Overview

We provide additional details and results to complement the main paper. Specifically, this document
includes the following materials:

* Broader impact (Appendix A).

* Details of evaluation metrics (Appendix B).

* Details of baseline methods (Appendix C).

* Details of training losses (Appendix D).

* Additional training and implementation details (Appendix E).

* Additional case study evaluations (Appendix F).

* License information (Appendix G).

 Dataset accessibility and long-term preservation plan (Appendix H).

* Structured metadata (Appendix I).

 Dataset identifier (Appendix J).

* Author statement of responsibility (Appendix K).

» Datasheet for dataset (Appendix L).

A Broader Impact

Fracture reassembly is an important task in the real world, e.g. recovering a shattered artifact or
a broken item of kitchenware. In recent years, machine learning algorithms trained on large-scale
datasets have shown great advance on this task. We believe Breaking Bad benchmark is an important
step towards teaching machines to reassemble physically plausible fractured objects. Our dataset will
facilitate future study in this field, and eventually enable robots to free human on the part assembly
task. We believe this research benefits both the economy and society.

Potential negative societal impacts. We do not see significant risks of human rights violations or
security threats in our dataset and its potential applications. However, since Breaking Bad contributes
to the entire field of fracture reassembly, it might trigger further concerns regarding the assembly
algorithms. Even with advanced learning methods, human trust in Al is still a problem. For example,
since some object fractures have very sharp edges, the imperfect assembly result could harm the
users. Therefore, the trained algorithms should be used under supervision and cannot fully replace
human. Finally, the fracture simulation code used for dataset generation could be adopted to break
down sculptures of humans, which would potentially cause harm to people. Overall, the technical
outcomes of this paper need to cooperate with humans to avoid negative societal impacts.

B Evaluation Metrics

Shape chamfer distance. The chamfer distance CD(P, Q) between two point clouds P and Q) is

defined as
D(P,Q) =Y min |lz—yl3+ ) min [y — 3. (4)
zeP yeQ yeQ oeb

Shape chamfer distance CD(.S, S*) is computed between the predicted assembly .S and the ground-
truth assembly S*.

Part accuracy. Part accuracy measures the percentage of parts whose chamfer distance to ground-
truth is less than a threshold 7 and is defined as

N

P = > 1(en(alr), ai(m) <), ®

i=1

where we set 7 = 0.01 following [20].
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Figure 6: Baseline model architectures. (Left) Global. (Middle) LSTM. (Right) DGL.
C Details of Baseline Methods

Figure 6 shows the architecture of the three baseline methods, i.e., Global, LSTM and DGL.

Global. We first extract the part feature for each input point cloud and the global feature using
PointNet [44]. Then, we concatenate the global feature with each part feature and apply a shared-
weight MLP network to regress the SE(3) pose for each input point cloud.

LSTM. To better learn cross-piece relationship, we develop a bi-directional LSTM [49] module that
takes as input part features and sequentially predicts the SE(3) pose for each input point cloud. This
resembles the process of sequential decision making when humans perform shape assembly.

DGL. Graph neural networks (GNNs) encode part features via edge relation reasoning and node
aggregation modules. We remove the node aggregation operation designed for handling geometrically-
equivalent parts in DGL, since every piece in our dataset has a unique shape geometry.

In all three models, the point cloud encoder is implemented as PointNet [44] and the pose regressor is
implemented as MLP with ReLU non-linearity. The output rotation is parametrized using quaternion
representation.

In our experiments, we adopt the official implementations of Global, LSTM and DGL from
https://github.com/hyperplane-lab/Generative-3D-Part-Assembly. We also include
our benchmark code in the supplementary material and will make them publicly available upon
acceptance.

D Training Losses

Following previous methods [20, 28, 48, 62], all models are trained with the pose regression loss
Lopose, the chamfer distance 108 Lchameer and the point-to-point mean square error (MSE) loss Lyoint.
We use the pose regression 1oss Lpose [7], the chamfer distance 108S Lchamfer [20] and the point-to-
point MSE loss Lpoin¢ to train each of the baseline models. Denote the ground-truth SE(3) pose as

¢ ={(B}, )}

Pose regression loss L. The pose regression loss Ly is defined as

N
Loose =D T = T7 15 + Mol BT RY — 113, ©)

i=1
where [ is the identity matrix.

