
APOLLO: SGD-like Memory, AdamW-level Performance

A APPENDIX

A.1 Proof of Gradient Scaling Approximation in
Random Projected Low-rank Space

A.1.1 Problem Statement

Notations and Definitions: We first introduce the nota-
tions and definitions used in the proof:

• Let Gt → Rm→n denote the gradient matrix at iteration
t (m ↑ n).

• Let P → Rr→m denote the random projection matrix
where Pij ↓ N(0, 1/r) i.i.d.

• Define Rt = PGt as the projected gradient.

• Let ω1,ω2 → (0, 1) be exponential decay rates.

• Define Mt, Vt as first and second moments in the
original space.

• Define MR
t , VR

t as first and second moments in pro-
jected space.

• Let T denote the total number of iterations.

• Let n denote the number of channels.

• Assume zero initialization: M0 = MR
0 = 0, V0 =

VR
0 = 0.

• ↔↔ indicates ε2 norm of a vector.

• ↔↔1 indicates ε1 norm of a vector.

Problem: We aim to prove that gradient scaling factors
sj and s

R
j in the original and low-rank projected space have

a bound for their ratio s
R
j /sj ,

s
R
j /sj =

↔Gt[:, j]↔
↔G̃t[:, j]↔

↔R̃t[:, j]↔
↔Rt[:, j]↔

=
↔Gt[:, j]↔
↔Rt[:, j]↔

↔R̃t[:, j]↔
↔G̃t[:, j]↔

where:

R̃t =
MR

t√
VR

t

and
G̃t =

Mt↗
Vt

A.1.2 Norm Preservation Under Random Projection

Theorem A.1 (Norm Preservation). For any fixed vector
x → Rm and random matrix P → Rr→m where Pij ↓
N (0, 1/r) i.i.d., the following holds with high probability:

Pr[(1↘ϑ)↔x↔2 ↑ ↔Px↔2 ↑ (1+ϑ)↔x↔2] ≃ 1↘2 exp

(
↘rϑ

2

8

)
.

Theorem A.1 is proven by leveraging the properties of Gaus-
sian random projections and the concentration inequality
for the chi-squared distribution.

Proof. The projected norm ↔Px↔2 can be expressed as:

↔Px↔2 =
r∑

j=1

(
m∑

i=1

Pjixi

)2

.

Rewriting this using the quadratic form, we have:

↔Px↔2 = x
↑P↑Px,

where P↑P is a symmetric m ⇐ m matrix. To analyze
↔Px↔2, consider the distribution of P↑P.

Each entry of P↑P is given by:

(P↑P)ij =
r∑

k=1

PkiPkj .

For i = j (diagonal entries), we have:

(P↑P)ii =
r∑

k=1

P2
ki,

and since Pki ↓ N (0, 1/r), P2
ki ↓ Exponential(1/r).

Therefore, (P↑P)ii ↓ 1
rϖ

2
r , where ϖ

2
r is the chi-squared

distribution with r degrees of freedom. For i ⇒= j (off-
diagonal entries), the expectation is zero:

E[(P↑P)ij] = 0,

due to the independence of Pki and Pkj .

The expected value of P↑P is therefore:

E[P↑P] = Im,

where Im is the identity matrix.

The expectation of ↔Px↔2 is:

E[↔Px↔2] = x
↑E[P↑P]x = x

↑
Imx = ↔x↔2.

Now consider the concentration of ↔Px↔2 around its expec-
tation. Define the random variable:

Z =
r↔Px↔2

↔x↔2 .

Since Pij entries are i.i.d., Z ↓ ϖ
2
r . Using the moment gen-

erating function of ϖ2
r , the following concentration bounds

can be derived using standard tail inequalities for sub-
exponential random variables (Wainwright, 2015):

Pr

(∣∣∣∣
Z

r
↘ 1

∣∣∣∣ ≃ ϑ

)
↑ 2 exp

(
↘rϑ

2

8

)
.

APOLLO: SGD-like Memory, AdamW-level Performance

Returning to ↔Px↔2, we scale Z back:

↔Px↔2 =
Z↔x↔2

r
.

Thus, with high probability:

(1↘ ϑ)↔x↔2 ↑ ↔Px↔2 ↑ (1 + ϑ)↔x↔2,

and the probability of this event is at least:

1↘ 2 exp

(
↘rϑ

2

8

)
.

