Under review as a conference paper at ICLR 2024

Appendices

In this appendix, we give the pseudocode of multi-agent planning and multi-agent trajectory prediction
with MADIFF model in Section A. In Section B, we demonstrate how multiple agents’ trajectories
are modeled by MADIFF during centralized control and decentralized execution in an example three-
agent environment. In Section C, we provide details of the experiments, including the normalization
used to compute the average score, the detailed network illustration unrolling each agent’s U-Net,
crucial hyperparameters, and an example of wall-clock time required for training MADIFF. In
Section D, we demonstrate and analyze additional experimental results. Specifically, we provide
ablation results to support the effectiveness of opponent modeling in MADIFF-D, show the quality of
opponent modeling by MADIFF-D on SMAC tasks, and visualize predicted multi-player trajectories
by MADIFF and the baseline algorithm on the NBA dataset.

A ALGORITHM

Algorithm 1 Multi-Agent Planning with MADIFF

1: Input: Noise model €4, inverse dynamics I, guidance scale w, history length C', condition y
2: Initialize h < Queue(length =C); t + 0 // Maintain a history of length C
3: while not done do

4 Observe joint observation 0; h.insert(o); Initialize T7x ~ N(0, o)
5: fork=K...1do
6
7
8
9

7k[: length(h)] < h // Constrain plan to be consistent with history
if Centralized control then
€ < €o(Tr, k) + w(eo(xr(7),y, k) — €o(Tr, k)) // Classifier-free guidance
(Mr—1,Xk-1) < Denoise(Tx, €)
10: else if Decentralized execution then
11: for agenti € {1,2,..., N} do
12: & (i k) Fwleh(thyt k) — eh(Ti, k) /I Classifier-free guidance
13: (ui_,, 2% 1) < Denoise(ri, &)
14: end for
15: end if
16: Teo1 ~N(pp—1,0Zk 1)
17: end for
18: Extract (o, 0++1) from 7
19: foragenti € {1,2,...,N} do
20: a; + fgi(04,0411)
21: end for

22: Execute a; in the environment; ¢ < ¢+ 1
23: end while

Algorithm 2 Multi-Agent Trajectory Prediction with MADIFF

1: Input: Noise model €y, guidance scale w, condition y, historical joint observations i with length
C, predict horizon H
: Initialize T ~ N(0, o)
cfork=K...1do
Tk[: C] —h /I Constrain prediction to be consistent with history
€<+ eo(Th, k) + w(eo(mi,y, k) — eo(T, k)) // Classifier-free guidance
(Mr—1,Xk-1) < Denoise(Tx, €)
Teo1 ~N(pr—1,02, 1)
end for
: Extract prediction (o¢, 0¢ 41, - - -, 0c+H—1) from T

RN

12

Under review as a conference paper at ICLR 2024

B ILLUSTRATION OF MULTI-AGENT TRAJECTORY MODELING

To provide better understanding of how multiple agents’ observations are modeled by MADIFF in
centralized control and decentralized execution scenarios, we show illustrative examples in a typical
three-agent environment in Fig. 4. If the environment allows for centralized control, we can condition
MADIFF on all agents’ historical and current observations, and let the model sample all agents’ future
trajectories as a single sample, as shown in Fig. 4(a). Then the current and next observations are sent
to the inverse dynamics model for action prediction. If only decentralized execution are permitted, as
shown in Fig. 4(b), agent 1 can only condition the model on its own information. The historical and
current observations of other agents are masked when performing conditioning. M ADIFF now not
only generates agent 1’s own future trajectories, but also predicts the current and future observations
of other two agents. Due to the joint modeling of all agents during training, such predictions are
also reasonable and can be considered as a form of opponent modeling from agent 1’s perspective.
Although opponent modeling is not directly used in generating agent 1’s ego actions, it can help agent
1 refine its planned trajectories to be consistent with predictions of others.

History

Horizon Horizon History Horizon
0 0 Y
Agent 0 ("o of o} 08 o Agent0 | of o} o) o3 of 1 [0} : Masked Observations
Agent1 (op of o} o} o} Agent1 [op of 0} o} o} E o} | : Conditioned Observations E
Agent2 [of o} o3 o3 o} Agent2 | of o o} o2 o2 E 0} | : Generated Observations i
Current . Current .
Time step Time steps Time step Time steps
(a) MADIFF in centralized control. (b) MADIFF in decentralized execution.