Chamfer distance 10ss Lchamfer- We also minimize the chamfer distance between the predicted
pose-transformed point clouds and the ground truths, as well as the predicted assembly and the
ground truth. The chamfer distance 10ss Lchamfer 18 defined as

Lehamter = Z CD(R;P;, R} P;) + AshapeCD(S, S*). (7
i=1

Point-to-point MSE loss Lin¢. We empirically observe that adding a point-to-point MSE loss helps

improve rotation prediction. Denote P} as the j-th point in the i-th fracture piece point cloud. We
minimize the ¢/, distance between point clouds transformed by the predicted rotation and by the
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Table 7: Evaluation on fracture reassembly. We report the results of three learning-based shape assembly
models on the everyday object subset. The results are averaged over all 20 categories.

Method RMSE(R)! MAE(R), RMSE(T)| MAE()] CD| PA¢

degree degree x1072 x1072 x107% %
Global 80.7 68.0 15.1 12.0 14.6 24.6
LSTM 84.2 72.4 16.2 12.6 15.8 22.7
DGL 79.4 66.5 15.0 11.9 14.3 31.0
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Figure 7: Visual results of fracture reassembly. We present visual results and comparisons between methods
on the everyday object subset.

ground-truth rotation, respectively, as
N . .
pomt Z Z ||RZP1] 7R:<Pz]||g (8)
=1

Total loss L. Each baseline model is trained by optimizing the following objective function with
hyperparameters Achamfer, Apoint Dalancing the three loss terms

L= ‘Cpose + )\chamferﬁchamfer + /\pointﬁpoinb (9)

E Training and Implementation Details

We implement all baseline models using PyTorch [41]. We adopt the Adam optimizer [26] for training.
The learning rate is initialized at 1 x 10~3 and decayed to 1 x 10~° using a cosine schedule [31]. We
report the performance averaged over three runs for each baseline method. We train all the baseline
models on one NVIDIA RTX6000 GPU for 200 epochs with a batch size of 32. We perform early
stopping when the model achieves best performance on the validation set. The hyperparameters are
set t0 Aot = 0.2, Ashape = 1, Achamfer = 10, and Apgine = 1. We choose them on the Global model via
cross-validation and fix them for all baseline methods in all experiments.

F Additional Case Study Evaluations

F.1 Additional Results of Fracture Reassembly

Table 7 and Figure 7 present additional quantitative and qualitive results of fracture reassembly on
the everyday object subset, respectively.

F.2 Additional Results of Ablation Study

Table 8 reports additional quantitative results of ablation study on the everyday object subset.

F.3 Additional Results of Model Pre-training and Fine-tuning

Table 9 reports additional quantitative results of model pre-training and fine-tuning.
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Table 8: Ablation study: Number of fracture pieces. We train DGL on the everyday object subset in three
settings and report performance evaluated on fractured objects of different numbers of fracture pieces. The
results are averaged over all 20 categories.

Testset RMSE(R)] MAE(R)] RMSE(I)| MAE@)] CD| PA?t
pieces degree degree x107? x10~2 x1073 %
Results of training on fractured objects with 2 to 20 fracture pieces
2-20 79.4 66.5 15.0 11.9 14.3 31.0
21-50 84.4 72.7 20.1 16.4 15.0 7.5
51-100 85.1 73.7 21.3 17.3 23.0 4.8
Results of training on fractured objects with 2 to 50 fracture pieces
2-20 79.9 67.0 14.8 11.7 14.0 29.9
21-50 84.5 72.9 19.6 16.0 14.0 7.7
51-100 84.8 73.5 20.5 16.8 18.1 4.7
Results of training on fractured objects with 2 to 100 fracture pieces
2-20 79.8 67.0 144 11.4 14.0 29.4
21-50 84.3 72.8 19.2 15.7 14.5 7.4
51-100 85.3 74.1 20.0 16.4 139 4.8

Table 9: Analysis of model pre-training and fine-tuning. We report the results of three learning-based shape
assembly models on the artifact subset.

Method RMSE(R)! MAE(R)! RMSE(T)] MAE(T), CDJ| PA{

degree degree x1072 x1072 x1073 %
Results of training the model from scratch
Global 84.8 73.0 16.7 14.0 19.0 12.7
LSTM 85.2 73.6 17.2 14.3 235 6.6
DGL 85.8 74.2 16.8 13.9 19.4 12.8
Results of fine-tuning from the model in Table 3
Global 83.8 71.8 16.6 13.8 19.0 13.3
LSTM 84.6 73.1 16.8 14.0 21.5 11.7
DGL 81.7 69.7 16.6 13.8 17.3 19.4

F.4 Additional Results of Generalization to Unseen Objects

Table 10 reports additional quantitative results of generalization to unseen objects.

