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First, we decompose the probability of choosing a suboptimal arm. For any s ∈ [m], let Es = {1 ∈ As+1} be the event that
the best arm is not eliminated in stage s and Ēs be its complement. Then by the law of total probability,
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We bound P
(
Ēs

∣∣Es−1 . . . , E1

)
based on the observation that the best arm can be eliminated only if the estimated mean

rewards of at least a half of the arms in As are at least as high as that of the best arm. Specifically, let A′
s = As \ {1} be the

set of all arms in stage s but the best arm and

N ′
s =

∑
i∈A′

s

1{µ̂s,i ≥ µ̂s,1} .

Then by the Markov’s inequality,
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The key step in bounding the above expectation is understanding the probability that any arm has a higher estimated mean
reward than the best one. We bound this probability next.

Lemma 1. For any stage s ∈ [m] with the best arm, 1 ∈ As, and any suboptimal arm i ∈ As, we have

P (µ̂s,i ≥ µ̂s,1) ≤ exp
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2
i

4
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σ2
j

]
.

Proof. The proof is based on concentration inequalities for sub-Gaussian random variables [Boucheron et al., 2013]. In
particular, since µ̂s,i − µi and µ̂s,1 − µ1 are sub-Gaussian with variance proxies σ2

i /Ns,i and σ2
1/Ns,1, respectively; their

difference is sub-Gaussian with a variance proxy σ2
i /Ns,i + σ2

1/Ns,1. It follows that

P (µ̂s,i ≥ µ̂s,1) = P (µ̂s,i − µ̂s,1 ≥ 0) = P ((µ̂s,i − µi)− (µ̂s,1 − µ1) > ∆i)
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,

where the last step follows from the definitions of Ns,i and Ns,1 in Lemma 1.
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The last major step is bounding E [N ′
s |Es−1 . . . , E1] with the help of Lemma 1. Starting with the union bound, we get
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Now we chain all inequalities and get
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To get the final claim, we use that

m = log2 K , ns =
n

log2 K
, min

i∈A′
s

∆2
i ≥ ∆2

min ,
∑
j∈As

σ2
j ≤

∑
j∈A

σ2
j .

This concludes the proof.
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This proof has the same steps as that in Appendix A. The only difference is that Ns,i and Ns,1 in Lemma 1 are replaced
with their lower bounds, based on the following lemma.

Lemma 2. Fix stage s and arm i ∈ As in SHVar. Then

Ns,i ≥
σ2
i

σ2
max

(
ns

|As|
− 1

)
,

where σmax = maxi∈A σi is the maximum reward noise and ns is the budget in stage s.

Proof. Let J be the most pulled arm in stage s and ℓ ∈ [ns] be the round where arm J is pulled the last time. By the design
of SHVar, since arm J is pulled in round ℓ,

σ2
J

Ns,ℓ,J
≥ σ2

i

Ns,ℓ,i

holds for any arm i ∈ As. This can be further rearranged as

Ns,ℓ,i ≥
σ2
i

σ2
J

Ns,ℓ,J .

Since arm J is the most pulled arm in stage s and ℓ is the round of its last pull,

Ns,ℓ,J = Ns,J − 1 ≥ ns

|As|
− 1 .

Moreover, Ns,i ≥ Ns,ℓ,i. Now we combine all inequalities and get

Ns,i ≥
σ2
i

σ2
J

(
ns

|As|
− 1

)
. (1)

To eliminate dependence on random J , we use σJ ≤ σmax. This concludes the proof.

When plugged into Lemma 1, we get

P (µ̂s,i ≥ µ̂s,1) ≤ exp

− ∆2
i

2
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)
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−
(

ns
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This completes the proof.
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This proof has the same steps as that in Appendix A. The main difference is that Ns,i and Ns,1 in Lemma 1 are replaced
with their lower bounds, based on the following lemma.

Lemma 3. Fix stage s and arm i ∈ As in SHAdaVar. Then

Ns,i ≥
σ2
i

σ2
max

α(|As| , ns, δ)

(
ns

|As|
− 1

)
,

where σmax = maxi∈A σi is the maximum reward noise, ns is the budget in stage s, and

α(k, n, δ) =
1− 2

√
log(1/δ)
n/k−2

1 + 2
√

log(1/δ)
n/k−2 + 2 log(1/δ)

n/k−2

is an arm-independent constant.

Proof. Let J be the most pulled arm in stage s and ℓ ∈ [ns] be the round where arm J is pulled the last time. By the design
of SHAdaVar, since arm J is pulled in round ℓ,

Us,ℓ,J

Ns,ℓ,J
≥ Us,ℓ,i

Ns,ℓ,i

holds for any arm i ∈ As. Analogously to (1), this inequality can be rearranged and loosened as

Ns,i ≥
Us,ℓ,i

Us,ℓ,J

(
ns

|As|
− 1

)
. (2)

We bound Us,ℓ,i from below using the fact that Us,ℓ,i ≥ σ2
i holds with probability at least 1− δ, based on the first claim in

Lemma 2. To bound Us,ℓ,J , we apply the second claim in Lemma 2 to bound σ̂2
s,ℓ,J in Us,ℓ,J , and get that
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holds with probability at least 1− δ. Finally, we plug both bounds into (2) and get

Ns,i ≥
σ2
i

σ2
J

1− 2
√

log(1/δ)
Ns,ℓ,J−1

1 + 2
√

log(1/δ)
Ns,ℓ,J−1 + 2 log(1/δ)

Ns,ℓ,J−1

(
ns
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.

To eliminate dependence on random J , we use that σJ ≤ σmax and Ns,ℓ,J ≥ ns/ |As| − 1. This yields our claim and
concludes the proof of Lemma 3.

Similarly to Lemma 2, this bound is asymptotically tight when all reward variances are identical. Also α(|As| , ns, δ) → 1
as ns → ∞. Therefore, the bound has the same shape as that in Lemma 2.

The application of Lemma 3 requires more care. Specifically, it relies on high-probability confidence intervals derived in
Lemma 2, which need Ns,t,i > 4 log(1/δ) + 1. This is guaranteed whenever n ≥ K log2 K(4 log(1/δ) + 1). Moreover,
since the confidence intervals need to hold in any stage s and round t, and for any arm i, we need a union bound over Kn
events. This leads to the following claim.

Suppose that n ≥ K log2 K(4 log(1/δ) + 1). Then, when Lemma 3 is plugged into Lemma 1, we get that

P (µ̂s,i ≥ µ̂s,1) ≤ exp

− ∆2
i

2
(
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i
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σ2
1
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)
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This completes the proof.
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