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A NOTATION

We denote by || - ||2 the £2-norm of a vector or the spectral norm of a matrix. Furthermore, for a

positive definite matrix A, we denote by ||z|| 4 the matrix norm vz T Az of a vector . For any
number a, we denote [a| the smallest integer that is no smaller than a, and |a| the largest integer
no larger than a. Also, for any two numbers a and b, let @ V b = max{a, b} and a A b = min{a, b}.
For some positive integer K, [K] denotes the index set {1,2, - - - , K'}. When logarithmic factors are

omitted, we use O to denote function growth.

B PSEUDOCODE OF SW-LSVI-UCB

Algorithm 3 Sliding Window Least-Square Value Iteration with UCB (SW-LSVI-UCB)

Require: Sliding window length w, stepsize «, regularization factors A and A’, and bonus multipli-
ers S and /3.
- Initialize {7 (-|-)}f__, as uniform distribution policies, {Q9 (-, )}/, as zero functions.

1

2: fork=1,2,...,K do

3:  Receive the initial state s¥.

4:  Initialize V}; as a zero function.

5: for h H H — O do

6: fs ) - ViF 1 (s)ds.

7 Ak Z‘r 1\/(k: w) ¢(Sh, ah)gb(s};, a‘ll;)T + >\Id .

k—1

8 h = (A} 1V (k—w) ¢(sh» ap )Ty (sh, ap)-
k—1

9 Ap =302 W (k—w) Th (S ap )y (ST, ap) "+ Ng..

10: &:(AZ) (Zi }v(k w) My ($haf,) - V}f+1(52+1))-
1: BEG,) = B(6(,)T(AN g, ).

12: TEC) =B ()T (AR k(L)

130 QF(.) =min{e(, )T +nf( ) e+ BEC,) +TE(, ), H — h+ 1},
14: Vik(s) = max, QF (s, a).

15: 7 (s) = argmax, Q% (s, a).

16:  end for

17: end for

C PROOF OF THEOREM 3.1

1_5_<a’7§> 1—-6

Figure 1: The hard-to-learn linear kernel MDP constructed in the proof of Theorem 3.1. Note that
the probability of state x( to state 1 depends on the choice of action a.

Proof. To handle the non-stationarity, we divide the total 7" steps into L segments, where each
segment has Ko = | %] episodes and contains Ty = HK, = H|% | steps. Now we show the
construction of a hard-to-learn MDP within each segment, the construction is similar to that used

14



Under review as a conference paper at ICLR 2022

in previous works (Jaksch et al., 2010; Lattimore & Hutter, 2012; Osband & Van Roy, 2016; Zhou
et al., 2020a). Consider an MDP as depicted in Figure 1. The state space S consists of two states xg
and x,. The action space A consists of 247! vectors a € {—1,1}471, where d > 2 is the dimension
of feature map 1) defined in Assumption 2.1. The reward function does not depend on actions: state
xo always gives reward 0, and state x1 always gives reward 1, that is, for any a € A,

r(zo,a) =0, r(xzi,a) = 1.
Choosing,
0= (1/d>1/da 71/d)T € Rda (15(1'0,0,) = (ana 70)T € Rd7¢(xlaa) = (1713 71)T ERda

for any a € A, it follows that r(s,a) = ¢(s,a)' @ for any (s,a) € S x A, and thus this reward
is indeed linear. The probability transition P is parameterized by a (d — 1)-dimensional vector

¢ €= ={—¢/(d—1),¢/(d—1)}4"1, which is defined as
Pg(x0|x0,a):1—5—<a,§>, Pg(x1|x0,a):5+<a,§>,
P§($0|$1,a):(5, P§($1|$1,a):1—67

where § > 0 and € € [0, d — 1] are parameters which satisfy that 2¢ < § < 1/3. This MDP is indeed

a linear kernel MDP with the d-dimensional vector E = (¢7,1)". Specifically, we can define the
feature map (s, a, s’) as

¢($07aa$0) = (7U’T7 1- 5)T7 1/’(13&@»5171) = (aTv(S)T?
1/)(9517%960) = (OTaé)T7 1/1(9517(17581) = (0T71 - 5)—'—7

and it is not difficult to verify that P¢(s' | s,a) = 1(s, a,s') €.

Now we are ready to establish the lower bound in Theorem 3.1. By Yao’s minimax principle (Yao,
1977), it is sufficient to consider deterministic policies. Hence, we assume that the policy 7 obtained
by the algorithm maps from a sequence of observations to an action deterministically. To facilitate
the following proof, we introduce some notations. Let Ny, N1, N§ and Né“/ denote the total number
of visits to state xq, the total number of visits to x1, the total number of visits to state x( followed
by taking action a, and the total number of visits to state g followed by taking an action in A’ C A,
respectively. Let P¢(+) denote the distribution over ST, where s} = zo, sf | ~ Pe(-|sf, af), aff
is decided by ﬂ'}’j. We use ¢ to denote the expectation with respect to Pe.

Now we consider a segment that consists of K episodes and each episode starts from state xg. Let
sk denote the state in the h-th state of the k-th episode. Fix & € =. We have,

Ko H Ko H Ko H
EeNi=» ) Pelsp=a1) =) > Pelsp=anshy=z1)+ ) Y Pelsh = z1,85_1 = 20)

k=1h=2 k=1h=2 k=1h=2
Ko H Ko H
=D D Pelsh =a|shy =a))Pe(shy =a1)+ Y > Pelsh = a1, = 20).
k=1h=2 k=1 h=2
(i) (ii)

(C.1)

By the construction of this hard-to-learn MDP, we have P¢(sf = z1|sf | = x1) = 1 — 6, which
implies that

Ko H
) =(1=0)-D> > Pelsp_y = z1)
k=1 h=2 <
=(1=0) BNy — (1=0)- > Pe(shy = z1). (C.2)
k=1

Meanwhile, we have

Ko H
(ii) = ZZ ZPg(SE =y |sf_| =wxo,af_; =a) Pe(sf_; =x0,af_, = a).

k=1h=2 a
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By the fact that P (sf = 1 | sf_, = x0,a¥ | = a) =6 + (a, ), we further obtain

Ko H
= Z ZZ(‘S +(a,§)) - PE(SIZA = wo,a’;’iq =a)

k=1h=2 a
Ko
= Z §+ (a,€)) - (EeNG — ZPg(s% = x9,ak = a)). (C3)

Plugging (C.2) and (C.3) into (C.1) and rearranging gives
Ko

1-6
EeNy = Za:(l +(a,§)/0) - E¢Ng — ;(T Pe(sfp = 1) + Z - Pe(s = wo, af
e
=E¢No+671- Z(a, EENG — De. (C.4)
By (C.4) and the fact that {(a, &) < €, we further have
EeN = EeNo+67" > (a,€) - EeNg — P
€ Ko1-4 €
> EeNo = 5 BelNo = Y (5 Pe(sly = 1) + (1+ 5) - Pe(sly = 20))
k=1
¢ S01-5 e+26—1
k=1
1-46
> (1— 5) EeNo — — - Ky, (C.35)
where the second equality uses the fact that Pe(s% = xg) + Pe(sh;, = 1) = 1, and the last
inequality holds since 6+25 1 - Pe(sh = xo) is negative. Together with Ny + Ny = Tp, (C.5)
implies that
T 1-— - K 2T 2

2—¢/6 - 3 34

where the last inequality follows from 2¢ < § and 6 > 0. Meanwhile, note that ® is non-negative
because (a,&) > —e > —4. Combined with the fact that Ny + Ny = Tp, (C.4) and &, > 0 imply
that

EeN) < To/2+671 - {0, &) - EeNG /2. (C6)