F.5 Evaluation of Models Trained on Each Category

Table 11 top block reports the results of the three baseline models trained on each cateogry in the
everyday object subset independently. DGL achieves the best performance in most categories,
demonstrating the importance of using GNNs for relation reasoning between fracture pieces.

F.6 Evaluation of Models Trained on 20 Categories All Together

Table 11 bottom block presents the results of the three baseline models trained on 20 categories in the
everyday object subset altogether. Compared to models trained on each respective categories, all
three models achieve similar results in terms of translation and rotation, but have worse performance
in chamfer distance and part accuracy. We hypothesize that this is because when trained with objects
of a single category, the model is able to learn shape priors for this category, guiding the model to
correctly predict an SE(3) pose for each fracture piece. The comparison also shows that training a
model that generalizes to different object categories is an open challenge.
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Table 10: Generalization to unseen objects. We report the results of three learning-based shape assembly
models on the other subset.

Method RMSE(R)! MAE(R), RMSE(T)| MAE()] CD| PA¢

degree degree x1072 x1072 x107% %
Results of testing the model in Table 3
Global 86.4 72.9 194 16.3 422 6.0
LSTM 84.9 73.1 18.7 15.5 453 4.8
DGL 86.6 73.5 20.1 16.6 38.5 7.5
Results of testing the model in the bottom block of Table 5
Global 83.9 71.9 18.8 15.5 39.2 6.7
LSTM 82.9 70.3 17.9 14.9 40.3 5.5
DGL 81.3 69.9 17.2 14.5 36.6 8.3
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Description We introduce Breaking Bad, a large-scale dataset of fractured objects. Our dataset consists of over
one million fractured objects simulated from ten thousand base models. The fracture simulation is
powered by a recent physically based algorithm that efficiently generates a variety of fracture modes
of an object. Breaking Bad models the destruction process of how a geometric object naturally
breaks into fragments and serves as a benchmark that enables the study of fractured object
reassembly and presents new challenges for geometric shape understanding. See project page for
more information.

Subject Computer and Information Science

Keyword object fracture, shape assembly, computer vision, computer graphics

Figure 8: Screenshot of the Dataverse platform. The Breaking Bad dataset is hosted on the Dataset plaform
and can be accessed at https://doi.org/10.5683/SP3/LZNPKB.

G License Information

The licenses of code and data is summarized in Section 4.4. The baseline code will be released under
the MIT license.

H Dataset Accessibility and Long-Term Preservation Plan

The instructions to access our dataset is summarized on our project page at
https://breaking-bad-dataset.github.io/.

The dataset is stored on the Dataverse platform (https://dataverse.scholarsportal.info/),
which is a multidisciplinary, secure, Canadian research data repository, supported by academic
libraries and research institutions across Canada. Dataverse has been running for more than 5 years
and hosted over 5,000 datasets. We believe that this platform can ensure the stable accessibility and
long-term perservation of our dataset.

A screenshot of our dataset hosted on the Dataverse platform is shown in Figure 8.
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I Structured Metadata

Since we are using an existing data repository to host our dataset, the structured metadata is automati-
cally generated by the platform.

J Dataset Identifier

The DOI for our dataset is doi:10.5683/SP3/LZNPKB.

The benchmark code is attached in the supplementary material and will be released on Github upon
acceptance.

K Author Statement of Responsibility

The authors confirm all responsibility in case of violation of rights and confirm the licence associated
with the dataset and code.

L Datasheets for Dataset

We provide our responce in reference to the Datasheets for Datasets [11] standards.

L.1 Motivation

* For what purpose was the dataset created? To study the geometric fracture reassembly
task.

* Who created the dataset and on behalf of which entity? The authors listed on this paper,
which are researchers from the University of Toronto.

* Who funded the creation of the dataset? The research is funded in part by NSERC
Discovery (RGPIN2017-05235, RGPAS-2017-507938), New Frontiers of Research Fund
(NFRFE-201), the Ontario Early Research Award program, the Canada Research Chairs
Program, a Sloan Research Fellowship, the DSI Catalyst Grant program and gifts by Adobe
Systems.

L.2 Composition

* What do the instances that comprise the dataset represent? Each data instance contain
several 3D meshes, which are fractures simulated from breaking an object under random
external impact.

+ How many instances are there in total? 1,047,400.

* Does the dataset contain all possible instances or is it a sample of instances from a
larger set? Our data is generated by a simulation program. Therefore, it is a subset of all
possible simulation outcomes.

* What data does each instance consist of? It consists of several 3D mesh files which are
fractures of an entire object.

