see Appendix A for details on diffusion and attention mechanisms), preserving activa-
tions rather than suppressing them, which maintains fine local details and ensures robustness across
diverse T2I diffusion backbones.

Formally, Lbg recon encourages faithful recovery of the input background within the pure background
region Mpure bg:

Lbg recon =
1

|Mpure bg|
∑

p∈Mpure bg

∥Î[p]− I[p]∥22, (1)

where p indexes pixels, I denotes the original input image, and Î denotes the reconstructed output.

3.2 BACKGROUND SUBTYPE AGGREGATION (BSA)

Although BRF enables supervision in pure background regions via the Background Reconstruction
Loss, the masked region itself still lacks ground-truth labels. In practice, simply injecting back-
ground tags as text prompts does not guarantee that the masked area will be faithfully filled with
those subtypes; instead, random objects or textures inconsistent with the scene are often generated.

To overcome this limitation, BSA explicitly controls how the masked area is reconstructed by en-
forcing that it is composed only of valid background subtypes predicted by the MLLM. In this way,
cross-attention is guided not just toward local fidelity but also toward global semantic structure, en-
suring that the completed background is both fine-grained and contextually coherent. We introduce
a Cross-Attention Puzzle Loss, which treats each background subtype as a ”puzzle piece” and guides
their integration within the masked region (Fig. 5). The Cross-Attention Puzzle Loss combines the
alignment and diversity terms as Lpuzzle = Lalign + Ldiv.

(1) Background Alignment Loss. Let Across
t ∈ RHcross×Wcross denote the cross-attention map corre-

sponding to a background tag t ∈ Tbg. We sum across tags to obtain a reconstructed attention map
Arecon, and enforce that it is concentrated only within the union of pure background and target mask:

Arecon[p] =
∑
t∈Tbg

Across
t [p], Lalign = 1− Dice(Arecon,Mpure bg ∪Mtarget fg). (2)
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(2) Tag Diversity Loss. To avoid collapse into a single dominant subtype, we require that every
background tag contributes within the target mask Mtarget fg. For each tag t, let St denote the total
activation inside the target region:

|St| =
∑

p∈Mtarget fg

Across
t [p], Ldiv = 1− min

t∈Tbg
|St|. (3)

Finally, EraseLoRA integrates the Background Reconstruction Loss from BRF with the Cross-
Attention Puzzle Loss from BSA, forming the overall TTA loss as LTTA = Lbg recon + λLpuzzle.
λ controls the contribution of the cross-attention puzzle loss term. This joint objective ensures both
local background fidelity (via Lbg recon) and subtype-consistent reconstruction (via Lpuzzle).

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We evaluate EraseLoRA on both UNet (SDXL (Podell et al., 2023)) and DiT (SD3.5-M (Esser
et al., 2024)) T2I diffusion backbones to verify its generalization across various diffusion model
architectures. All backbone weights are frozen; only lightweight LoRA adapaters in attention blocks
are optimized during test-time adaptation (TTA). For each test sample, we run TTA for a small
number of iterations using the Final Test-Time Adaptation Loss in Section 4.2. Detailed optimizer
settings and implementation details are provided in Appendix B.

4.2 EXPERIMENTAL SETUP

Baseline. We compare our method to a variety of previous approaches, including both dataset-
driven methods (SDXL-Inpainting (Podell et al., 2023), FLUX.1-Fill-dev (Labs, 2023), OmniEraser
(Wei et al., 2025), SmartEraser (Jiang et al., 2025), EntityErasure (Zhu et al., 2025)) and dataset-free
methods (Stable Diffusion 3.5-M (Esser et al., 2024) +DesignEdit (Jia et al., 2025),+AttentiveEraser
(Sun et al., 2025)). All baselines are reproduced using official implementations when available, or
re-implemented according to the descriptions in their papers.

Test Datasets. We evaluate our method on two benchmark datasets: OpenImages V7 and ROAD.
From OpenImages V7, we randomly sample 1,000 images with object segmentation masks. Since
OpenImages V7 provides object annotations but does not contain corresponding object-removed
ground-truth images, we treat it as an unpaired dataset for evaluation. In contrast, the ROAD dataset
consists of 343 videos with paired before/after object-removal frames, from which we curate paired
samples suitable for pixel-level evaluation.

Evaluation Metrics. For OpenImages V7 (unpaired), pixel-level fidelity cannot be computed. In-
stead, we use semantic and perceptual metrics from pretrained models, such as DINO (Caron et al.,
2021) and CLIP (Radford et al., 2021). We denote by ”F” the masked target region, and by ”B” the
pure background region, i.e., the unmasked area after excluding non-target foregrounds identified
by our method. (1) F-DINO / F-CLIP measure similarity between the reconstructed masked region
and target object embeddings (lower is better). (2) B-DINO / B-CLIP measure similarity between
the reconstructed masked region and pure background embeddings (higher is better). For ROAD
(paired), we report pixel-level reconstruction metrics: (1) SSIM and PSNR for structural similarity
and signal-to-noise ratio; (2) LPIPS for perceptual distance. For SSIM/PSNR higher is better, while
for LPIPS lower is better.