A.1.3 First Moment Analysis

Theorem A.2 (First Moment Preservation). For any chan-
nel j, with probability at least 1↘ 2 exp

(
↘ rω2

8

)
:

(1↘ ϑ)↔Mt[:, j]↔2 ↑ ↔MR
t [:, j]↔2 ↑ (1 + ϑ)↔Mt[:, j]↔2,

using a fixed projection matrix Rr→m over t.

Proof. Our goal is to bound ↔MR
t [:, j]↔ in terms of ↔Mt[:

, j]↔.

Step 1: Recursive Definitions of Mt[:, j] and MR
t [:, j].

The first moment Mt[:, j] in the original space is recursively
defined as:

Mt[:, j] = (1↘ ω1)
t↓1∑

k=0

ω
k
1Gt↓k[:, j],

where Gt↓k[:, j] → Rm is the gradient at timestep t↘ k.

The projected first moment MR
t [:, j] is similarly defined as:

MR
t [:, j] = (1↘ ω1)

t↓1∑

k=0

ω
k
1Rt↓k[:, j],

where Rt↓k[:, j] = PGt↓k[:, j] → Rr.

Step 2: Projected First Moment in a Lower Dimension.
With a random matrix P → Rr→m where Pij ↓ N (0, 1/r)
i.i.d., we have the projected first moment in the low-rank
space,

MR
t [:, j] = (1↘ ω1)

t↓1∑

k=0

ω
k
1Rt↓k[:, j]

= (1↘ ω1)
t↓1∑

k=0

ω
k
1PGt↓k[:, j]

= P

(
(1↘ ω1)

t↓1∑

k=0

ω
k
1Gt↓k[:, j]

)

= PMt[:, j]

,

by factoring P out of the summation.

This implies the MR
t [:, j] can be viewed as a projected

version of Mt[:, j] into a lower dimension with a fixed P
over time t.

Step 3: Properties of Random Projection By Theorem
A.1, we have the norm of Mt[:, j] is preserved in a high
probability,

Pr

(
(1↘ ϑ)↔Mt[:, j]↔2 ↑ ↔MR

t [:, j]↔2

↑ (1 + ϑ)↔Mt[:, j]↔2
)

≃ 1↘ 2 exp

(
↘rϑ

2

8

)
.

(10)

Remark: Here, we assume the projection matrix is fixed
over time step t. GaLore (Zhao et al., 2024) also derives
their theorem with the same assumption. However, as ac-
knowledged in GaLore, using the same projection matrix
for the entire training may limit the directions in which the
weights can grow. Therefore, empirically, as in GaLore, we
can periodically resample P over T iterations to introduce
new directions. Unlike GaLore, which uses time-consuming
SVD-based updates, we can simply re-sample P from the
Gaussian distribution by changing the random seed.

A.1.4 Second Moment Analysis

Theorem A.3 (Second Moment Preservation). For any
channel j and time t, if

r ≃ 8

ϑ2
log

(
2t

ϱ

)
,

then with probability at least 1↘ ϱ/2:

(1↘ ϑ)↔Vt[:, j]↔1 ↑ ↔VR
t [:, j]↔1 ↑ (1 + ϑ)↔Vt[:, j]↔1,

where Vt[:, j] and VR
t [:, j] are the second moments in the

original and projected spaces, respectively.

Proof. Our goal is to show that the norm of the second mo-
ment Vt in the original space is preserved under projection
to the lower-dimensional space. We proceed by analyzing
the recursive definition of Vt and applying the results of
Theorem A.2 on norm preservation.

Step 1: Recursive Formulation of Vt The second mo-
ment Vt[:, j] for channel j at iteration t is defined recur-
sively as:

Vt[:, j] = ω2Vt↓1[:, j] + (1↘ ω2)(Gt[:, j])
2

APOLLO: SGD-like Memory, AdamW-level Performance

By expanding recursively, we can write Vt[:, j] as a
weighted sum of the squared gradients from all past itera-
tions:

Vt[:, j] = (1↘ ω2)
t↓1∑

k=0

ω
k
2 (Gt↓k[:, j])

2

Step 2: Projected Second Moment in Lower Dimension
Similarly, in the projected space, the second moment VR

t [:
, j] for channel j at iteration t is given by:

VR
t [:, j] = ω2V

R
t↓1[:, j] + (1↘ ω2)(Rt[:, j])

2

Expanding recursively, we have:

VR
t [:, j] = (1↘ ω2)

t↓1∑

k=0

ω
k
2 (Rt↓k[:, j])

2

Step 3: ε1 Norm of Channel-wise Second Moment.
Then, we can obtain the ε1 norm of the second-moment
term VR

t [:, j]↔1

↔VR
t [:, j]↔1 =

r∑

i=1

(1↘ ω2)
t↓1∑

k=0

ω
k
2 (Rt↓k[i, j])

2
,

We can swap the summation order and have,

↔VR
t [:, j]↔1 = (1↘ ω2)

t↓1∑

k=0

ω
k
2

r∑

i=1

(Rt↓k[i, j])
2

= (1↘ ω2)
t↓1∑

k=0

ω
k
2 ||Rt↓k[:, j]||2

Similarly, we can have

↔Vt[:, j]↔1 = (1↘ ω2)
t↓1∑

k=0

ω
k
2

n∑

i=1

(Gt↓k[i, j])
2

= (1↘ ω2)
t↓1∑

k=0

ω
k
2 ||Gt↓k[:, j]||2

Step 4: Constructing the Bounds for VR
t [:, j] By The-

orem A.1, we know that for each k, the ε2 norm of the
projected gradient ↔Rt↓k[:, j]↔ satisfies:

(1↘ϑ)↔Gt↓k[:, j]↔2 ↑ ↔Rt↓k[:, j]↔2 ↑ 1+ϑ↔Gt↓k[:, j]↔2,

with probability ≃ 1↘ 2 exp(↘rϑ
2
/8).

Therefore,

↔VR
t [:, j]↔1 = (1↘ ω2)

t↓1∑

k=0

ω
k
2 ||Rt↓k[:, j]||2

↑ (1↘ ω2)
t↓1∑

k=0

ω
k
2 (1 + ϑ)||Gt↓k[:, j]||2 = (1 + ϑ)↔Vt[:, j]↔1

Similarly, we can obtain the lower bound,

↔VR
t [:, j]↔1 = (1↘ ω2)

t↓1∑

k=0

ω
k
2 ||Rt↓k[:, j]||2

≃ (1↘ ω2)
t↓1∑

k=0

ω
k
2 (1↘ ϑ)||Gt↓k[:, j]||2 = (1↘ ϑ)↔Vt[:, j]↔1

We obtain the following bounds for the ε1 norm of full
projected second moment VR

t [:, j]:

↔(1↘ ϑ)Vt[:, j]↔1 ↑ ↔VR
t [:, j]↔1 ↑ ↔(1 + ϑ)Vt[:, j]↔1

.

Step 5: Probability of Success. To ensure the bound holds
across all t timesteps, we apply the union bound. For each k,
the failure probability is 2 exp(↘rϑ

2
/8). Across t timesteps,

the total failure probability is:

2t exp

(
↘rϑ

2

8

)
.

Set this total failure probability to ϱ/2, giving the condition:

r ≃ 8

ϑ2
log

(
2t

ϱ

)
.

Remark: Here, the requirement that r grows sublinearly as
log(t) ensures that even for large t, the rank r does not grow
excessively. However, empirically, we find our method
is not sensitive to rank selection; even a rank of 256 is
sufficient to train LLaMA 7B with 150k steps. This can
be explained by recent Adam-mini (Zhang et al., 2024b)
that the variance doesn’t need to be precise, and a block-
wise approximation is enough, showing that the variance
approximation error can be tolerated well.

A.1.5 Main Result: Gradient Scaling Approximation

Theorem A.4 (Main Result). For any channel j, with prob-
ability ≃ 1↘ ϱ:

↗
1↘ ϑ

1 + ϑ
↑

√
n

r

s
R
j

sj
↑

↗
1 + ϑ

1↘ ϑ

Proof. Express ratio:

s
R
j

sj
=

↔Gt[:, j]↔
↔Rt[:, j]↔

↔R̃t[:, j]↔
↔G̃t[:, j]↔

Apply Theorem A.2 for the first part, we can obtain the error
bound for the first part:

↔Gt[:, j]↔
↔Rt[:, j]↔

→ [

√
1

1 + ϑ
,

√
1

1↘ ϑ
]

