
Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 PROOF OF PROPOSITION 1

Let Bi,j and Ci,j denote the (i, j)-th entry of B and C, respectively. Then we have:

(BC)i,j =
∑
r=1

Bi,rCr,j

Since each row of C has a mean of 0, we have
∑n

j=1 Cr,j = 0,∀r. For the mean value of i-th row
of BC, we can write:

1

n

n∑
j=1

(BC)i,j =
1

n

n∑
j=1

∑
r=1

Bi,rCr,j

=
1

n

∑
r=1

n∑
j=1

Bi,rCr,j

=
1

n

∑
r=1

Bi,r

 n∑
j=1

Cr,j

=

1

n

∑
r=1

Bi,r · 0

= 0

(8)

A.2 PROOF OF PROPOSITION 2

Corr(Xk, Ak) = tr((Σ−1/2
11 Σ12Σ

−1/2
22)′Σ

−1/2
11 Σ12Σ

−1/2
22)1/2

= tr(Σ−1/2
22 Σ′

12Σ
−1/2
11 Σ

−1/2
11 Σ12Σ

−1/2
22)1/2

= tr(Σ−1/2
22 Σ

−1/2
22 Σ′

12Σ
−1/2
11 Σ

−1/2
11 Σ12)

1/2

= tr(Σ−1
22 Σ

′
12Σ

−1
11 Σ12)

1/2

=
1

(n− 1)2
tr((AkA

′
k)

−1(XkA
′
k)

′(XkX
′
k)

−1(XkA
′
k))

1/2

=
1

(n− 1)2
tr((AkX

′
k)

−1(AkX
′
k)(XkX

′
k)

−1(XkA
′
k))

1/2

=
1

(n− 1)2
tr((AkA

′
k)

+(AkX
′
k)(XkX

′
k)

+(XkA
′
k))

1/2

=
1

(n− 1)2
tr(A′

k(AkA
′
k)

+AkX
′
k(XkX

′
k)

+Xk)
1/2

=
1

(n− 1)2
tr(A+

k AkX
+
k Xk)

1/2

(9)

The first row is based on the definition of Corr, the second row is because trace is invariant under
cyclic permutation, the fifth row is to replace matrix inverse by MPI and the ninth row is due to
Y + = Y ′(Y Y +) (Petersen et al., 2008).

A.3 PROOF OF PROPOSITION 3

Firstly, we have the k-th view data Xk to be full-rank, as we can always delete the redundant data,
and the random noise Ak is full-rank as each column is generated independently. Then by utilizing
Proposition 2, we derive that the correlation between Xk and Ak remains unchanged before and
after the transformation:

14

Under review as a conference paper at ICLR 2024

Corr(WkXk,WkAk) =
1

(n− 1)2
tr((WkAk)

+WkAk(WkXk)
+WkXk)

1/2

=
1

(n− 1)2
tr((W+

k WkAk)
+(WkAkA

+
k)

+WkAk(W
+
k WkXk)

+(WkXkX
+
k)+WkXk)

1/2

=
1

(n− 1)2
tr((W+

k WkAk)
+W+

k WkAk(W
+
k WkXk)

+W+
k WkXk)

1/2

=
1

(n− 1)2
tr(A+

k AkX
+
k Xk)

1/2

= Corr(Xk, Ak)
(10)

The first row is based on Proposition 2, the second row is because given two matrices B and C,
(BC)+ = (B+BC)+(BC+C)+ always holds (Petersen et al., 2008), and the third row utilizes the
properties of full-rank and square matrix Wk: W+

k =W−
k , which means W+

k Wk =WkW
+
k = Idk

(Petersen et al., 2008).

