
Under review as a conference paper at ICLR 2022

A EXPERIMENTAL SETUP

Optimizer and learning rate schedule. In all our experiments on datasets with natural distribution
shift, we use Adam optimizer. When training on the labeled source domain we use a learning rate
schedule with cosine decay and initial learning rate of 1e-4 and when adapting to the target domain
we use a learning rate of 1e-5 with exponential decay rate of 0.9. For pretraining the models on
ImageNet-1k, we use a batch size of 1024 and the learning rate schedule is linear warmup (for 5
epochs) + cosine decay with the base learning rate of 0.1.

For Perturbed Cifar10 experiments, we use SGD with momemtum. During the pretraining stage on
the source domain, the learning rate schedule is cosine decay with an initial learning rate of 0.1. In all
experiments we use L2 loss with the weight of 1e-5. During the adaptation phase we use a batch size
of 256 and the learning rate is constant and set to 1e-3. For experiments on Perturbed Cifar10 with
higher number of training steps (20000 steps), we use a lower learning rate of 1e-4 in the adaptation
phase.

Neural network architectures. For experiments on dataset with natural shift, we use a ResNet101.
For the experiments on Perturbed Cifar10, we use a WideResNet28-10 with a dropout rate of 0.3. For
the virtual interpolations in GIFT: we use the first three layers (input, initial convolution layer, and
the layer above it).

Training on source during the adaptation phase. We do not train the model on the source data
during the adaptation phase. While in some cases this could result in a better performance on both the
source and target domain, our assumption here is that there is no reason for the source and target data
to be compatible, i.e. it is possible for the model to not be able to fit both distributions simultaneously.

Regularization During adaptation, we use the weight decay of 0.01. In addition to weight decay,
we use another regularization term that encourages the model to stay close to its initial state. This
regularization term is simply computed as the L2 distance of the parameters of the model and their
value at its initial state. We set the weight for this factor to 0.001 in all adaptation experiments.

Backpropagating gradients through interpolations. We train the model with the representations
of virtual examples that we create by interpolating the representations from real examples. During
pretraining on the source domain we use manifold mixup regularization, where we interpolate
between representations of labeled source examples. During the adaptation stage that is part of GIFT
we interpolate between labeled source representations and unlabeled target representations. One
important hyper-parameter related to this is whether in the backward pass we back-propagate the
gradients all the way down to the input layer or stop the gradients at the layer in which the interpolated
representations are computed. In our experiments, similar to Verma et al. (2019a) we allow the
gradients to pass through the interpolated activations.

Computational Resources: We train our models on cloud TPU devices. Our estimate of the
amount of compute used for the experiments of this paper is roughly about 2k TPU-core days.

B TRAINING ON LABELED SOURCE DOMAIN

We compare four different approaches for training the model on labeled source data.

Standard fine-tuning: Given labeled examples from a source domain, we employ a model that is
pretrained on some large scale dataset, Imagenet-1k in our case, replace its head (projection layer)
with a new head for the task at hand, and update all its parameters to fit the source domain data.

Mixup with convex combination interpolations: During fine-tuning on labeled source data, we
apply mixup/manifold (Zhang et al., 2018a; Verma et al., 2019a) on the input and activation from the
first layer of model, and to compute the interpolations we simply compute the convex combination of
features for two randomly aligned examples.

13



Under review as a conference paper at ICLR 2022

Mixup with wasserstein interpolations: During fine-tuning on labeled source data, we apply a
variant of mixup/manifold mixup where interpolations are computed using the closed form Monge
Map for Gaussian Wasserstein distances. In our experiments we observed that in some cases, interpo-
lating examples in this alternative way leads to better results compared to the convex interpolations
used in Verma et al. (2019a).

Domain advarserial neural networks (DANN): Given labeled samples from a source domain
and unlabeled samples from target domain, DANN (Ganin et al., 2016) learns domain invariant
representations, while minimizing its error on labels source data. In our experiments the output of
the prelogits layer is fed to the domain classifier, and the scheduling of the weight of the domain
classification loss is the same as what is suggested in Ganin et al. (2016).

B.1 MANIFOLD MIXUP WITH WASSERSTEIN INTERPOLATION

During training on the labeled source dataset we use a variant of manifold mixup (Verma et al., 2019a)
with an adapted strategy for interpolation. In manifold mixup (Verma et al., 2019a), representations
of virtual examples are created by linearly interpolating representations of two randomly aligned
examples (xi, xj) in a randomly selected layer L of the neural network M✓. The labels for the
interpolated examples, ŷij , are computed by interpolating the labels of the aligned examples, (yi, yj),
using the same interpolation coefficient, �. This is summarized in equation 2.