4.3 QUANTATIVE AND QUALITATIVE ANALYSIS

The quantitative analysis results are shown in Tab. 2. First, F-DINO and F-CLIP show that most
methods can suppress the generation of new object within the mask, but these scores do not re-
veal subtle artifacts such as unintended references to non-target foregrounds, meaning they cannot
fully indicate whether removal is complete. Second, B-DINO and B-CLIP highlight the strength
of EraseLoRA, as it achieves much better alignment with pure background regions, confirming the
benefit of explicitly excluding non-target foregrounds using MLLMs and TTA Loss. Third, while
SSIM and PSNR indicate similar structural fidelity across methods, EraseLoRA achieves the low-
est LPIPS, meaning it produces more natural-looking results with fewer visual artifacts. Finally,
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Table 2: Quantitative comparison with other methods on test datasets. The best results are high-
lighted in bold, and the second-best results are underlined.

Method Param. OpenImages V7 ROAD
F-DINO↓ / B-DINO↑ F-CLIP↓ / B-CLIP↑ SSIM↑ PSNR↑ LPIPS↓

Dataset-Free Approaches:
Stable Diffusion 3.5-M 2,243 M
+ DesignEdit (AAAI’25) 2,243 M 0.440/0.469 0.562/0.676 0.701 18.893 0.251
+ AttentiveEraser (AAAI’25) 2,243 M 0.439/0.457 0.559/0.663 0.700 18.831 0.258

+ Ours 2,255 M 0.438/0.598 0.564/0.749 0.699 18.734 0.235
Dataset-Driven Approaches:
SDXL-Inpainting 2,568 M 0.510/0.446 0.623/0.637 0.532 15.332 0.551
FLUX.1-Fill-dev 11,902 M 0.806/0.428 0.803/0.586 0.694 16.74 0.270
OmniEraser 16,961 M 0.425/0.527 0.565/0.705 0.554 18.237 0.309
SmartEraser (CVPR’25) 1,494 M 0.563/0.530 0.634/0.659 0.577 18.810 0.269
EntityErasure (CVPR’25) 2,607 M 0.505/0.562 0.582/0.680 0.589 18.183 0.292

since F-DINO and F-CLIP alone cannot fully capture artifact leakage, we include qualitative re-
sults (Fig. 6 and Appendix D). These show that competing methods often regenerate fragments of
removed objects or introduce unrealistic textures, whereas EraseLoRA achieves cleaner and more
contextually consistent background restoration.

4.4 ABLATION STUDY

To validate the effectiveness and contribution of the proposed EraseLoRA, we conduct ablation
studies for analyzing the contributions of each component in Tab. 3, Tab. 4.

Table 3: Ablation study of different architectures and loss components

Architecture Method Loss Components Metrics Computational Cost

LBRF LBSA F-DINO/B-DINO F-CLIP/B-CLIP VRAM Param

Stable
Diffusion

3.5-M

(a) ✗ ✗ 0.900/0.414 0.895/0.584 21.9 GB 2,243M
(b) ✓ ✗ 0.510/0.725 0.594/0.847 52.3 GB +11.9M
(c) ✗ ✓ 0.421/0.508 0.528/0.732 52.3 GB +11.9M
(d) ✓ ✓ 0.448/0.722 0.546/0.848 52.3 GB +11.9M

Stable
Diffusion

XL

(a) ✗ ✗ 0.847/0.404 0.878/0.532 12.4 GB 2,568M
(b) ✓ ✗ 0.477/0.508 0.560/0.178 23 GB +23.2M
(c) ✗ ✓ 0.532/0.474 0.587/0.693 23 GB +23.2M
(d) ✓ ✓ 0.462/0.537 0.563/0.734 23 GB +23.2M

Contribution of TTA. When neither BRF nor BSA is applied, baselines tend to regenerate objects
within the masked region. Applying only the BRF Loss mitigates this issue but still often results
in unintended object regeneration. Using BSA alone effectively suppresses regeneration, but intro-
duces blur artifacts and loses fine local details. Combining both achieves the best results, jointly
suppressing regeneration and preserving details. Furthermore, as shown in Tab. 3, our method re-
mains stable across different T2I diffusion backbones (SDXL and SD3.5-M), demonstrating the
model-agnostic robustness of our TTA.

Contribution of MLLM. Tab. 4 demonstrates that incorporating MLLM-derived foreground masks
into HSAS methods effectively suppresses unintended regeneration and enhances overall perfor-
mance. This confirms that explicit exclusion of non-target foregrounds serves as a strong comple-
ment to existing dataset-free approaches.