A.4 PROOF OF PROPOSITION 4

This proposition is equivalent to its contra-positive proposition: if Wk is not a full-rank matrix,
there exists random noise data Ak such that ηk = |Corr(WkXk,Wk(Ak))− Corr(Xk, Ak)| is not
0. And we find that when Wk is not full-rank, there exists Ak = Xk such that ηk ̸= 0. We have the
following derivation:

ηk = |Corr(WkXk,WkAk)− Corr(Xk, Ak)|

=

∣∣∣∣ 1

(n− 1)2
tr((WkAk)

+(WkAk)(WkXk)
+(WXk))

1/2 − 1

(n− 1)2
tr(A+AX+X)1/2

∣∣∣∣
=

∣∣∣∣ 1

(n− 1)2
tr((W+

k WkAk)
+(WkAkA

+
k)

+WkAk(W
+
k WkXk)

+(WkXkX
+
k)+WkXk)

1/2 − 1

(n− 1)2
tr(A+

k AkX
+
k Xk)

1/2

∣∣∣∣
=

∣∣∣∣ 1

(n− 1)2
tr((W+

k WkAk)
+W+

k WkAk(W
+
k WkXk)

+W+
k WkXk)

1/2 − 1

(n− 1)2
tr(A+

k AX
+
k Xk)

1/2

∣∣∣∣
(11)

The first row is the definition of NR loss with respect to Wk, the second row is based on the new
form of CCA, the third row is because given two specific matrices B and C, it holds the equality
(BC)+ = (B+BC)+(BC+C)+ (Petersen et al., 2008), and the fourth row utilizes the properties
of full-rank matrix: for full-rank matrices Xk and Ak, whose sample size is larger than dimension
size, they fulfill: XkXk

+ = Idk
, AkAk

+ = Idk
(given a specific full-rank matrix Y , if its number

of rows is smaller than that of cols, it holds that Y + = Y ′(Y Y ′)−, which means that Y Y + = I)
(Petersen et al., 2008).

Let us analyze the case when Ak = Xk:

ηk =

∣∣∣∣ 1

(n− 1)2
tr((W+

k WkXk)
+W+

k WkXk(W
+
k WkXk)

+W+
k WkXk)

1/2 − 1

(n− 1)2
tr(X+

k XkX
+
k Xk)

1/2

∣∣∣∣
=

∣∣∣∣ 1

(n− 1)2
tr((W+

k WkXk)
+W+

k WkXk)
1/2 − 1

(n− 1)2
tr(X+

k Xk)
1/2

∣∣∣∣ .
(12)

The first row is to replace Ak with Xk, the second row is because X+
k XkX

+
k = X+

k and
(W+

k WkXk)
+W+

k WkXk(W
+
k WkXk)

+ = W+
k WkXk, which are based on the definition of MPI

that given a specific matrix Y , Y +Y Y + = Y + (Petersen et al., 2008).

Next, we need to prove the following two lemmas:

Lemma 1 Given a specific matrix Y and its MPI Y +, let Rank(Y) and Rank(Y +Y) be the ranks
of Y and Y +Y , respectively. It is true that:

Rank(Y) = Rank(Y +Y)

Rank(Y +Y) = tr(Y +Y)

Proof Firstly, the column space of Y +Y is a subspace of the column space of Y . Therefore,
Rank(Y +Y) ≤ Rank(Y). On the other hand, according to the definition of MPI (Petersen et al.,

15

Under review as a conference paper at ICLR 2024

2008), we know that Y = Y (Y +Y). Since the rank of a product of matrices is at most the mini-
mum of the ranks of the individual matrices, we have Rank(Y) ≤ Rank(Y +Y). Combining the two
inequalities, we have Rank(Y) = Rank(Y +Y).

Furthermore, since (Y +Y)(Y +Y) = Y +Y (it holds that Y + = Y +Y Y + according to the defi-
nition of MPI (Petersen et al., 2008)), Y +Y is an idempotent and symmetric matrix, and thus its
eigenvalues must be 0 or 1. So the sum of its eigenvalues is exactly its rank. Considering matrix
trace is the sum of eigenvalues of matrices, we have Rank(Y +Y) = tr(Y +Y).

Lemma 2 Rank(WkXk) < Rank(Xk) , when Wk is not a full-rank matrix and Xk is a full-rank
matrix.

Proof Since the rank of a product of matrices is at most the minimum of the ranks of the in-
dividual matrices, we have Rank(WkXk) ≤ min(Rank(Wk),Rank(Xk)). Considering Xk is
full-rank, Rank(Xk) = min(dk, n) and then Rank(WkXk) ≤ min(Rank(Wk),Rank(Xk)) =
min(Rank(Wk),min(dk, n)). Since Wk is not full-rank, we have Rank(Wk) < dk. In conclu-
sion, Rank(WkXk) < min(dk,min(dk, n)) and then Rank(WkXk) < dk ≤ Rank(Xk).

