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A  PROOF OF THEOREM 3

First, we decompose the probability of choosing a suboptimal arm. For any s € [m], let Es = {1 € A1} be the event that
the best arm is not eliminated in stage s and F; be its complement. Then by the law of total probability,

P(I#1)=P(Bn) =Y P(EyBor... . 1) <Y P(E|Eer 1) .
s=1 s=1
We bound P (ES | Eo q..., El) based on the observation that the best arm can be eliminated only if the estimated mean

rewards of at least a half of the arms in A are at least as high as that of the best arm. Specifically, let A’ = A, \ {1} be the
set of all arms in stage s but the best arm and
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Then by the Markov’s inequality,
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The key step in bounding the above expectation is understanding the probability that any arm has a higher estimated mean
reward than the best one. We bound this probability next.

Lemma 1. For any stage s € [m] with the best arm, 1 € A, and any suboptimal arm i € A, we have

R R ngA2
P(,us,i, > ,Us,l) < exp [M
JEAs 7]

Proof. The proof is based on concentration inequalities for sub-Gaussian random variables [Boucheron et al., 2013]. In
particular, since fis ; — pt; and fis1 — (1 are sub-Gaussian with variance proxies 0? /Ns,; and J% /N 1, respectively; their
difference is sub-Gaussian with a variance proxy Uf /Nsi+ U% /N 1. It follows that

P (fis;i > fis1) = P (f1si — frsg > 0) = P ((frsi — pi) — (s — p1) > Ay)
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where the last step follows from the definitions of N, ; and N ; in Lemma 1. O
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The last major step is bounding E [N! | E;_; ..., Ey] with the help of Lemma 1. Starting with the union bound, we get
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Now we chain all inequalities and get
m . 2
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To get the final claim, we use that
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This concludes the proof.

B PROOF OF THEOREM 4

This proof has the same steps as that in Appendix A. The only difference is that N, ; and /N, ; in Lemma 1 are replaced
with their lower bounds, based on the following lemma.

Lemma 2. Fix stage s and arm i € A, in SHVar. Then
2
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where oymax = MaX;c A 0; I the maximum reward noise and n is the budget in stage s.

Proof. Let J be the most pulled arm in stage s and ¢ € [ng] be the round where arm J is pulled the last time. By the design
of SHVar, since arm J is pulled in round /,
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holds for any arm ¢ € A,. This can be further rearranged as

g,
Nsypi > —5Nsyog-
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Since arm J is the most pulled arm in stage s and / is the round of its last pull,
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Moreover, N, ; > N, ¢,;. Now we combine all inequalities and get
5 ()
Nsi> — -1 . (1)
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To eliminate dependence on random J, we use 07 < 0pmax. This concludes the proof. O
When plugged into Lemma 1, we get
A2 (ﬂﬁ - 1) A?
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This completes the proof.



C PROOF OF THEOREM 5

This proof has the same steps as that in Appendix A. The main difference is that IV, ; and N, ; in Lemma 1 are replaced
with their lower bounds, based on the following lemma.

Lemma 3. Fix stage s and arm i € Ag in SHAdaVar. Then
of
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where Omax = MaX;c A 0; IS the maximum reward noise, ng is the budget in stage s, and
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is an arm-independent constant.

Proof. Let J be the most pulled arm in stage s and ¢ € [ns] be the round where arm J is pulled the last time. By the design
of SHAdaVar, since arm J is pulled in round /,

Us,@,J > Us,[,i
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holds for any arm ¢ € A,. Analogously to (1), this inequality can be rearranged and loosened as

Us.i ( Ns )
Nsi > 7= -1). (2)
’ s,0,J ‘As|

We bound U ¢ ; from below using the fact that U, ,; > 01»2 holds with probability at least 1 — §, based on the first claim in
Lemma 2. To bound Uy ¢, 7, we apply the second claim in Lemma 2 to bound &i 0.7 10 Us g7, and get that
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holds with probability at least 1 — §. Finally, we plug both bounds into (2) and get
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To eliminate dependence on random J, we use that 07 < oyax and Ny ¢ 5 > ns/ | Ag| — 1. This yields our claim and
concludes the proof of Lemma 3. O

Similarly to Lemma 2, this bound is asymptotically tight when all reward variances are identical. Also «(|Ag|, ns,d) — 1
as ng — oo. Therefore, the bound has the same shape as that in Lemma 2.

The application of Lemma 3 requires more care. Specifically, it relies on high-probability confidence intervals derived in
Lemma 2, which need N ; ; > 4log(1/6) + 1. This is guaranteed whenever n > K log, K (41log(1/4) + 1). Moreover,
since the confidence intervals need to hold in any stage s and round ¢, and for any arm %, we need a union bound over Kn
events. This leads to the following claim.

Suppose that n > K log, K (41og(1/5) + 1). Then, when Lemma 3 is plugged into Lemma 1, we get that

A? <exp —a(|As|>nvan6) (%*1) A?
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This completes the proof.
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