Figure 4: Illustration of how agents’ observations are modelled by MADIFF in a three-agent environ-
ment. Note that figure (b) shows the situation when Agent 1 is taking action during decentralized
execution.

C IMPLEMENTATION DETAILS

C.1 SCORE NORMALIZATION

The average scores of MPE tasks in Tab. 1 are normalized by the expert and random scores on each
task. Denote the original episodic return as S, then the normalized score Sy, is computed as

Snorm =100 x (S - Srandom)/(sexpert - Srandom))

which follows Pan et al. (2022) and Fu et al. (2020). The expert and random scores on Spread, Tag,
and World are {516.8, 159.8}, {185.6, -4.1}, and {79.5, -6.8}, respectively.

C.2 DETAILED NETWORK ARCHITECTURE

In Fig. 5, we unroll the U-Net structure of different agents in Fig. 1.

We describe the computation steps of attention among agents in formal. Each agent’s local embedding
¢’ is passed through the key, value, and query network to form ¢’, k%, and v’, respectively. Then
the dot product with scaling is performed between all agents’ ¢* and k’, which is followed by a
Softmax operation to obtain the attention weight a*/. Each o’/ can be viewed as the importance of
7-th agent to the i-th agent at the current time step. The second dot product is carried out between the
weight matrix and the value embedding v to get ¢ after multi-agent feature interactions. Then & is
skip-connected to the corresponding decoder block. The step-by-step computation of multi-agent

13

Under review as a conference paper at ICLR 2024

RN

Attention

e — =777
@00 g an e j
10 [211]] Q12] T I
|
\ = il
(Scaled Dot Product + Softmax
P L — & e — S
7727) [) [)
(i e, v Va7 i iy 7))) w77
R S . I ¢ R L A
’ Query Network ’ i Key Network \L Value Network i

] Attention J

Figure 5: The detailed architecture of MADIFF. Each agent’s U-Net is unrolled and lined up in the
horizontal direction.

attention in MADIFF can be written as
qi = fquery(ci)y kl = fkey(ci)) vi = fvalue(ci) 3
exp(q'k? /\/dy,))
S exp(qikr /v/dy)

N
¢ = E avl
i=1

o =

where d, is the dimension of k*.

C.3 HYPERPARAMETERS

We list the key hyperparameters of MADIFF we used in Tab. 3 and Tab. 4. Return scale is the
normalization factor used to divide the conditioned return before input to the diffusion model. The
rough range of the return scale can be determined by the return distributions of the training dataset.
We only tune the guidance weight w, return scale, planning horizon H, and history horizon. We
tried the guidance weight of {1.0, 1.2, 1.4, 1.6}, and found that different choices do not significantly

14

Under review as a conference paper at ICLR 2024

affect final performances, in result we choose 1.2 as our default. We found larger planning horizon,
in general, results in better performance. For MPE tasks, we find it unnecessary to condition on
history observation sequence; thus, we set all history horizons to zero. In SMAC tasks which are
more complex and more partially observable, we found a history horizon of 8, which is smaller than
the planning horizon of 20, performs well across all datasets.

Table 3: Hyperparameters of MADIFF on MPE datasets.

TestBed Spread Tag World

Dataset Expert | Md-Replay | Medium | Random | Expert | Md-Replay | Medium | Random | Expert | Md-Replay | Medium | Random
Return scale 00 | 500 00 | 600 [500 00 | 600

Learning rate 2e-4

Guidance scale w 1.2

Planning horizon H 24

History horizon 0

Batch size 32

Diffusion steps K 200

Optimizer Adam Optimizer

Table 4: Hyperparameters of MADIFF on SMAC datasets.

TestBed 3m Sm6ém

Dataset Good | Medium | Poor | Good | Medium | Poor
Return scale 20 | 10 20 | 10
Learning rate 2e-4

Guidance scale w 12

Planning horizon H 20

History horizon 8

Batch size 32

Diffusion steps K 200

Optimizer Adam Optimizer

C.4 COMPUTING RESOURCES AND WALL TIME

We provide a concrete example as a reference for the time and resources required for training
MADIFF. On a server with an AMD Ryzen 9 5900X (12 cores) CPU and an RTX 3090 GPU, we
trained the MADIFF-C model on the Expert dataset from the MPE Spread task, which converged
in about an hour. The curve of Wall-clock time spent for training and the corresponding model
performance is shown in Fig. 6.

o))
o
o

U
o
o

N
o
o

w
o
o

N
o
o

Average Episode Return

0 25 50 75 100 125 150
Wall-clock Time (min)

Figure 6: Wall-clock time and corresponding average episode return (average over 10 episodes)
during training MADIFF-C for MPE Spread task.