Hence, we have

éZ]EgNl < %Jr e ZZ a,&)EN¢
¢

T
<5+ _JHZZZ&HW@ =sgn(a) NG, (€)
j=1 a
where 1{-} is the indicator function. Here the last inequality uses the fact that (a,§) <
T Z?;i 1{sgn({;) = sgn(a;)} forany a € Aand £ € = Fix j € [d — 1]. We define a
new vector g(£) as
&, ifi# ],
9(&)i = e
_£i7 ifi = J-
Then, for any a € A and £ € =, we have
Ec1{sgn(;) = sgn(a;)} Ng + g 1{sgn(g(E);) = sgn(a;)} Ng
= Eg) Ny + Ee1{sgn(§;) = sgn(a;)} Ng — Eg(e)1{sgn(&;) = sgn(a;)} Ny (C.8)
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Taking summation of (C.8) over a and &, and because g(&) is uniformly distributed over = when ¢
is uniformly distributed over =, we have

23 ) Ee(1{sgn(¢;) = sgn(a;)}) NG
a ¢
=3 Z(EQ@NS +Ee1{sgn(;) = sgn(a;) }N§ — Eg(e)1{sgn(§;) = sgn(a;)}NG)

AS
*Z >N0+]E5N *Eg@)No’)v (C.9)

¢
where A§ = {a :sgn(§;) = sgn(a;)}. By Lemma J.4 and the fact that N64j < Ty, we have
CTO

AS AS
EeNg 7 —Ege)Ny? < KL(Pye)lPe), (C.10)
where ¢ = 8+/log 2. Moreover, by Lemma J.5, we have
16¢2
KL(Pe || Pe) < mEgNo (C.11)
Plugging (C.8), (C.9), (C.10) and (C.11) into (C.7), we obtain
d—1
1 T T
=S EN <24 7_ 3 (BeNo + 2 /EeN)
El 4 2 T (d-E &2 NG
1
TO 2T0 CT()E 2T0 2 )
< - — —Ko+ —— + — K
Y S (g a5

TO 6T0 eK 0 CTO € 2T()

_ 20 1K C.12

2+65+652+8d5\/5 3 350 12
Note that for a given &, whether in state  or ;, the optimal policy is to choose ag = [sgn(&;)]¢= .
Hence, we can calculate the stationary distribution and find that the optimal average reward is 25;:6
Recall the definition of dynamic regret in (2.3), we have

1 0+e€ 1
El > E¢D-Regret(Ty) > Ty — El > EcM
e e

20 + ¢
1) +e€ TO €T0 6K0 CT0€2 2To 2
> Ty 2200 204 2 Ko, (C.I3
25+ " 2 65 662 8d5/s T gp o (©19)
Setting § = ©(4 ) and € = O( gTO), we have

Recall that in our episodic setting, the transition kernels Py, Po, - - - , Py may be different. By the
same argument in Jin et al. (2018) (consider H distinct hard-to-learn MDPs and set 6 = @(%) and

€= @(\/inO)), we obtain a dynamic regret lower bound of Q(dH+/T}) in the stationary linear kernel
MDPs. For non-stationary linear kernel MDPs, the number of segments L is under budget constraint
2¢HL/\/d < A. By choosing L = ©(d~/3A%/3 H=2/3T1/3), we have

1 ,
El > EeD-Regret(T) > Q(L - dH\/T/L) = Q(d*/ A3 H/3T?/3),
s

which concludes the proof of Theorem 3.1.
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D PROOF SKETCH OF THEOREM 4.2

In this section, we sketch the proof of Theorem 4.2.
To facilitate the following analysis, we define the model prediction error as

Iy =i +PrviE —QF, (D.1)

7Tkk‘

which characterizes the error using Vh to replace V,'**" in the Bellman equation (2.1).

D.1 PROOF SKETCH OF THEOREM 4.2

Proof Sketch of Theorem 4.2. First, we decompose the regret of Algorithm | into two terms
D-Regret(T) = R1 + Ra,

where Ry = S5 V7 R (sh) — VE(sh) and Ry = 1, ViF(sh) — ka’k(s’f). Then we analyze
R1 and Rq respectively. By Lemma E.1, we have

R1 22 Z ZEWM (@h(sns-)s ( |sn) — (- | su))]

k=(i—1)7+1 h=1
P iT H
+3 Y Y Bkl (shyan)).
i=1 k=(i—1)7+1 h=1

Applying Lemma D.2 to the first term, we obtain

P T H
ST S Bk [(Qh(sn L sn) — T sn))]

i=1 k=(i—1)7+1 h=1
< \/2H3Tplog |A| + TH*(Pr + VdA).

Meanwhile, as shown in Lemma E.1, we have

iT H
MKHQ_Z > > sk ap).

i=1 k=(i—1)74+1 h=1

Here M 2 is a martingale defined in Appendix E. Then by the Azuma-Hoeffding inequality, we

obtain [Mg 2| < \/16H2T -log(4/¢) with probability at least 1 — (/2. Here ¢ € (0,1] is a
constant.

Now we only need to derive the bound of the quantity

S i tim1yr1 et (Be [l (sn,an)] — 15(sk,af)).  Applying the bound of I in

Lemma D.3 to this quantity, it holds with probability at least 1 — /2 that

Z Z Z ok lh Shvah)] 12(827(12))

i=1 k=(i— 1)T+1h 1

k-1 k-1
Z Yo e =6+ Yo llg & 2+ Bi(s,a) + Th(s, ).
k=1h=1 i=1V(k—w) =1V (k—w)

Then we apply Lemmas J.1 and J.2 to bound this quantity by 2wAH~/d 4+ 8dT\/log(w)/w +
8C'dTH - \/log(wH?2d)/w - log(dT'/{), where C" is a constant specified in the detailed proof.

With the help of these bounds, we derive the regret bound in Theorem 4.2. O
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D.2 ONLINE MIRROR DESCENT TERM

In this subsection, we establish the upper bound of the online mirror descent term.

The following lemma characterizes the policy improvement step defined in (4.1), where the updated
policy 7 takes the closed form in (4.3).

Lemma D.1 (One-Step Descent). For any distribution 7 on A and {7*}%X_, obtained in Algorithm
1, it holds that

a - (Qh, ma(-|s) =7 (-] )
< KL(my (- 8) | 7 (- | 5)) = KL(ma(-|8) (|71 (- | 8)) +o”H? /2.

Proof. See Appendix F.1 for a detailed proof. O

Based on Lemma D.1, we establish an upper bound of online mirror descent term in the following
lemma.

Lemma D.2 (Online Mirror Descent Term). For the Q-functions {Qﬁ}(k,h)e[z{]x[ ) obtained in
(4.9) and the policies {W’ﬁ}(k,h)e[K] «[H] obtained in (4.3), we have

Yoo D D B [(@h(sne )y m (L sn) — mh (- sn)]

i=1 k=(i—1)74+1 h=1
< \2H3Tplog |A| + TH?*(Pr + VdA).

Proof. See Appendix F.2 for a detailed proof. O

D.3 MODEL PREDICTION ERROR TERM

In this subsection, we characterize the model prediction errors arising from estimating reward func-
tions and transition kernels.

Lemma D.3 (Upper Confidence Bound). Under Assumptions 2.1 and 4.1, it holds with probability
at least 1 — /2 that

k—1 h—1
—2Bi(s.0) —2Whsa) = D G =0 VA 3 =6
i=1V(k—w) i=1V(k—w)
k-1 ‘ b1 |
<heos ) -0k #Yd: 5 -6
i=1V(k—w) i=1V(k—w)

for any (k, h) € [K] x [H] and (s,a) € S x A, where w is the length of a sliding window defined
in (4.5), B (-, -) is the bonus function of reward defined in (4.10) and I'¥ (-, -) is the bonus function
of transition kernel defined in (4.10).

Proof. See Appendix F.3 for a detailed proof. O

Since our model is non-stationary, we cannot ensure that the estimated Q-function is “optimistic in
the face of uncertainty” as lﬁ < 0 like the previous work (Jin et al., 2019b; Cai et al., 2019) in the
stationary case. Thanks to the sliding window method, the model prediction error here can be upper
bounded by the slight changes of parameters in the sliding window. Specifically, within the sliding
window, the reward functions and transition kernels can be considered unchanged, which encourages
us to estimate the Q-function by regression and UCB bonus, and thus achieve the optimism like the
stationary case. However, reward functions and transition kernels are actually different in the sliding
window, which leads to additional errors caused by parameter changes.