* Is there a label or target associated with each instance? No.
¢ Is any information missing from individual instances? No.

* Are relationships between individual instances made explicit? Yes. All instances are
grouped based on the object category.

* Are there recommended data splits? Yes. We provide the data splits used for evaluation
with the benchmark code.

* Are there any errors, sources of noise, or redundancies in the dataset? Probably, but we
are not aware of them at the moment. If any are discovered, they will be fixed and versioned.
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* Is the dataset self-contained, or does it link to or otherwise rely on external resources?
It is self-contained.

* Does the dataset contain data that might be considered confidential? No.

* Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? No.

Does the dataset relate to people? No.

L.3 Collection Process

* How was the data associated with each instance acquired? What mechanisms or
procedures were used to collect the data? How was it verified? Object meshes are
obtained from previous public datasets and filtered based on certain criterions discussed
in the main paper. The object fractures are generated by a simulation algorithm which is
conditionally accepted to a peer-reviewed journal ACM TOG. Prior to running simulation
on all the object meshes, we test it on a few examples to adjust hyper-parameters and verify
their correctness by human eyes.

* Who was involved in the data collection process and how were they compensated? The
authors listed on this paper.

* Over what timeframe was the data collected? All simulated fractures were created during
early April 2021.

* Were any ethical review processes conducted? Not applicable (no human data collection).
* Does the dataset relate to people? No.

L.4 Preprocessing, clearning and labelling

¢ Was any preprocessing/cleaning/labeling of the data done? No. All the data were
generated by the simulation program. The labels are automatically obtained from the
original shape datasets.

L.5 Uses

» Has the dataset been used for any tasks already? Yes. We have benchmarked existing 3D
shape assembly methods on our dataset in this paper.

* Is there a repository that links to any or all papers or systems that use the dataset? No
other papers use the dataset yet.

* What (other) tasks could the dataset be used for? Apart from fracture reassembly, the
dataset could also be used for training machine learning algorithms to predict fractures of
objects under external force.

¢ Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses? No.

* Are there tasks for which the dataset should not be used? All tasks involving object
part-whole study are valid. The dataset may not be suitable for other tasks.

L.6 Distribution

» Will the dataset be distributed to third parties outside of the entity on behalf of which
the dataset was created? Yes. It will be completely publicly available via a project page
based on a Github repo and the links listed thereupon.

* How will the dataset will be distributed? The code for data generation will be available
on Github. The data will be released on a permanent data hosting platform.

* When will the dataset be distributed? Immediately.

» Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? Yes. See the discussion of license
in Section 4.4. We also detail it in the corresponding field on the Dataverse platform.
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* Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? No.

* Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? No.

L.7 Maintenance

* Who is supporting/hosting/maintaining the dataset? Code for data generation is hosted
in a publicly-accessible Github repo. The Github account is owned by the PAIR Lab which
the authors belong to. The data hosting platform is also publicly-accessible and maintained
by the University of Toronto Libraries.

* How can the owner/curator/manager of the dataset be contacted? The corresponding
author of the paper can be contacted via email listed in the authorlist.

* Is there an erratum? Not yet. But there will be in the future if we discover any errors in
the dataset. It will be displayed on the project page.

* Will the dataset be updated? If any errors of the data are discovered, we will update future
versions of the dataset.

¢ Will older versions of the dataset continue to be supported/hosted/maintained? Yes.
All data will be versioned.

* If others want to extend/augment/build on/contribute to the dataset, is there a mecha-
nism for them to do so? Yes. As we provide the code for fracture simulation, users can
easily generate new object fractures based on meshes they provide. Also, users can submit
errors they discover via Github issues or emails, and discuss potential improvement with
authors.

22



Table 11: Evaluation of fracture reassembly. (Top block) Results are reported using the models trained on
each respective categories in the everyday object subset independently. (Bottom block) Results are reported
using the models trained on all categories in the everyday object subset together.
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Models trained only on each respective categories in the everyday object subset

RMSE (R) (deg.)
Global | 862 67.7 744 756 765 864 859 809 851 760 785 870 789 852 855 821 856 826 788 759 | 80.7
LSTM | 87.0 77.0 821 841 808 868 857 866 867 797 804 873 834 870 859 832 863 846 855 837|842
DGL | 843 678 742 754 759 868 824 712 845 761 789 87.1 739 866 877 818 829 830 786 683 | 794
MAE (R) (deg.)
Global | 729 542 618 632 632 709 741 685 733 627 653 745 664 730 730 702 728 719 660 628 | 68.0

LSTM 749 647 704 727 696 735 745 746 756 671 677 749 712 753 738 719 743 736 742 730 | 724
DGL 704 544 614 627 629 713 707 584 729 626 656 734 599 739 754 701 707 726 656 542 | 665

RMSE (T) (x107?)