As a result, we can know that when the random noise data Ak is exactly Xk and Wk is not full-rank,
ηk can not be zero:

ηk =

∣∣∣∣ 1

(n− 1)2
tr((W+

k WkXk)
+W+

k WkXk)
1/2 − 1

(n− 1)2
tr(X+

k Xk)
1/2

∣∣∣∣
=

∣∣∣∣ 1

(n− 1)2
Rank(W+

k WkXk)
1/2 − 1

(n− 1)2
Rank(X)1/2

∣∣∣∣
̸=

∣∣∣∣ 1

(n− 1)2
Rank(Xk)

1/2 − 1

(n− 1)2
Rank(Xk)

1/2

∣∣∣∣
̸= 0

(13)

The first row is due to Equation 12, the second row is based on Lemma 1 that
tr((W+

k WkXk)
+W+

k WkXk) = Rank(W+
k WkXk) and tr(X+

k Xk) = Rank(X), and the third row
is because of Lemma 2.

Finally, we have if ηk is always constrained to 0 for any Ak, then Wk must be a full-rank matrix.

A.5 DETAILS OF DATASETS AND BASELINES

Synthetic datasets:

We make 6 groups of multi-view data originating from the same G ∈ Rd×n (we set n =
4000, d = 100). Each group consists of tuples with 2 views (2000 tuples for training and
2000 tuples for testing) and a distinct common rate. Common rates of these sets are from
{0%, 20%, 40%, 60%, 80%, 100%} and there are 50 downstream regression tasks. We report the
mean and standard deviation of R2 score across all the tasks.

Real-world datasets:

PolyMnist (Sutter et al., 2021): A dataset consists of tuples with 5 different MNIST images (60, 000
tuples for training and 10, 000 tuples for testing). Each image within a tuple possesses distinct
backgrounds and writing styles, yet they share the same digit label. The background of each view is
randomly cropped from an image and is not used in other views. Thus, the digit identity represents
the common information, while the background and writing style serve as view-specific factors. The
downstream task is the digit classification task. CUB (Wah et al., 2011): A dataset consists of tuples
with deep visual features (1024-d) extracted by GOOGLENET and text features (300-d) obtained
through DOC2VEC (Le & Mikolov, 2014) (480 tuples for training and 600 tuples for testing). This
MVRL task utilizes the first 10 categories of birds in the original dataset and the downstream task is
the bird classification task. Caltech (Deng et al., 2018): A dataset consists of tuples with traditional
visual features extracted from images that belong to 101 object categories, including an additional
background category (6400 tuples for training and 9144 tuples for testing). Following Yang et al.
(2021), three features are used as views: a 1, 984-d HOG feature, a 512-d GIST feature, and a 928-d
SIFT feature.

16

Under review as a conference paper at ICLR 2024

Baselines:

Direct method:

• CONCAT straightforwardly concatenates original features from different views.

CCA methods:

• CCA (Hotelling, 1992) maps multiple views’ data into a common space that maximizes
their correlation and concatenates the new representations of different views.

• PRCCA Tuzhilina et al. (2023) preserves the internal data structure by grouping high-
dimensional data features while applying an l2 penalty to CCA,.

Kernel CCA Methods:

• KCCA (Akaho, 2006) employs CCA methods through positive-definite kernels.

DCCA-based methods:

• DCCA (Andrew et al., 2013) employs neural networks to individually project multiple sets
of views, obtaining new representations that maximize the correlation between each pair of
views.

• DGCCA (Benton et al., 2017) constructs a shared representation and maximizes the cor-
relation between each view and the shared representation.

• DCCAE/DGCCAE (Wang et al., 2015) introduces reconstruction objectives to DCCA,
which simultaneously optimize the canonical correlation between the learned representa-
tions and the reconstruction errors of the autoencoders.

• DCCA PRIVATE/DGCCA PRIVATE (Wang et al., 2016) incorporates dropout and pri-
vate autoencoders, thus preserving both shared and view-specific information.

Information theory-based methods:

• MVTCAE (Hwang et al., 2021) maximizes the reduction in Total Correlation to capture
both shared and view-specific factors of variations.