Table 4: Effect of MLLM-guided non-target foregrounds exclusion in dataset-free methods

Model w/o FG mask w/ FG mask

F-DINO B-DINO F-DINO B-DINO

SDXL 0.811 0.463 0.854 (-5.3%) 0.450 (-2.8%)
DesignEdit 0.682 0.531 0.521 (+23.6%) 0.586 (+10.4%)
AttentiveEraser 0.596 0.636 0.488 (+18.1%) 0.697 (+9.6%)
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Figure 6: Comparison with previous SOTA methods

4.5 DISCUSSION

Insight. Our study highlights two contributions: first using MLLMs as explicit background sepa-
rators for object removal, and employing TTA to align diffusion with background cues. Together,
these show that semantic reasoning and adaptive optimization can substantially enhance dataset-free
object removal.

Limitations and Future Work. MLLM-guided reasoning enables explicit non-target foreground
exclusion, but remains dependent on the reliability of external priors and may fail in ambiguous
cases (e.g., the same person labeled as both background and foreground). Meanwhile, TTA improves
removal quality but requires high VRAM and is not entirely training-free. Future work includes
developing approaches that can separate foreground and background without relying on MLLMs,
exploring lightweight latent optimization to reduce memory cost, and extending the framework to
broader editing tasks.

5 CONCLUSION

We propose EraseLoRA, a dataset-free object removal framework that leverages MLLM-guided
foreground exclusion and background subtype aggregation. By explicitly preventing non-target
foreground reference and softly guiding attention with background cues during inference time,
EraseLoRA achieves cleaner and more coherent background restoration across diverse diffusion
backbones. Extensive experiments demonstrate its effectiveness and robustness, surpassing prior
dataset-free methods both quantitatively and qualitatively.
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A PRELIMINARIES

Diffusion Models (DMs). Diffusion models generate images by learning a reverse denoising pro-
cess that gradually transforms noise into data (Podell et al., 2023; Esser et al., 2024). In a typical text-
to-image implementation, an input image I is first mapped into a latent representation X0 = E(I)
through a VAE encoder E . A denoising network ϵθ then iteratively predicts and removes the noise
from Xt, optionally conditioned on a text embedding c. Finally, the denoised latent X̂0 is decoded
back into the image space by a VAE decoder D, yielding Î = D(X̂0). This framework allows
controllable generation by conditioning on text prompts or other external signals.

Attention Mechanisms in DMs. In latent diffusion models, attention blocks regulate how informa-
tion flows during denoising. There are two types of attention: self-attention captures dependencies
among latent tokens, while cross-attention establishes interactions between latent tokens and exter-
nal condition tokens such as text embeddings. For a latent Xt ∈ RHW×d at step t, self-attention
computes a weight matrix Aself = softmax(QK⊤/

√
d) ∈ [0, 1]HW×HW , where each row sums

to 1 and thus represents how strongly one latent token attends to all other tokens. ross-attention
follows the same principle but aligns latent queries with condition tokens c ∈ RL×d, yielding
Across ∈ [0, 1]HW×L. Here each row sums to 1, indicating how strongly each latent token relates
to the L condition tokens, which can be interpreted as a relevance distribution over different tags or
prompts. For convenience, we denote by Across

t ∈ [0, 1]HW the per-tag cross-attention map corre-
sponding to condition token t, such that

∑L
t=1 A

cross
t [p] = 1 for each latent position p. While this

formulation is general, the way attention is computed depends on the backbone architecture: UNet
T2I diffusion models apply attention directly at the latent level on feature maps, whereas diffusion
transformer (DiT) Ti2 diffusion models group multiple latent tokens into larger patch tokens (latent
patchify) and perform self- and cross-attention at the patch level.

B IMPLEMENTATION DETAILS

For reproducibility, we provide the full hyperparameter settings and implementation details of
EraseLoRA. During test-time adaptation, only LoRA adapters inserted into the attention blocks
are optimized while all backbone weights remain frozen. Optimization is performed using the Final
Test-Time Adaptation Loss defined in Section 3.2.

• Hyperparameters: The loss weights are set to λ =0.2.
• MLLMs: For background tag extraction, we primarily use InternVL-78B, and also validate

with Qwen2.5-VL-72B.
• Non-target Foreground Mask Extraction Model: We adopt Grounding DINO and SAM.

C LLM USAGE DISCLOSURE

We employed a large language model (LLM) solely for light editorial purposes, including typo
correction and refinement of phrasing to match academic writing conventions. The LLM was not
used for generating ideas, designing experiments, implementing methods, or interpreting results.
All scientific contributions and claims originate from the authors, who assume full responsibility for
the content of this work.

D ADDITIONAL QUALITATIVE RESULTS
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Figure 7: Additional qulitative Results.
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