Global 105 176 179 182 184 172 185 125 175 66 11.3 171 94 157 175 21.0 173 154 160 72 | 151
LSTM 1.0 18.0 200 216 207 183 181 145 175 74 119 174 102 160 201 228 197 119 181 8.1 16.2
DGL 64 180 188 159 215 173 194 143 185 47 105 201 68 157 21.6 192 162 136 151 6.0 | 150

MAE (T) (x1072)

Global 72 148 152 155 157 134 133 106 143 47 89 125 68 122 145 173 127 120 127 59 | 120
LSTM 74 149 165 180 172 140 13.1 123 144 5.1 9.1 132 73 124 161 176 143 93 139 66 | 126
DGL 46 151 156 135 179 134 153 11.7 151 34 83 153 5.1 121 17.1 154 121 109 119 49 | 119

Chamfer Distance  (x10~%)

Global 6.4 11.0 207 150 202 62 388 105 227 23 10.8 89 43 233 170 316 8.0 119 136 83 14.6
LSTM 4.8 132 244 265 202 7.1 552 121 258 14 113 85 3.0 227 164 229 6.0 8.1 175 9.6 15.8
DGL 15 8.3 152 9.6 157 46 892 73 234 07 9.8 52 1.3 245 154 277 54 8.5 8.8 35 14.3
Part Accuracy (%)
Global 502 160 145 219 115 138 78 155 72 654 449 200 565 100 163 49 172 41.0 235 344 | 246
LSTM 485 142 85 57 59 1.5 99 59 58 642 462 215 500 89 170 63 202 543 153 339 | 227
DGL 716 173 203 266 122 132 66 259 84 772 502 231 674 11.0 172 139 232 502 307 54.0 | 31.0
Models trained on 20 categories altogether in the everyday object subset

RMSE (R) (deg.)

Global | 902 69.7 742 739 766 78.6 833 778 888 77.8 803 891 775 850 893 900 793 824 788 832|813
LSTM 86.2 831 81.0 79.0 80.1 857 851 884 870 821 828 872 823 847 862 902 845 837 827 885 | 845
DGL 884 699 752 770 767 747 81.1 764 866 758 804 903 744 857 874 855 860 784 805 824 | 806

MAE (R) (deg.)

Global | 76.8 574 61.6 61.1 643 675 713 664 768 646 678 783 647 729 775 787 670 714 660 70.8 | 69.1
LSTM | 746 716 692 666 68.1 744 738 769 754 702 710 762 702 734 748 783 731 726 70.8 765 | 729
DGL 749 571 624 635 644 613 688 640 747 628 67.1 780 604 739 750 734 740 672 673 693 | 68.0

RMSE (T) (x1072)

Global 121 177 168 179 184 175 167 139 175 73 121 179 86 168 17.1 233 159 139 168 10.7 | 154
LSTM 104 179 179 186 190 179 170 138 182 7.7 125 180 92 180 185 225 146 132 173 9.7 | 156
DGL 100 183 171 179 194 174 196 142 187 50 114 188 6.0 165 158 225 144 144 152 6.2 | 149

MAE (T) (x1072)

Global 82 146 139 153 156 142 121 121 144 52 94 136 64 133 143 175 116 112 132 8.6 | 122
LSTM 72 147 148 157 160 141 121 119 148 53 95 144 66 143 153 168 109 112 135 77 123
DGL 68 150 142 151 162 139 152 119 151 37 89 145 45 128 129 175 109 11.7 120 5.1 11.9

Chamfer Distance (X 10_3)

Global 49 159 166 168 185 378 460 142 196 22 117 334 22 278 149 610 84 136 151 146 | 198
LST™M 49 210 190 174 183 321 49.6 164 202 2.1 124 356 24 338 182 582 62 140 158 13.6 | 20.6
DGL 3.0 9.1 1.5 89 144 260 878 115 204 1.0 111 105 10 273 172 454 8.1 100 94 62 | 17.0

Part Accuracy (%)

Global | 449 112 179 225 108 15 120 72 128 619 396 13 600 50 159
LSTM 503 58 134 188 8.6 2.2 8.3 4.1 95 615 384 27 554 25 136 1.
DGL 599 159 227 245 142 92 35 145 11.8 739 466 183 677 87 239

17.8 343 194 218 | 209
232 349 191 264 | 20.0
262 41.1 30.1 464 | 28.1
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