By giving the bound of the model prediction error I defined in (D.1), Lemma D.3 quantifies un-
certainty and thus realizes sample-efficient. In detail, uncertainty is because we can only observe
finite historical data and many state-action pairs (s, a) are less visited or even unseen. The model
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prediction error of these state-action pairs may be large. However, as is shown in Lemma D.3,
the model prediction error lk can be bounded by the variation of sequences {Gh}l WV (h—w) and

{¢ h}z:1\/( k—uw)» together with the bonus functions B and T'¥ defined in (4.10), which helps us to
derive the bound of the regret. See Appendix G for details.

E REGRET DECOMPOSITION

Recall the definition of model prediction error in (D.1)

Ih=rh +PEVi, — Q).
Meanwhile, for any (k, h) € [K]x[H], we define F, 5, 1 as the o-algebra generated by the following
state-action sequence and reward functions,
{(sT,a]))}riyete—yxim U {r e U {(sF, af) Y-

Similarly, we define F}, 5, o as the o-algebra generated by

{(s5,a0) Y riyepe—1)xpm YA Frem U {(st, af)}z‘e[h] U {SZH}»

where 3?—1+1 is a null state for any k& € [K]. The o-algebra sequence { F . m } (k,h,m)e[K] x[FH]x[2] 1S
a filtration with respect to the timestep index ¢t(k, h,m) = (k— 1) - 2H + (h — 1) - 2+ m. It holds
that Fk,h,m - ]:k/,h’,m/ for any t(k, h, m) < t(k’l, h/, m').

Lemma E.1 (Dynamic Regret Decomposition). For the policies {wk}szl obtained in Algorithm 1
and the optimal policies 7*¥ in k-th episode, we have the following decomposition

K

*,k o7, ﬂ_k
D-Regret(T) = > (V7" *(sh) = Vi *(sh)) (E.1)
k=1
T H
=3 > B [(@KCn i sn) TG sn))] + M
i=1 k=(i—1)r+1 h=1 —
(i)
(i)
P H
IDID M S TIRNIES S SR DT ¥
i=1 k=(i—1)7+1 h=1 i=1 k=(i—1)7+1 h=1
(iii) (iv)
Proof. Recall the definition of dynamic regret in (2.3), we have
K k k
D-Regret(T) = S (V77 "*(sh) — V77 ¥ (s}))
k=1
& s ok, K ok, K
=> (VM) = v R Gs). (E2)
i=1 k=(i—1)r+1
Note that
ﬂ*’k,k 7\'k,k7 Tr*"k,k 7Tk,k
Vi (s1) =V (sh) = Wy (s1) = VIE(sT) + VIF(sT) = V" (sh) - (E.3)

Term (i): By Bellman equation we have

ViR (s) = V() = (QF (s, )y mi (-1 9))a — (QE(s, ), 7 (-] 9)) 4 (E.4)
= (QF " (5,) — QE (s, ), T (- | 8))a + (QE(s, ), (| ) — 7 (-] 9)) 4
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for any (s, h,k) € S x [H] x [K]. Meanwhile, by the definition of the model prediction error in
(D.1), we have

Qh =15 +PRViiy — I
Combining with Bellman equation in (2.1), we further obtain
k
nt QL = PRV - Vi) + (ES5)
Plugging (E.4) into (E.5), we obtain
kK "k *,k *,k
Vi R (s) = Vi (s) = (PR(VT T = Vi) (), m " (- 1))+ (U (s, ), m " (- [ )
+(Qh(s,)sm (- 8) = mh (-] 9)) 4. (E.6)

For notational simplicity, for any (k, h) € [K] x [H] and function f : S x A — R. we define the
operators ]Iﬁ and I, ;, respectively by

IF)(s) = (Fla, ), my " C1s)) (Tenf)(s) = (Fla, ), mh (-] 5)). (E.7)
Also, we define
wi(s) = (IQF)(s) — Mk wQR)(s) = (@R (s, ), 3" (- 8) = 7h (-] 5)) (E.8)
With this notation, recursively expanding (E.6) over h € [H|, we have
) H h-1 H h-1
Vit — vk = (H ]Ikpk) it = Vi) + Z(H prf)ﬂlﬁlﬁ + Z(H pri?)/iﬁ
h=1 i=1 h=1 i=1
H h— H h-1
= Z(H Pl )uhek + 3 (T 1k ok,
h=1 i=1 h=1 i=1

where the last inequality follows from VHﬂ+f =Vk +1 = 0. By the definitions of P in (2.2), IF in
(E.7), and NIZ in (E.8), we further obtain

H
Term(i ZEW (@F(sn )y (- Isn) = 7f ([ s)] + D Eellf (shyan)l.  (B.9)
= h=1

Term (ii): Recall the definition of value function Vhﬂk *in (2.1), the estimated function th in (4.9)
and the operator ]1 in (E.7), we expand the model prediction error [F 1 into

U (shy ar) = i (shy az) + (PR Vi) (sh, ai) — Qi (sh, ai)
= (rh(sh,af) + (BEVE ) (sh ab) — QF *(shaf)) + Q@ *(sh af) — @(sh af)
= (Ph(ViE = Vi) (shoah) + (@QF = @B (sh.ab),
where the last equality follows from the Bellman equation in (2.1). Then we can expand th(s’fl) —
Vh”k’k(s’,j) into
ViE(sh) = Vi (s) = (Ten(@F = Q7 ) () + zii(s’z, ak) = lh(sh,a})
= (L (@F = Q) (s) + (@F * = Q) (st af)
+ (Bh(ViE - vh”i’f))(sz,ah) e
To facilitate our analysis, we define
Dipa = (en(QF — QT M) (sh) — @k — Q1 (E.10)
Dina = (BE(Viks = Vi) (shoah) = (Vi = Vi) sk 0):
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Hence, we have

ke ok ™
ViE(s) = Vi, #(s¥) = Dypy + Dz + (Vike, — Vh+1k)(82+1) — 15 (sk,af) (E.11)
for any (k, h) € [K] x

[H]. For any k € [K], recursively expanding (E.11) across h € [H] yields

H
(Dr,hy + Dion2) — Z ZZ(sﬁv alii) + (VII;Jrl(SI;IH) - VHW+f(s];I+1))
1

M:c

Term(ii) =

>
Il
—
>
I

I¥(sk,ab), (E.12)

I
M=
Mm

(Di,h1 + Dipy2) —

-
Il
—
>
Il

] 1

where the last equality uses the fact that Vi (sk ;) = Vg:f (s§41) = 0. By the definitions
of Fi p,1 and Fy, p 2, we have the Dy 1 € Fi p1 and Dy 2 € Fi p2. Hence, for any (k,h) €
(K] > [H],

E[Dg,n,1|Frn-1,21 =0,  E[Dy n2|Fin1] = 0.

Notice that Fj 92 = Fr—1,m,2 for any k£ > 2, which implies the corresponding timestep index
t(k,0,2) = t(k —1,H,2) = 2H(k — 1). Meanwhile, we define Fj o 2 to be empty. Thus we can
define the following martingale

k—1 H
Mk,h,m ZZ 711+D712 +Z Dk11+Dk12 +Zthf
T=11i=1
— > Dy, (E.13)

(1,4,0)E[K]|x [H]x[2],
t(7,:,0)<t(k,h,m)

where t(k, h,m) = 2(k — 1)H + 2(h — 1) + m is the timestep index. This martingale is obviously
adapted to the filtration {F n.m } (k,h,m)e[K]x[H]x|2]» and particularly we have

K H
M2 =YY (Drni+ Dinz). (E.14)
k=1h=1
Plugging (E.9) and (E.12) into (E.2), we conclude the proof of Lemma E.1. O]

F PROOFS OF LEMMAS IN SECTION D

F.1 PROOF OF LEMMA D.1

Proof. For any (k,h) € [K] x [H], let zx(s) = 3 ,,c 4 p(a’) - exp(a - w)(a’ | 5)). Since z4(s) is a
constant function, it holds that, for any s € S,