All CCA-based methods leverage the implementation of CCA-Zoo (Chapman & Wang, 2021). To
ensure fairness, we use the official implementation of MVTCAE while replacing the strong CNN
backbone with MLP.

A.6 HYPER-PARAMETER SETTINGS

To ensure a fair comparison, we tune the hyper-parameters of all baselines within the ranges sug-
gested in the original papers, including hyper-parameter r of ridge regularization, except for the
following fixed settings:

The embedding size for the real-world datasets is set as 200, while the size for synthetic datasets
is set as 100. Batch size is min(2000, full-size). The same MLP architectures are used for DCCA-
based methods.

In the synthetic datasets, DCCA, DGCCA, DCCAE, and DGCCAE methods utilize a minimum
learning rate of 5e − 3. DCCA PRIVATE/DGCCA PRIVATE employ a slightly higher learning
rate of 1e − 2. In contrast, our proposed methods, NR-DCCA/NR-DGCCA, utilize the maximum
learning rate of 1.5e− 2. And the regularization weight α is set as 200.

In the real-world datasets, both the learning rates in PolyMnist and CUB are set to 1e − 4. For
Caltech101, a slightly lower learning rate of 5e − 5 is used. To expedite the computation of
Corr(Xk, Ak), on the PolyMnist dataset, we utilize the initialized fk to reduce the feature dimen-
sions of Xk and Ak separately. Subsequently, we calculate their correlation. For the extracted fea-
tures in the CUB and Caltech101 datasets, we simply employ Xk[: outdim, :] and Ak[: outdim, :]
to compute of Corr. The hyper-parameter r of ridge regularization is set as 0 in our NR-DCCA and
NR-DGCCA. The optimal α values of NR-DCCA for the CUB, PolyMnist, and Caltech datasets are
found to be 1.5, 5, and 15, respectively.

17

Under review as a conference paper at ICLR 2024

A.6.1 HYPER-PARAMETER r IN RIDGE REGULARIZATION

In this section, we discuss the effects of hyper-parameter r in ridge regularization. Ridge regular-
ization is commonly used across almost all (D)CCA methods, whichimproves numerical stability.
It works by adding an identity matrix I to the estimated covariance matrix. However, ridge regu-
larization mainly regularizes the features, rather than the transformation (i.e., Wk in CCA and fk in
DCCA) and it cannot prevent the neural networks from degenerating (i.e., model collapse). To fur-
ther support our arguments, we provide the experimental results with different ridge parameters on
a real-world dataset CUB as shown in Figure 7. One can see that the ridge regularization even dam-
ages the performance of DCCA. In our NR-DCCA, we actually set the ridge parameter to zero. We
conjecture the reason is that the large ridge parameter could make the neural network even “lazier”
to actively project the data into a better feature space, as the full-rank property of features and co-
variance matrix are already guaranteed, and this is also evidenced by the “Square sum of feature
covariance” shown in the figure.

Figure 7: The effects of hyper-parameter r of DCCA in the CUB dataset.

A.6.2 HYPER-PARAMETER α OF NR-DCCA

The choice of the hyper-parameter α is essential in NR-DCCA. Different from the conventional
hyper-parameter tuning procedures, the determination of α is simpler, as we can search for the
smallest α that can prevent the model collapse, and the model collapse can be directly observed
on the validation data. Specifically, we increase the α adaptively until the model collapse issue is
tackled, i.e., the correlation with noise will not increase or the performance of DCCA will not drop
with increasing training epochs, then the optimal α is found. To further illustrate the influence of α
in NR-DCCA, we present performance curves of NR-DCCA in CUB under different α. As shown
in Figure 8, if α is too large, the convergence of the training becomes slow; if α is too small, model
collapse still remains. Additionally, one can see the NR-DCCA outperforms DCCA robustly with a
wide range of α.

Figure 8: The effects of hyper-parameter α of NR-DCCA in the CUB dataset.

A.7 IMPLEMENTATION DETAILS OF SYNTHETIC DATASETS

We draw n random samples with dim d from a Gaussian distribution as G ∈ Rd×n to represent
complete representations of n objects. We define the non-linear transformation ϕk as the addition
of noise to the data, followed by passing it through a randomly generated MLP. To generate the data

18

Under review as a conference paper at ICLR 2024

for the k-th view, we select specific feature dimensions from G based on a given common rate 3
and then apply ϕk to those selected dimensions. And we define ψj as a linear layer, and task Tj is
generated by directly passing G through ψj .