APOLLO: SGD-like Memory, AdamW-level Performance

For the second part, it is equal to

↔R̃t[:, j]↔2

↔G̃t[:, j]↔2
=

↔(MR
t↗

VR
t

)[:, j]↔2

↔(Mt↔
Vt

)[:, j]↔2

=

∑r
i=1(

MR
t↗

VR
t

)2[i, j]
∑n

i=1(
Mt↔
Vt

)2[i, j]

(11)

SGD with Momentum only If we handle SGD with Mo-
mentum only, where variance term above is non-existent,
and can be simplified as

↔R̃t[:, j]↔2

↔G̃t[:, j]↔2
=

↔MR
t [:, j]↔2

↔Mt[:, j]↔2

We can easily apply Theorem A.3 for the first-moment term:

↗
1↘ ϑ ↑ ↔MR

t [:, j]↔
↔Mt[:, j]↔

↑
↗
1 + ϑ

where the final scaling factor is bounded,

↔R̃t[:, j]↔
↔G̃t[:, j]↔

→ [
↗
1↘ ϑ,

↗
1 + ϑ]

AdamW AdamW’s case is more tricky, as equation 11 in-
volves the element-wise division and cannot easily separate
the momentum and variance. However, recent works such as
Adam-mini (Zhang et al., 2024b) and GaLore-mini (Huang
et al.) find out that the variance term can be approximated
as an average of a block-wise (original full-rank space) or
channel-wise (projected low-rank space). Given the ε1 norm
of the variance term is bounded based on Theorem A.4, we
take this assumption by replacing the variance term as the
average of variance vector, i.e., ||Vt[:,j]||1

n and ||VR
t [:,j]||1
r

in equation 11. Then it is approximated as,

↔R̃t[:, j]↔2

↔G̃t[:, j]↔2
=

∑r
i=1(

MR
t [i,j]2

||VR
t [:,j]||1

r

)

∑n
i=1(

Mt[i,j]2
||Vt[:,j]||1

n

)

= (
r

n
)
||Vt[:, j]||1
||VR

t [:, j]||1
↔MR

t [:, j]↔2

↔Mt[:, j]↔2

Multiply inequalities from theorem A.3 and theorem A.4
with union bound probability ≃ 1↘ ϱ, we have the above
term √

n

r

↔R̃t[:, j]↔
↔G̃t[:, j]↔

→ [

√
1↘ ϑ

1 + ϑ
,

√
1 + ϑ

1↘ ϑ
]

Then, we have the bounded ratio,
√

n

r

s
R
j

sj
=

√
n

r

↔Gt[:, j]↔
↔Rt[:, j]↔

↔R̃t[:, j]↔
↔G̃t[:, j]↔

→ [

↗
1↘ ϑ

1 + ϑ
,

↗
1 + ϑ

1↘ ϑ
]

Remark: This contains the constant factor
√

n
r , suggesting

we should scale the gradient to make sure it has consistent
behavior as AdamW with structured learning rate update.
This gradient scale factor can be combined with the learn-
ing rate. When the r is too small compared to n, as in our
APOLLO-Mini case, which uses rank-1 space, we specifi-
cally assign the scaling factor by using

↗
128.

Probability of Success: We now establish the probability
of success. Both Theorem A.3 and Theorem A.4 rely on the
same random projection matrix P are derived from Theorem
A.2 (norm preservation for random projections). Therefore,
the probability of failure for both bounds is governed by the
failure of Theorem A.2.

For a single timestep t, the failure probability of Theorem
A.2 is:

Pr(Theorem A.2 fails at timestep t) ↑ 2 exp

(
↘rϑ

2

8

)
.

Across all t timesteps, the total failure probability (union
bound) is:

Pr(Theorem A.2 fails for any timestep) ↑ 2t exp

(
↘rϑ

2

8

)
.

Set this total failure probability to ϱ:

2t exp

(
↘rϑ

2

8

)
↑ ϱ.

Solving for r, we require:

r ≃ 8

ϑ2
log

(
2t

ϱ

)
.

This ensures that both Theorem A.3 and Theorem A.4 hold
simultaneously with probability ≃ 1 ↘ ϱ, which together
make Theorem A.5 hold.

A.2 Empirical validation of the derived bound in
Theorem A.4

In this part, we present a visualization of the scaling factor
ratio

√
n/r derived in Theorem A.4. The plot demonstrates

how the ratio adheres to the theoretical bounds under various
rank settings, providing empirical support for the theorem.

Here, we consider the following variants:

• AdamW with the same structured channel-wise
learning rate adaptation rule: This variant uses a
full rank n and serves as the golden standard for esti-
mating sj , the scaling factor.