(log 21 (s), m(- | 8) = m F1 (-] 5)) = 0
Hence, for any s € S, it holds that
KL (m (- | 8) [ 74 (- 5)) = KL(mu(- | 8) | 7, (-] 5))
= (log(my " (-1 8)/m (-1 9)) m (- | 9))
= (log(m, "1 (-18)/mi (- 9)), 7a (- | 5) = m F1 (- 8)) + KL(m, ' ([ 9) | (-] 9))
= (log zi(s) +log(my " (- | s)/m (- | 5)), 7 (- | 8) — m F (- | )>+KL( nCIs) k(] 9).
Recall that 7} 7 (- | -) oc 7f (-] ) - exp{ar- QF(-|-)}, we have
KL(mn (- | 8) [| w (- | 8)) = KL(mn(- | s) [| w3, F (- | 5)
= a - (Qhmr(-|s) = (| 9)) + KL(mp ™ (| 9) |5 (- | 9)).
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Thus,

a-(Qp,mn(-|s) — (-] 5)) (1)
= o (QF, (-] 8) = 7T 8)) + - (Qp, (| s) — 7 (- | 9))
< KL(mn(-|9) [ 7 (- | 9)) —KL(m( |s) lmp (- 1s)) = KL(mp ™ (- | s) |77 (-] 5))
+a-[|QE(s, oo - Ik (| 8) = (- 8)]l1,

where the last inequality uses Cauchy-Schwartz inequality. Meanwhile, by Pinsker’s inequality, it
holds that

KL(m (o)1 9) = (- |s) = my (1 s)I17 /2. (F.2)
Plugging (F.2) into (F.1), combined with the fact that || Q% (s, -)||oc < H for any s € S, we have

o (QF,mu(-]8) =7 (-] 5))
<KL(m (- 8) [ w (- 5) = KL(ma(-| ) [ 77| ))
— TGl s) — ) 3/2 + aH (| s) = 7L )
<KL(m(-|8) [ 7§ (-|5) = KL(ma(- | ) [ 7571 ) + 0’ H2/2,

which completes the proof of Lemma D.1. O

F.2  PROOF OF LEMMA D.2
Proof. Recall that p = [K/7]. First, we have the decomposition

P T H
ST D Eren (@5 Gsny )y (Lsn) = wh (- sn)] (F3)

i=1 k=(i—1)r+1 h=1

14 iT H
3 > D Eemnen [(QF (s ), 1 ([ sn) = wE (-] sn))]

i=1 k=(i—1)7+1 h=1

(A)

P iT H
+3 > Y B = B e [(QE (50 ), 7 (L sn) — 7k (- [ sn))] -
i=1 k=(i—1)7+1 h=1

:('7 +

(B)

We can further decompose Term A as

Term(A Z Z Z]E o (i—1)T+1 Qh(shv ), T *(l 1)TH( |sn) — mh(: |sn))]

=1 k=(i—1)7+1 h=1

A

+Z Z ZEW D [(@E (sny ), T (- [ 30) = m DT )]

i=1 k=(i—1)7+1 h=1

Az
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By Lemma D.1, we have

H p
1
A < 3 it
< aKH?/2 + Z Z -
h=1i=1
% Z (E ;( R [KL( *,(1— 1)T+1( |5h) || 7r}k7,( | Sh)) _ KL(W;’(i_l)T+1(- ‘ s H 7Tk+1( ‘Sh))])
k=(i—1)7+1 '

1 s e 1
= joKH +ZZ;'

h=11i=1

(B o [RL (O s (107 n) = KL (07 ) 7 sn)] )

I /\

GOKH + ZZ( mnrn [KL(m 0T ) [ 0T ). (F4)

h=11i=1

Here the second inequality is obtained by the fact that the KL- divergence is non-negative. Note

that ﬂ_(z 1)7+1 . (i—l)T+1(

is the uniform policy, that is, 7, alsp) = il AI for any a € A. Hence, for any
policy m and ¢ € [p], we have

KL (m (- [ sn) | V7 [sn)) = 3 malal sn) - log (JA] - maa | 1))
acA

=log |A| + Z mh(alsy) -log(mn(alsy)) <loglA|, (F5)
acA

where the last inequality follows from the fact that the entropy of 7y, (- | sp,) is non-negative. Plugging
(E.5) into (F.4), we have

Ay < aH?K/2+ pH log | A|/a = \/2H3Tplog | Al (F.6)

where the last inequality holds since we set o = /2plog |A|/(H2K) in (4.2). Meanwhile,

14 iT H
A< > S Epenen [H i C Lsn) = mp O ) ]

i=1 k:(i71)7+1 h=1

o
SH'Z} Z Z Z ooyt [l " (- L) = w7 sn) 1]

—1)7+1 h=1t=(i— 1)T+2

Yy Yy Zmaxnwh 18 = ]9

i=1 k=(i—1)7+1t=(i—1)7+2 h=1
K H

= Hr- Yy max|lm (] s) = w7 (| s)ly = HTPr, E7)
f:lh:l

where the first inequality follows by Holder’s inequality and the fact that ||Q% (s, -)||oc < H, the sec-
ond inequality follows from triangle inequality, and the last inequality is obtained by the definition
of Pr in (2.4). Combing (F.6) and (F.7), we have

Term(A) < \/2H3Tplog |A| + HT Pr. (F.8)

By Lemma J.6 and the same proof of Lemma 4 in Fei et al. (2020), we have

Term(B) < TH?(Pr + Ap), (F.9)
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where Ap = S SO max (o ayesxa [P | 55,a) — P (-] s,a)|)1. By Assumption 2.1, we
further obtain

1 (s,a)eSxA
K H
=3"N" max Y [P |sj,0) — P | s,a)]
1 hel (s,a)ESX.A Py
K H
=33 max > [esia,s)T(Ef - €Y
1 hmp (SWESXA T
K H
<SS max N sia sz 1€ — &, (F.10)
1 he1 (s,a)ESX.A oS

where the last inequality follows from Cauchy-Schwarz inequality . Recall the assumption that
Yooes (s, a,8)]2 < Vd for any (s,a) € S x A, we have

K H
’ ek _ ekt
>3 max 3 [[0s a2k~

k=1h=1 s'eS
K H
<VAY Yk =& 2 = VdBp < VdA. (F11)
k=1 h=1

Combining (F.8), (F.9), (F.10) and (F.11), we have

P T H
S0 Y Bk [(QF (), 1 (- sn) = wh (| sn))] < V/2H3Tplog | Al + TH?(Pr + VdA),
i=1 k=(i—1)7+1 h=1

which concludes the proof.

F.3 PROOF OF LEMMA D.3

Proof. We first derive the upper bound of —I¥(-,-). As defined in (D.1), for any (k, k) € [K] x [H]
and (s,a) € S x A,

—li(s,a) = Qfi(s,a) — (r + LV ) (s, a).
Meanwhile, by the definition of Q’,TL in (4.9), we have
Qﬁ(v ) = min{q[)(-, )Té\lli + 7]2('5 )Tg}i + B}I;(v ) + FZ('? ')>H —h+ 1}+
< ¢(s,a) 0% + 1 (s,0) T &f + Bfi(s,a) + Ti(s,a)
for any (k,h) € [K] x [H] and (s,a) € S x A. Hence, we obtain
—ZE(S,(L) = QZ(S; a) - (T’ii + PZth+1)(S7 CL)
< ¢(s, a)Té’; + 15 (s,0) &) + B (s, a) + Th(s,0) — (rf + PEViEL ) (5, 0)
= ¢(s,0)"0F + Bf(s,a) — ri(s, a) +nf(s,0) &F + Tf(s,a) = PV (5, 0).
) (i)
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Term (i): By the definition of 97,5 in (4.5), we have

k—1
@;—05=<A’z>—1( 3 ¢<s;,a;>r;<s;7a;))_eg
=1V (k—w)

k—1

=<A¢;’>-1( T ¢<s;,a;>r;<s;,a;>—Aﬁe,’i)

T=1V(k—w)
k—1
—h (X oleTane(shah) 6 - o)) - 1+ 0%,
T=1V(k—w)

where the last equality is obtained by the definition of AZ in (4.5) and the assumption that
17 (s, a]) = &(s},a}) 07 for any (7,h) € [K] x [H]. Hence, for any (k,h) € [K] x [H]
and (s,a) € S x A, we have

6(s,a) " (BF — 0F)] (F.12)

k—1
<JotsaT @ (X olshao(sT.al) (07 - 0 ) |+ oo, () -0,

T=1V(k—w) (i.2)
(i)

Then we derive the upper bound of term (i.1) and term (i.2), respectively.