A.8 COMPLEXITY ANALYSIS

In this section, we compare the computational complexity of different DCCA-based methods. As-
suming that we have data from K views, with each view containing N samples and D feature
dimensions, then we have the computational complexity of each method in Table 1.

Table 1: Comparisons of computational complexity against baselines
DCCA DCCAE DCCA PRIVATE NR-DCCA

Generation of Noise - - - O(K ∗N ∗D)
MLP Encoder O(K ∗N ∗ L ∗H2) O(K ∗N ∗ L ∗H2) O(2 ∗K ∗N ∗ L ∗H2) O(2 ∗K ∗N ∗ L ∗H2)
MLP Decoder - O(K ∗N ∗ L ∗H2) O(K ∗N ∗ L ∗H2) -

Reconstruction Loss - O(K ∗N ∗D) O(K ∗N ∗D) -
Correlation Maximization O((M ∗K)3) O((M ∗K)3) O((M ∗K)3) O((M ∗K)3)

Noise Regularization - - - O(2 ∗K ∗ (M ∗K)3)

• Complexity of MLP: We will use DNNs with the same MLP structure, consisting of L
hidden layers, each with H neurons. Therefore, the computational complexity of one pass
of the data through the DNNs can be expressed as O(N ∗ (D ∗H +D ∗M + L ∗H2)).
To simplify, we use O(N ∗ L ∗H2).

• Complexity of Corr: During the process of calculating Cor among K views, three main
computations are involved. The calculation complexity of the covariance is O(N ∗ (M ∗
K)2. Second, the complexity of the inverse matrix and the eigenvalues are O((M ∗K)3.
As a result, the computational complexity of calculating Cor can be considered as O((M ∗
K)3).

• Complexity of reconstruction loss: The reconstruction loss, also known as the mean
squared error (MSE) loss, has a complexity of O(N ∗D).

A.9 VISUALIZATION OF THE LEARNED REPRESENTATIONS

To further demonstrate the effectiveness of our method, we employ 2D-tSNE visualization to depict
the learned representations of the CUB dataset (test set) under different methods. Each data point
is colored based on its corresponding class, as illustrated in Figure 9. There are a total of 10 cat-
egories, with 60 data points in each category. A reasonable distribution of learned representations
entails that data points belonging to the same class are grouped together in the same cluster, which
is distinguishable from clusters representing other classes. Additionally, within each cluster, the
data points should exhibit an appropriate level of dispersion, indicating that the data points within
the same class can be differentiated rather than collapsing into a single point. This dispersion is
indicative of the preservation of as many distinctive features of the data as possible.

From Figure. 9, we can observe that CCA, DCCA / DGCCA have all confused the data from dif-
ferent categories. Specifically, CCA completely scatter the data points as it cannot handle non-
linear relationships. By incorporating autoencoders, DCCAE / DGCCAE and DCCA PRIVATE /
DGCCA PRIVATE have partially separated the data; however, they have not fully separated the
green and orange categories. NR-DCCA / NR-DGCCA is the only method that successfully sepa-
rates all categories.

It is worth noting that our approach not only separates the data into different clusters but also main-
tains dispersion within each cluster. Unlike DCCA PRIVATE / DGCCA PRIVATE, where the data
points within a cluster form a strip-like distribution, our method ensures that the data points within
each cluster remain appropriately scattered.

19

Under review as a conference paper at ICLR 2024

(a) CONCAT (b) CCA (c) MVTCAE

(d) DCCA (e) DCCAE (f) NR-DCCA (g) DCCA PRIVATE

(h) DGCCA (i) DGCCAE (j) NR-DGCCA (k) DGCCA PRIVATE

Figure 9: Visualization of the learned representations with t-SNE in the CUB dataset.

20

Under review as a conference paper at ICLR 2024

A.10 DGCCA AND NR-DGCCA

This section presents the experimental results for DGCCA and NR-DGCCA, which supplement the
results of GCCA and NR-DCCA presented in the main paper. In general, DGCCA is a variant of
DCCA, and hence the proposed noise regularization approach can also be applied. We repeat the
experiments in Figures 4, 5, and 6, and hence we have the results for DGCCA in Figure 10, 11,
and 12. One can see that the proposed noise regularization approach can also help DGCCA prevent
model collapse, proving its generalizability.