ẑij =(1� �)M:L
✓ (xi) + �M:L

✓ (xj)

ŷij =(1� �)yi + �yj
. (2)

Here M
L
✓ denotes the part of the neural network that outputs the activations of layer L. The

interpolated representations are then fed into the rest of the neural network at layer L, and together
with the interpolated labels they serve as additional ‘data’ to which the model is fit.

In our experiments we take a different approach to interpolation. Inspired by the style transfer
method discussed in Mroueh (2020), we use interpolations based on the Wasserstein distance between
two Gaussian distributions that are fit to representations of two input images. i.e., the spatial
features in the representations of two images are the datapoints for two datasets. We estimate the
empirical mean and diagonal covariance matrices for these datapoints and use the closed form
optimal transport map between two Gaussian distributions to interpolate the spatial features between
two representations. More precisely, given two images xi and xj , we compute representations
zi = M

L
✓ (xi) and zj = M

L
✓ (xj), where zi and zj are three-dimensional tensors with a width W

L,
height HL and channel size CL. Each spatial feature vector of size CL within zi and zj is considered
one datapoint. We compute the average feature vectors within zi and zj , denoted by µi and µj

respectively, as well as the variances �
2
i and �

2
j . Note that we are approximating the empirical

covariance matrices with diagonal matrices with the variances �2
i and �

2
j on the diagonals. Given

these quantities, we can compute the closed form Monge map between two Gaussian distributions
with diagonal covariance matrices as

Tzi!zj (z) = µj + diag

✓
�j

�i

◆
(z � µi). (3)

Here z is understood to be a feature map of the same size as zi and zj . Interpolated representations
are then computed with

ẑij = (1� �)zi + �Tzi!zj (zi). (4)
Similar to its use in style transfer (Mroueh, 2020), we assume this transformation does not change the
content of the representation, and we therefore do not apply an interpolation scheme to the labels yi
and yj of datapoints xi and xj . Instead, we use the label ŷij = yi for the virtual representation ẑij .

In Verma et al. (2019a) the interpolation coefficient � is sampled from a Beta distribution Beta(↵,�),
where ↵ and � are hyperparameters. In our experiments we set both ↵ and � to 1, so that we are
effectively sampling � uniformly from the interval [0, 1).

C EFFECT OF NUMBER OF TEACHER UPDATES

To better distinguish the effect of the number of teacher updates from the number of training steps
between each two consecutive teacher updates, in Figure 4 we plot the accuracy as a function of

14



Under review as a conference paper at ICLR 2022

1 2 5 10 20

0.2

0.4

0.6

0.8

Number of teacher updates

A
cc

ur
ac

y

Translated (0%-100%) Translated(50%-100%) Blurred

(a) iterative self-training

5 10 20 40

0.2

0.4

0.6

0.8

Number of teacher updates

A
cc

ur
ac

y

(b) GIFT

Figure 4: Effect of the number of teacher updates on the accuracy when the number of training
steps before each teacher update is fixed and set to 100, for different perturbations of CIFAR10. For
Translated (0%-100%) CIFAR10 and Translated (50%-100%) CIFAR10, we see an increasing trend
in accuracy as we increase the number of teacher updates for both iterative self-training and GIFT.
Whereas for Blurred CIFAR10, the accuracy decreases for iterative self-training.

1 5 10 20

0.2

0.4

0.6

0.8

Number of teacher updates

A
cc

ur
ac

y

Scaled
Translated (0%-100%)
Blurred
Translated(50%-100%)

Figure 5: Effect of number of self training iterations on accuracy when all interpolations are repre-
sented to the model at the same time with the total number of training steps of 1000 for different
perturbations of CIFAR10. Similar to iterative self-training, the performance improves by increasing
the number of self training iterations up to a threshold. Beyond the threshold, the performance
deteriorates.

the number of teacher updates when the number of training steps is fixed, i.e., the total number of
training steps increases as we increase the number of teacher updates. For GIFT, we observe an
increasing trend in the accuracy as the number of teacher update increases on all the benchmarks.
However, for iterative self-training we only see a benefit in increasing the number of teacher updates
for datasets with a range of perturbations in the target domain such as the Translated CIFAR10
datasets, as opposed to Blurred CIFAR10.

Additionally, Figure 5 shows the effect of the number of teacher updates when the total number
training steps is 1000 for a non gradual version of GIFT, where all the interpolations are presented to
the model simultaneously. We observe that compared to GIFT, where the value of the interpolation
coefficient � is gradually increased, having more teacher updates is much less beneficial.

15


	Introduction
	Self-training for unsupervised domain adaptation
	GIFT: Self-training with Gradual Interpolations
	Experiments
	Benchmarks with Synthetic Perturbations
	Benchmarks with Natural Distribution Shift

	Related Work
	Discussion and Conclusion
	Experimental Setup
	Training on Labeled Source Domain
	Manifold Mixup with Wasserstein Interpolation

	Effect of Number of Teacher Updates