Term (i.1): By Cauchy-Schwarz inequality, we have

s S (shaal)b(efal) (0 — )|

T=1V(k—w)

< ot b ( S sk a)osh o) 0] — o)

=1V (k—w)

< H(Aﬁ)*( S sk a)osh o) 0 = )

T=1V(k—w)

2

, (F.13)
2

where the last inequality follows from the fact that || (s, a)||2 < 1 forany (s,a) € S x.A. Moreover,
we have

i ( 3 CRALCRANCET)

T=1V(k—w) 2
k—1 k—1
~lan (X senastna (Se o)) . @
=1V (k—w) =T 2

where the last equality follows from the fact that 0] — 65 = Zi:: (0; — 0;7'). By exchanging the
order of summation, we further have

k—1 k—1
jan (X elaneian (e -6m))
T=1V(k—w) =T 2

-1 4

> (X hanean 6 - 6))

k
i=1V(k—w) 7=1V(k—w)

o

2

k—1 %
< X @b X eshanelshan) )0 -0 (E15)
i=1V(k—w) r=1V(k—w) 2
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By the fact that for any matrix A € R%*¢ and a vector z € RY, ||Az|l2 < Amax (AT A)||2]|2, we
have

k—1 4
Sollah (X elshanelsian) )@ - 0;h)
i=1V(k—w) r=1V(k—w) 2
k—1 [
< X e(( X ehanea)ah?
=1V (k—w) T=1V(k—w)

> otehanelsial) ) )I6h - 6l E10

=1V (k—w)
Meanwhile, by Assumption 4.1, we assume ¢(s},,a}) = Uz]. For simplicity, we define M; =
Zf:v(k_w)(z;)(zg)T + Mg and My = Zi;}v(k_w)(zg)(z;)T. Then, we have
dow( (0 obsapelna) )42 X slshantsha”))
=1V (k—w) =1V (k—w)
= Amax (OMoU T (WM U ) 2UMT ) = Ao (Mo My 2 M). (E.17)
Given the eigenvalue decomposition My = Pdiag(\1,--- ,A\q)P ' where P is an orthogonal ma-

trix and ); is the i-th eigenvalue of M,, we have M; = Pdiag(\; + \,--- , g + A)PT. Thus
MM 2 My = diag(A/ (A + N2, - -+, A2/ (Mg + \)?), which further implies that

Amax (Mo M2 My) < 1. (F.18)
Combined with (F.13), (F.14), (F.15), (F.16), and (F.17), we obtain

k—1 k—1
MOl (D SR A R ) D S R
r=1V(k—w) i=1V(k—w)
(F.19)
Term (i.2): By Cauchy-Schwarz inequality, we obtain
[6(s,a) T (AR) T -0 < Nlo(s, @)l asy—r - A 05l sy -1
Note the fact that A¥ = A1, which implies Apin ((A¥)~1) > X. We further obtain
1 1
X021 € ——— - [N 0513 < - A2d = Ad.
I8y < ey IO < 5
Hence, we have
0(5,0) T(AE) (- 05)] < V/Ad- [0(5,0) g+ (F.20)

Setting 3 = V/Ad for any k € [K] in the bonus function By defined in (4.10). Plugging (F.19) and
(F.20) into (F.12), we obtain

k-1
|¢(s.a) T (OF — )] < Bi(s,a)+ D" 110 — 0o (F.21)
i=1V(k—w)
for any (k, h) € [K] x [H]. Hence, for any (s,a) € S x A, we have
k—1
#(s,a)0) + B (s,a) —rf(s,a) <2Bf(s,a)+ > 165 — 0, (F22)

=1V (k—w)

Term (ii): Recall that 7]2 defined in (4.6) takes the form

) = [0l Vi (s
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for any (k, h) € [K] x [H] and (s,a) € S x A. Meanwhile, by Assumption 2.1, we obtain
(PLVii1)(s,a) = /S (s, a,8) € Vi (51)ds’ (F23)
=1h(s,0) & = (s, a) T (A}) 7T ARER

for any (k, h) € [K] x [H] and (s,a) € S x A. Recall the definition of A} in (4.8), we have

k—1
(PEVE)(s.a) = nf (s, a)T(AZrl( > mp(sioai)ni(sh.an) e+ N ~€;’§>
T=1V(k—w)
k—1
:WMW%W<§:WWMHWMMM%HX%>
T=1V(k—w)

for any (k,h) € [K] x [H] and (s,a) € S x A. Here the second equality is obtained by (F.23).
Recall the definition of ?ﬁ in (4.8), we have

i) TER — (PEVE, ) (s, a) (F24)
k—1
ZWMW%W<§:WWMHMM@M—M%M%mO
=1V (k—w)
(ii.l)

— N npi(s,a) T (AR) e
(ii.2)

for any (k,h) € [K] x [H] and (s,a) € S x A.

Term (ii.1): We can decompose Term(ii.1) as

k—1
MMMFWMW%W<§:n%hﬂ%ﬁ@m—M%M%wo
T=1V(k—w)
(i.1.1)
(E.25)
k—1
+ﬁ@ﬁ@®( 3 W%mwmmM%mMmM%mﬁ

T=1V(k—w)

(ii.1.2)

By the definition of AZ in (4.8), (A’fb)_1 is a positive definite matrix. Hence, by Cauchy-Schwarz
inequality,

|Term (ii.1.1)] (F.26)
k—1
< \/n}’f(s,a)T(A’fL)*an(s,a) : Z M (Sh>ap) - (VhTH(SszH) - (P;VILA)(S;?G;)) (Aby1
=1V (k—w) AR~

for any (k,h) € [K] x [H] and (s,a) € S x A. Under the event £ defined in (J.4) of Lemma J.3,
which happens with probability at least 1 — /2, it holds that

[Term (ii.1.1)| < C"+/dH? -1log(dT/¢) - \/nﬁ(s,a)T(Aﬁ)—ln}’j(s,a) (F27)

for any (k,h) € [K] x [H] and (s,a) € S x A. Here C"" > 0 is an absolute constant defined in
Lemma J.3. Meanwhile, by (F.23), we have (PFV/7,,)(s,a) = nj(s,a)’ & and PR VT, (s,a) =
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n7(s,a) TEF for any (s,a) € S x A, which implies

k—1

e .1.2] = o (50) (4 (30 wilsT o (sha) (6 - € )
T=1V(k—w)
k—1
<kl (b (Y ka6 - 6
T=1V(k—w) 2
k—1
gHﬁ-Hmﬁ)—l( > e D)€ - )
T=1V(k—w)

where the last inequality is obtained by Assumption 2.1. Then, by the same derivation of (F.19), we
have

k—1

[ Term (ii.1.2)] < HVd- Y 1€ — & 2. (F28)

=1

Plugging (F.27) and (F.28) into (F.25), we obtain

|Term (ii.1)| < C”'\/dH? - log(dT/¢) \/nh (s,a)T(AF) =1k (s,a) + HVd - Z & — &t |a.

i=1V(k—w)

(F.29)

Term (ii.2): For any (k,h) € [K] x [H] and (s,a) € S x A, we have

[Term (52)] < X' - \/n(s.a)T(A}) (s, a) - €] ax) (F:30)
< VA /(s )T (A)n(s,a) - |}l
< VXA \fn(s,a) T (AF) (s, a),
where the first inequality follows from Cauchy-Schwarz inequality, the second inequality follows

from the fact that AZ = X - I and the last inequality is obtained by Assumption 2.1. Plugging
(F.29) and (F.30) into (F.24), we have

kG, ) TER — (PEVE ) (s, a)]

k—1
< C'\/dH? -log(dT/¢) \/nh (s,a)T(AF) =1k (s,a) + HVd - Z & — €M)

=1V (k—w)