15

Under review as a conference paper at ICLR 2024

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 EFFECTIVENESS OF OPPONENT MODELING

To investigate whether opponent modeling can lead to performance improvements during decentral-
ized execution, we conduct ablation experiments on MPE Spread datasets. We compare M ADIFF-D
with its variant that adopts the same network architecture but masks the diffusion loss on other agents’
trajectories during training. We denote the variant as MADIFF-D w/o OM. The results are presented
in Tab. 5, which show that opponent modeling results in notable performance improvements on all
four levels of datasets.

Table 5: Ablation results of opponent modeling on MPE Spread datasets across 3 seeds.

Dataset | MADIFF-D w/o OM MADIFF-D

Expert 93.4+3.6 98.4 + 12.7
Medium 354+ 6.6 53.2+23
Md-Replay 177+ 4.3 429 + 11.6
Random 57431 194 + 2.9

D.2 OPPONENT MODELING ON SMAC TASKS

We show and analyze the quality of opponent modeling by MADIFF-D on SMAC. Specifically, we
choose two-time steps from an episode on 3m map to analyze predictions on allies’ attack targets and
health points (HP), respectively.

On top of Fig. 7(a) is attacked enemy agent ID (0, 1, 2 stands for EO, E1, E2) of ally agents A0, A1,
and A2. The first row is the ground-truth ID, and the second and the third rows are the predictions
made by MADIFF-D from the other two allies’ views. We can see that the predictions are in general
consistent with the ground-truth ID. As can be seen from the true values of the attack enemy ID,
agents tend to focus their firepower on the same enemies at the same time. And the accurate prediction
of allies’ attack enemy IDs intuitively can help to execute such a strategy.

In Fig. 7(b) we visualize the HP change curve of ally agents starting from another time step. From
the environment state visualization below, agent A2 is the closest to enemies, so its HP drops the
fastest. Such a pattern is successfully predicted by the other two agents.

D.3 PREDICTED TRAJECTORY VISUALIZATION ON NBA DATASET

We visualize the players’ moving trajectories predicted by MADIFF-C and Baller2Vec++ on the
NBA dataset in Fig. 8. In each image, the solid lines are real trajectories and the dashed lines are
trajectories predicted by the model. The trajectories predicted by MADiff-C are closer to the real
trajectories and are overall smoother compared to the Baller2Vec++ predictions.

16

Under review as a conference paper at ICLR 2024

Attack Enemy ID Ally HP
AO Al A2 Y Al A2

|

2
1
o
2
1
o
2
1
o

(a) Ground-truth and predicted enemy’s ID to attack (b) Ground-truth and predicted health points (HP)
by each ally agent. of each ally agent.

Figure 7: The ground-truth and predicted information of different MADIFF agents at two-time step.
On the top of each figure, each column describes a different agent. The first row shows the change
curve of the real value, and the last two rows below are the information predicted by other agents.

MADiff-C

Baller2Vec++ |

Figure 8: Real and Predicted multi-player trajectories by MADIFF-C and Baller2Vec++.

17

	Introduction
	Preliminaries
	Multi-agent Offline Reinforcement Learning
	Diffusion Probabilistic Models
	Diffusing Decision Making

	Methodology
	Multi-Agent Diffusion with Attention
	Centralized Training Objectives
	Centralized Control or Decentralized Execution

	Related Work
	Experiments
	Task Descriptions
	Compared Baselines and Metrics
	Numerical Results
	Qualitative Analysis
	Ablation Study

	Conclusion
	Algorithm
	Illustration of Multi-agent Trajectory Modeling
	Implementation Details
	Score Normalization
	Detailed Network Architecture
	Hyperparameters
	Computing Resources and Wall Time

	Additional Experimental Results
	Effectiveness of Opponent Modeling
	Opponent Modeling on SMAC Tasks
	Predicted Trajectory Visualization on NBA Dataset