(a) Performance (b) Correlation

Figure 10: (a) Mean and standard deviation of the GCCA-based method performance across syn-
thetic datasets in different training epochs. (b) The correlation between noise and real data after
transformation varies with epochs in different common rate settings for GCCA-based methods.

Figure 11: Performance of DGCCA-based methods with respect to different common rates during
the training. Each column represents the testing accuracy of the method at a specific training epoch.

Figure 12: Performance of DGCCA-based methods in real-world datasets. Each column represents
the performance on a specific dataset. The number of views in the dataset is denoted in the paren-
theses next to the dataset name.

21

Under review as a conference paper at ICLR 2024

A.11 ADDITIONAL EXPERIMENTAL RESULTS

Table 2 and 3 present the model performance of various MVRL methods in synthetic and real-world
datasets, and both tables correspond to the final epoch of the results presented in Figure 5 and 6. It
should be noted that the values in Table 2 represent the mean and standard deviation of the methods
across different tasks, indicating their performance and variability.

Table 2: Performance in synthetic datasets.
R2/Common Rate 0% 20% 40% 60% 80% 100%

CONCAT 0.253±0.038 0.255±0.039 0.250±0.040 0.254±0.040 0.256 ±0.042 0.264 ± 0.033
CCA 0.212±0.053 0.249±0.046 0.216±0.055 0.267±0.046 0.256±0.052 0.284±0.039

KCCA 0.243±0.047 0.261±0.046 0.260±0.043 0.272±0.045 0.276±0.049 0.288±0.038
PRCCA 0.212±0.053 0.249±0.046 0.216±0.055 0.267±0.046 0.256±0.052 0.284±0.039

MVTCAE 0.065±0.015 0.071±0.016 0.067±0.016 0.069±0.016 0.071±0.016 0.069±0.015
DCCA 0.136±0.036 0.188±0.040 0.194±0.044 0.192±0.049 0.215±0.044 0.221±0.036

DCCAE 0.134±0.056 0.200±0.043 0.211±0.040 0.224±0.042 0.228±0.043 0.230 ±0.040
DCCA PRIVATE 0.279±0.044 0.143±0.043 0.14±0.042 0.114±0.04 0.139±0.041 0.144±0.042
NR-DCCA (ours) 0.296±0.042 0.295±0.045 0.293±0.042 0.295±0.045 0.300±0.048 0.308±0.038

DGCCA 0.172±0.039 0.191±0.044 0.212±0.039 0.208±0.042 0.217±0.042 0.232±0.04
DGCCAE 0.158±0.04 0.192±0.041 0.199±0.04 0.206±0.041 0.214±0.041 0.219±0.038

DGCCA PRIVATE 0.297±0.043 0.16±0.045 0.146±0.038 0.106±0.044 0.155±0.041 0.159±0.035
NR-DGCCA (ours) 0.297±0.043 0.298±0.046 0.293±0.043 0.295±0.043 0.298±0.048 0.307±0.039

Table 3: Performance in real-world datasets
F1 Score/Data PolyMnist (2) PolyMnist (3) PolyMnist (4) PolyMnist (5) CUB Caltech101

CONCAT 0.828 0.937 0.964 0.962 0.878 0.597
CCA 0.723 0.871 0.900 0.920 0.517 0.450

KCCA - - - - - -
PRCCA 0.712 0.849 0.899 0.918 - -

MVTCAE 0.852 0.901 0.964 0.964 0.900 0.284
DCCA 0.870 0.959 0.975 0.934 0.805 0.604

DCCAE 0.871 0.958 0.983 0.965 0.850 0.605
DCCA PRIVATE 0.923 0.963 0.972 0.969 0.853 0.480
NR-DCCA (ours) 0.913 0.969 0.991 0.993 0.921 0.625

DGCCA 0.875 0.964 0.986 0.941 0.790 0.617
DGCCAE 0.879 0.960 0.988 0.934 0.814 0.612

DGCCA PRIVATE 0.907 0.965 0.969 0.969 0.864 0.476
NR-DGCCA(ours) 0.903 0.971 0.991 0.994 0.917 0.621

22