(E31)
for any (k,h) € [K] x [H] and (s,a) € S x A. Here C' > 1 is another absolute constant. Setting
B = C'\/dH? - log(dT/{)

in the bonus function Fﬁ defined in (4.10). Hence, by (F.31), we have

k—1
(s, 0)TEF — PV ) (s,0) < Th(s,a) + HVA- Y~ 1&g, =62 (F32)
i=1V(k—w)

forany (k,h) € [K] x [H] and (s,a) € S x A under event £. Hence,

k—1
ni(s,a) & + T (s,a) = PRV (s,0) < 20f(s,a) + HVA- Y |lg — &2 (B33)
i=1V(k—w)
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for any (k,h) € [K] x [H] and (s,a) € S x A under event £. Combining (F.22) and (F.33), we
have

~li(s,a) = Q}i(s.a) — (1}, + PLV;%1)(s, a)

k—1 k—1
<2Bf(s,a) +205(s,a) + Y N0, =0 e+ HVA- D &6 - & .
i=1V(k—w) i=1V(k—w)

(F34)

Then, we show that I¥(s,a) < Zz v (b—w) 16: — 0t 2 + HVd - ZZ 1V (k—w) 1€ — & |2 for
any (k,h) € [K] x [H] and (s,a) € S x A under event £.
lﬁ(‘sv a’) = (r}li + szif—i-l)(sa a) - Q;CL
= (r} + PEViE1)(s,0) — min{g(s, a)f + 15 (s,0) & + Bf(s,a) + Tf(s,a), H — h+1}
= max{r}(s,a) — ¢(s,a)0} — Bf(s,a) + (BRViy1)(s,a) = () "€} = Th(s. ),
(rf +PrViF ) (s,a) — (H —h+ 1)} (F.35)
By (F.21) and (F.32), we have

rii(s,a) = 6(s, @) — Bh(s,a) + (PRVily,)(s,0) = i () T€F = Th(s, )

k—1 k—1
< D G =6+ HYA > 16 =& e (F36)
i=1V(k—w) i=1V(k—w)

Also, we note the fact that V,fH < H — h, it is not difficult to show that

(ry +PyVi)(s,0) — (H —h+1) <0. (E37)
Plugging (F.36) and (F.37) into (F.35), we obtain
k—1 ‘ ‘ k—1 .
Bsa)< Y M0 —=6" 2+ BV Y g - &l (F38)
i=1V(k—w) i=1V(k—w)

for any (k,h) € [K] x [H] and (s,a) € S x A under event £. Combining (F.34) and (F.38), we
finish the proof of Lemma D.3.

O
G PROOF OF THEOREM 4.2
Proof. By Lemma E.1, we decompose dynamic regret of Algorithm 1 into four parts:
D-Regret(T) = S (V77 “F(sh) — Vi (k) (G.1)

T H
> B [(QF (sn, ), " ([ sn) = 7 (- [ s0))] + Mg a2
——

1 k=(i—1)7+1 h=1

M- 104

K2

(i)
(i)
P T H
SN0 S S SN TRPRITS SR SR ST T
1=1 k=(i—1)74+1 h=1 =1 k=(i—1)74+1 h=1
(i) (iv)

Now we establish the upper bound of these four parts, respectively.

Upper Bounding (i):
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By Lemma D.2, we have
Term(i) < \/2H3Tplog |A| + 7H?(Pp + VdA). (G.2)
Then we discuss several cases.
log |A T+/1og | A] D
o If0 < Pr++dA < /84 then r = H[l’K](L(H(}-Tgi/EA))QBJ) = K, which implies
that p = 1. Then (G.2) yields
Term(i) < 2H?\/K log |A| + -H?\/K log |A| = 3\/H3T log | A|. (G.3)

o If (/1514 < P 4 VAA < 273/2 . K\ /log | A], we have 7 € [2, K] and (G.2) yields
1
erm(i) < 2- — og + -7 og
Term(i 2\[H2K1 A H?\/Klog|A
T
< 5(H?T\/log |A)¥/3(Pr + VdA)'/3. (G4)

o If Pr > 273/2. K, /log | A|, we have 7 = 1 and therefore p = K. Then (G.2) implies
Term(i) < 2H2K \/log |A| + -H?*Pr < 9H?*(Pr + VdA). (G.5)

Combining (G.3), (G.4) and (G.5), we have

VH*T log | A], if0 < Pr++dA < /184
Term(D) < § (27 flog [A)2/3(Pr + VAA)Y3, if \/18IAL < P4 VAA < K\ /Tog A,
H?(Pr +dA), if Pr+vdA > K+/log| A,

(G.6)

Upper Bounding (ii): Recall that
K H

Mg o= Z Z(Dk,h,l + Dip2).

k=1h=1
Here the Dy, 5,1 and Dy, j, o defined in (E.10) take the following forms,

71'1C ’ﬂ'k
Dicna = (Th(Qk = QR M) () — @h — @7,
wk k,
Dk’,h,2 = (P]f:,(vhk-s-l - Vh+ik))(5]}§7ali€z,) - (th+1 - Vh-‘rlk)(slfz,—i—l)'
By the truncation of ¢(-, )@ﬁ +nr (-, )T’Zf +BF(-,-)+I%(-,) into range [0, H — h+1] in (4.9), we
know that Q%, Q7 Vik | V' < [0, H], which implies that | Dy, 1| < 2H and | Dy o| < 2H

for any (k, h) € [H] x [K]. Applying the Azuma-Hoeffding inequality to the martingale M g 2,
we obtain

—e2
P <2 — .
(‘MK7H,2| > E) < eXp<16H3K)

For any ¢ € (0,1), if we sete = \/16H3K - log(4/(), we have

[Micz12] < I6H?T -log(4/¢) (G.7)
with probability at least 1 — {/2.

Upper Bounding (iii): By Lemma D.3, it holds with probability at least 1 — /2 that
k—1 k-1

(s,a) < > 0, =0 e+ HVA- > g =&

=1V (k—w) =1V (k—w)
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for any (k,h) € [K] x [H] and (s,a) € S x A, which implies that

K H
D> Erellf(snyan) |51 = st]

k=1 h=1
K H k—1 ] K H k—1 .
SZZ ||92—92“||2+H¢&-ZZ Z 1€, — & |2
k=1h=1i=1V(k—w) k=1 h:li:l\/(kfw)
H K k—1
= ZZ 165, —91+1||2+Hf Z 1€, — &1
h=1k=1i=1V(k—w) h=1k=1i=1V(k—w)
H K
< Zzw- 10 — 05 |2 + HVd - ZZw NEr = &
h=1k=1 h=1k=1
< wBr +wHVdBp < wAHVd. (G.8)

Here the last inequality follows from the definition of total variation budget in (2.5).

Upper Bounding (iv): As is shown in Lemma D.3, it holds with probability at least 1 — (/2 that

k—1 k—1
~li(s,a) <2Bj(s,a) + 20k (s,a) + Y 6, =6, Ml + HVA- Y0 Ng -6l
=1V (k—w) =1V (k—w)

for any (k, h) € [K] x [H] and (s,a) € S x A. Meanwhile, by the definitions of Q¥ and I¥ in (4.9)
and (D.1), we have that |I} (s, a)| < 2H. Hence,

k—1 k—1
—lf(s,a) <2Bj(s,a) +2H AT (s,a)+ > [0, =0 o+ HVA- Y |lg, — &t 2
=1V (k—w) =1V (k—w)
K H K H
szlﬁ(si,ai)§2ZZB,k5a JrQZZH/\sta (G.9)
k=1h=1 k=1h=1 k=1h=1
K H k—1 ‘ 4 K H k—1 ‘ 4
YN Y N0 =0 e+ HVA YT > 6 =& e
k=1h=1i=1V(k—w) k=1h=1i=1V(k—w)

H K H K
Bl(sfab) < 8- 37571 /olsk,ab) T(AF) 1k (s}, a)
h=1k=1 h=1k=1
H K 1/2
<50 (K3 otsha) (D) 1¢’z<s’z,a£>)
h=1 k=1
H K
= BVE -3\ llotsk, ab)llas) - (G.10)
h=1 k=1

As we set A = 1, we have that A’fL > 14, which implies

lo(shs aillamy -+ < llé(sh, ak)llz < 1

for any (k,h) € [K] x [H] and (s,a) € S x A. By Lemma J.2, we further have

K
D N6t ab)llary -1 < 2d[K/w]log((w + A)/A) < 4dK log(w) /w. (G.11)
k=1
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Combining (G.10) and (G.11), we further obtain

H K

> > Bi(sk.af) < 4dT\/log(w) /w. (G.12)

h=1k=1

Meanwhile, by the definition of FZ in (4.10), we have

H K
SOSTHATE(sE af) = 8- ZZH/B A \Jnl (s, ) T(AR) 1l (sk, ab).
h=1k=1 h=1k=1

Recall that

B = C'\/dH? -log(dT/¢),

which implies that 5’ > H. Thus, we have

Z H/\FlC (8%, ak)

K
Z LAk sk, )T (AR) k(s )
1k=1

HME IIMI

K 1/2
K S2UA kol - ) G.13)

where the second inequality follows from Cauchy-Schwarz inequality. Note the facts that A} = NI,
and ||nf(s,a)||2 < V/dH for any (k,h) € [K] x [H] and (s,a) € S x .A. By the same proof of
Lemma J.2, we have

K
Z LA |nk(sk, aﬁ)”(Aﬁ)—l < 2d[K/w]log((wH?d + X')/X') < 4dK log(wH?d)/w. (G.14)
k=1

Combining (G.13) and (G.14), we have

Z h Slmah < 25 \/dT‘2 log(wH2d)/

= 4C"dTH - \/log(wH?2d) /w - log(dT /(). (G.15)

where C’ > 1 is an absolute constant and 7' = H K. By the same proof in (G.8), we have

K H k—1
SN Z 165, = 05 e+ HVA- > 16 =& 2 <wAHVA.  (G.16)

k=1h=1i=1V(k—w) =1V (k—w)

Plugging (G.12), (G.15) and (G.16) into (G.9), we have

H K
SN 1k (sk af) < wAHVA + 4dT\/log(w) /w + 4C"dT H - \/log(wH?2d) /w - log(dT/).

h=1k=1

(G.17)
Meanwhile, by (G.7), (G.8) and (G.17), it holds with probability at least 1 — ( that
Term(ii) + Term(iii) 4+ Term(iv) < \/16H2T - log(4/¢) + 2wAHVd (G.13)

+ 8dT+/log(w) /w + 8C"dT H - \/log(wH?2d) /w - log(dT /()

S dPSAYBHT?3 og(dT/¢).

Here we uses the facts that w = ©(d'/3A~2/3T2/3) | Plugging (G.6) and (G.18) into (G.1), we
finish the proof of Theorem 4.2. O
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H PROOF OF THEOREM 4.3

Proof. Let ™ = K in Lemma E.1, we have

D-Regret(T) = S (V77 "k (sk) — 17 #(s4)) (H.1)

M T

H
ZEW* e [(@F (s )y (L) = 7 (L sn))] + Mo 2
——

rl (ii)

E
Il
-

(i)
K H K H
+ZZ ﬂ*klh ShyGp) +ZZ lh sh,ah

k=1 h=1 k=1 h=1

(iii) (iv)

Since policies 7 are greedy with respect to Q¥ for any (k, h) € [K] x [H], we have

K H
>0 3 B [(@hCon o C [on) = ([ ou))] <0 H2)

k=1h

By the same derivation of (G.18) in the proof of Theorem 4.2, we have

Term(ii) + Term(iii) + Term(iv) < \/16H2T - log(4/¢) + 2wAHVd

+ 8dT\/log(w)/w + 8C"dT H - \/log(wH?2d)/w - log(dT/¢)

S dPSAYVBHT?3 og(dT/¢). (H.3)

Here we uses the facts that w = ©(d'/3A~2/3T2/3)  Plugging (H.2) and (H.3) into (H.1), we finish
the proof of Theorem 4.3. O

I RESULTS WITHOUT ASSUMPTION 4.1

Theorem I.1 (Upper bound for Algorithm 1). Suppose Assumptions 2.1 holds. Let 7 =

M (LG22, @ = Vplog [AI/(HPK) in (4.2), w = ©(A~YATYY) in (4.4),

A=) = 1lin(44)and (4.9), f = Vd in (4.10), and ' = C'\/dH? -log(dT/¢) in (4.10),
where C’ > 1 is an absolute constant and ¢ € (0, 1]. We have

D-Regret(T') < dAY*HT3/* - log(dT/¢)

VH3T log [ A], if0 < Pr++dA < (/loslAL
+ (H2T+\/log [A])¥/3(Pr + VdA)Y/3, if (/2 AL < P4 VA < K\/log [A],
H?(Pr +VdA), if Pr + VdA > K\/log| Al

with probability at least 1 — (.

Proof. In the previous proof, we only use Assumption 4.1 to derive (F.19) and (F.28) in the proof
of Lemma D.3 (§F.3). Then we give a slightly loose bound without Assumption 4.1. For any
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(k,h) € [K] x [H] and (s,a) € S x A, we have
k-1

ssaah (X ehanoteran 0 o) )
T=1V(k—w)
k—1
< > es,a)T(AR) T e(shap)| - [é(sh.ap) T (OF — 0F)]
T=1V(k—w)
k—1
< Y Jols.a) (AR M(sEan)] - 60sE D, - 67 - ekl
T=1V(k—w)
k—1
< Z ‘(b(sva)T(AZ) shaa’h ZHeh
T=1V(k—w)

where the second inequality is obtained by Cauchy- Schwarz inequality and the last last inequality
follows from the facts that [¢(-,)]l2 < Land ||6], — H2 sz ! (6; —0ith) H2 < Zi::”% -
0;t'|,- Note that Sk v (k—w) M= Zfz_ll\/(kfw) ZT:W(kfw), we further obtain that

k—1

Yo Jels,a)T(AD) (s, af)] ZH%%MHQ

T=1V(k—w)

k—1 i
D S S N R R R B

i=1V(k—w) 7=1V(k—w)

k—1 i i
< ¥ Do oGl Yo sk ap)lye, - (165 — 67,
i=1V(k—w) \ m=1V(k—w) T=1V(k—w)
L1
Note that Afl > 14, which further implies
Yol Y o< Y 1w a2
T=1V(k—w) T=1V(k—w) T=1V(k—w)
Meanwhile, we have
S ey = S Te(6(sh )T (AR (57, a7)
r=1V(k—w) T=1V(k—w)
—m(@h S ehanelhaT). A
T=1V(k—w)
Similar to the derivation of (F.18), we have
i d
Tr((Aii)l > olsh.ap)gl sh,ah) (L4)

T=1V(k—w) i=1

where )\; is the i-th eigenvalue of Zi:lv(k—w) B(s7,al)p(sh,al) . Plugging (1.2), (1.3) and (1.4)
into (I.1), we have

\¢<s,a>T(Aﬁ>—1( S ol ab)olefad) (5 — o) ]

T=1V(k—w)
k—1
<Vdw- > |6k -0, (L5)
=1V (k—w)
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Similarly, for any (k, h) € [K] x [H] and (s,a) € S x A, we have
k-1

n,’§<s,a>T<Aéi>1( 3 n2(827a2)n2(827a2)T(€Z—5’5))‘
T=1V(k—w)
k—1
<HdVw- Y (& =& o (L6)
=1V (k—w)

Replacing (F.19) and (F.28) by (1.5) and (I.6), we can obtain that

k—1 k—1
—2Bf(s,a) =20} (s,a) =Vdw- Y 6, =6 o~ Hdvw- Y (16— &Iz

i=1V(k—w) i=1V(k—w)

k=1 k—1
<o) Vw3 I -0 e+ Have S 6 - &,

i=1V(k—w) i=1V(k—w)

Plugging this inequality in the original proof of Theorem 4.2 (§G) and choosing w

oo

O(A~/4T1/4), we conclude the proof.

Theorem 1.2 (Upper bound for Algorithm 3). Suppose Assumption 2.1 holds. Let w =

O(A~YVATY4Y in (44), A = XN = 1in (44) and (4.9), 3 = +/d in (4.10), and ' =

C'+/dH? -1og(dT/¢) in (4.10), where C’ > 1 is an absolute constant and ¢ € (0, 1]. We have
D-Regret(T') < dAY*HT3/* - log(dT/¢)

with probability at least 1 — (.

Proof. The proof is similar to the proof of Theorem I.1, and we omit it here. O

J USEFUL LEMMAS

Lemma J.1. Let {¢;}5°, be an R%valued sequence with ||¢¢||> < 1. Also, let Ag € R?*9 be a
positive-definite matrix with Apyin (Ag) > 1and Ay = Ag + ZE: o (;SJ-T. For any ¢t € Z., it holds

that
det(A¢y1) ~ det(A¢41)
— ) < CAC - < —_— .
log( det(A1) —_ JEZ:IQS] A] d)‘] —= 210g det(Al)

Proof. See Dani et al. (2008); Rusmevichientong & Tsitsiklis (2010); Jin et al. (2019b); Cai et al.
(2019) for a detailed proof. L]

Lemma J.2. For the AZ defined in (4.5), we have

K
D 1Al ap)llag) - < 2d[K fw]log((w + A)/A)
k=1

for any h € [H].

Proof. First, we rewrite the sums as follows.

[K/w]—1 (t+1)w

Zl/\ l¢(sh, ap, Meag— = Z Z LA [lo( Shaah)H(Ak -1 Jd.n

t=0 k=tw-+1
For the ¢-th block of length w we define the matrix

kt E T
Wh ¢ Sh,ah $h7a’h,) +AId
T=tw+1
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Recall the A} in (4.5)
k-1
Ap= ) d(sh.ap)elsi,af) " + Ma.
T=1V(k—w)

Note that A¥ contains extra terms which are positive definite matrices for any (k, k) € [tw, (t +
1)w] x [H], we have A} W;f’t for any (k, h) € [tw, (¢ + 1)w] x [H]. Hence,

(A7)~ = Wy
for any (k, h) € [tw, (t + 1)w] x [H], which implies that

[K/w]—1 (t+1)w [K/w]-1 (t+1)w
Z Z LA flo( Shvah)”(A”) 1 < Z Z LA flo( Smah)H(W’c ¢
= k=tw+1 = k=tw+1
fK/Uﬂ—l (t+1)w+1,t
det(W,
< ¥ 2log< W )), 12)
= det(W,; ")

where the last inequality follows from Lemma J.1. Moreover, we have ||¢(s,a)|l2 < 1 for any
(s,a) € S x A, which implies

W(tJFl Jwtlt Z ¢ Shvah ) + A =< (w—i—)\) -1y

for any h € [H]. It holds for any h € [H] that

det (t+1D)w+1,t
21o ( (W, N )
det(W, ")

) < 2dlog((w + A)/A). d-3)

Plugging (J.3) and (J.2) into (J.1), we conclude the proof of Lemma J.2. O
Lemma J.3. Let \' = 1in (4.9). For any ¢ € (0, 1], the event & that, for any (k, h) € [K] x [H],

k—1
|k shoaf) - (Va6 = BTV DT aR) ||, -, < OV Togl@l/C) ()

=1
happens with probability at least 1 — /2, where C” > 0 is an absolute constant that is independent
of C.

Proof. See Lemma B.3 of Jin et al. (2019b) or Lemma D.1 of Cai et al. (2019) for a detailed proof.
O

Lemma J.4 (Pinsker’s inequality). Denote s € {s1,82,---,s7} € S be the observed states from
step 1 to T'. For any two distributions P; and P, over S and any bounded function f : ST — [0, B,
we have

E1f(s) —Eaf(s) <

where E; and E; denote expectations with respect to P; and Ps.

Vlog 2B
Y5 VEL(P [P,

Proof. See Lemma 13 in Jaksch et al. (2010) or Lemma B.4 in Zhou et al. (2020a) for a detailed
proof. O

Lemma J.5. Suppose £ and £’ have the same entries except for j-th coordinate. We also assume
that 2e < § < 1/3, then we have
16¢>

KL(’Pf’H,Pf) < m

E¢No.
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Proof. See Lemma 6.8 in Zhou et al. (2020a) for a detailed proof. O]
Lemma J.6. For any (h, k') € [H] x [K], {k]}?;ll € [K],j e [h—1], (s1,s,) € S xS, and
policies {7 };e(m U {7'}, we have

|P1/€177"(1) .. Pfj’”(j) - thgl’ﬂ—(h_l)(sh ‘ 81) -

(4) pFi pk’
< - 0, m j s — 45 U9y .
||71' j” 1 s,a)ea:é( A” ( |SJ a‘) j ( |S a)”l

1,70 I’ kp—1,m(h—
P P T s 54)|

Proof. First, we have

|P1k17’ﬂ'(1) . _.P;ijﬂ'(j) . ._thlhﬂ(h 1)(Sh | 51) —

< |Pk177"(1) . Pfjx”(]) . P}]:iilg (hil)(

T !’ kp—1,m(h—
Plkl’ (1)-"ij’ R A ( 1)(Sh\81)|

Plklaﬂ'(l) .. PJ{C/)W(]‘) .. P}]:hilfﬂ-(hfl)

Sh|81)— (Sh‘51)|

ky,m(1 k(5 kn_1,m(h—1 ki,m(1 k'’ kn_1,m(h—1
(P pE ) pn T (g sy — PO pi T ),
d.5)
By the definition of Markov kernel, we have
|P1k177r(1) . .P;“jvﬂ'(j) . 'P:EII,ﬂ(h_l)(Sh | 51) _ Plklaﬂ'(l) . P;C/Jf(j) . P:ﬁilm(h_l)(Sh | 51)| (J6)
kj,m(j5) k7 (5 ki, (3
< > BT salsy) - P “><sj+1|sj>\- [T P Pials)
52,83, ,Sh—1 i€ [h—1]\j
kji,m(j) k 7T k;,m
< > D IPTT (5501 | 55) — “)(s]-“ sp)l - max . [T P70 (sipa]s)
30808 r e Sh1 541 I deth—1)\s
ki, m(5) K’ \TT ki, m
< Z max Z |P; o (sj+185) — Py~ (J)(SJ+1 I 'si)] - Zémags H P ¢ )(5i+1 | si),
82,38 1,8542, s Sho1 C Sj41 s i€[h—1]\j

where the last two inequalities is obtained by Holder’s inequality. By the definition of Markov
kernel, we further have

k(4 k' kj
1P (5541 ]55) — PP (5551 | 55) |—|Zw<ﬂ (als;) (P (57411 85.a) — P (sj41 ] 55, 0))]

M kj
< m3X|Pj (sj+1ls5,a) = P (sjals5,0)]. (7)

Hence, we obtain

P ppm ) g (g ) — p D pEr ) gD g )
kj ’ s
< max HPjJ(~|sj7a) —ij (-|sj,a)||1 . Z max H 131 ﬂ(l)(siJrl |SZ)
(sj,a)ESX.A Sj+1 ES_ X
82,700 587,854257 ,5h—1 ielh—1]\j
= - a)— P¥ (s,
7(5;7a)€SxAHP (Isj,0) = Py (] 55,0) |
h—1
X Z max PP (s, ]s;) Z H PR (5,1 |50)
; . 31+1€S I
Sj42," Sh— =j+1 52,0 ,85 i=1
k; Y
< o max PP Clsga) = B Clsg ol 1.8)

where the last inequality follows from the facts that ZSJ+27_“ sn_, MAXg, €8 H —J+1 Pk (%) (Si1]8:) <
land ) . H k“”(z) (8i+1 ] 8:) < 1. Moreover, by Lemma 5 in Fei et al. (2020), we have

|P1k1,7f(1) . P;C () P:ﬁilvﬂ'(h_l)( Plklﬂf(l) . PJE'JT/ L P:ﬁ;l’ﬂ(h_l)(

shls1) — sn|s1)]
< 17 — 7 floo1- (1.9

Plugging (J.8) and (J.9) into (J.5), we conclude the proof. L]
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