APOLLO: SGD-like Memory, AdamW-level Performance

• APOLLO with rank r: This variant computes a low-
rank approximated version of the scaling factor, sRj ,
which should theoretically be

√
n/r times smaller than

sj .

We visualize the channel-wise scaling factor on the LLaMA-
350M model 1, comparing APOLLO with ranks 1/8n and
1/4n. These configurations should yield scaling factor ratios
of approximately

√
1/8 (↓ 0.35) and 1/2, respectively,

relative to the full-rank AdamW.

As shown in Fig. 5, the scaling factor ratio adheres closely
to the theoretical predictions across different layer types
(e.g., attention, MLP) and model stages (e.g., early, middle,
or late layers).

A.3 Ablation Study
A.3.1 A1: Similar performance between Random

Projection (RP) and Singular Value Decomposition
(SVD).

Previous low-rank gradient-based approaches (Zhao et al.,
2024) rely on SVD to identify the gradient subspace, fre-
quently updated during training. This process is time-
consuming, thereby affecting training throughput. For a
LLaMA-7B model, each SVD operation takes approxi-
mately ten minutes, resulting in an additional 25 hours of
training time over 150K steps when the subspace is updated
every 1,000 steps. To alleviate this overhead, (Zhang et al.,
2024c) employs a lazy subspace updating strategy, though it
still incurs substantial SVD costs. In this section, we demon-
strate that APOLLO performs effectively with random pro-
jection, significantly reducing the heavy SVD costs present
in previous memory-efficient training algorithms. We pre-
train LLaMA models ranging from 60M to 350M on the
C4 dataset using GaLore, APOLLO, and APOLLO-Mini,
reporting results for both SVD and random projection in
each method. As shown in Fig. 6 (a-c), GaLore is signifi-
cantly impacted by random projection, failing to match the
performance of AdamW (red dashed line). In contrast, both
APOLLO and APOLLO-Mini demonstrate strong robust-
ness with random projection, even slightly outperforming
SVD in certain cases, such as APOLLO-Mini on LLaMA-
350M. These results confirm the effectiveness of APOLLO
under random projection, thereby addressing the throughput
challenges present in previous low-rank gradient methods.

1To ensure consistent optimization trajectories across the vari-
ants, we use the same learning rate as APOLLO with rank 1/4n.
Additionally, we scale the final gradient updates using the heuristic
ratio derived from the rank settings relative to 1/4n.

A.3.2 A2: APOLLO-Mini remains effective even with a
rank of 1.

We carry out an ablation study on pre-training LLaMA-60M
with different rank budgets, as shown in Fig. 6 (d). The
results demonstrate that GaLore’s performance degrades sig-
nificantly as the rank decreases, matching full-rank AdamW
only when the rank is set to 128 (one-quarter of the orig-
inal dimension), which limits its effectiveness in extreme
low-rank scenarios. In contrast, APOLLO exhibits much
better robustness with smaller rank settings compared to
both GaLore and Fira, achieving performance comparable
to full-rank AdamW even with lower ranks.

Interestingly, APOLLO-Mini shows the best rank effi-
ciency, remaining effective even with a rank of 1, clearly
outperforming AdamW. By averaging the gradient scaling
factor across different channels, APOLLO-Mini seems to
effectively mitigate the errors introduced by low-rank pro-
jection. This capability allows APOLLO-Mini to achieve
SGD level memory cost while reaching superior perfor-
mance than AdamW.

Table 9. Ablation study on the granularity of gradient scaling fac-
tors. Perplexity on the validation set is reported.

Methods Granularity 60M 130M 350M

AdamW 34.06 25.08 18.80
GaLore 34.88 25.36 18.95

APOLLO w. SVD Channel 31.26 22.84 16.67
Tensor 31.77 23.86 16.90

APOLLO
Channel 31.55 22.94 16.85
Tensor 32.10 23.82 17.00

A.3.3 A3: The gradient scaling factor can even be
calculated at the tensor level.

In Tab.9, we compare the pre-training perplexity of our
method using different scaling factor granularities. Here,
Channel indicates that the gradient scaling factor is calcu-
lated along the channels with the smaller dimension of each
layer, while Tensor denotes that a single gradient scaling
factor is used for each layer. We keep one-quarter of the
original model dimension as the rank. Across model sizes
ranging from 60M to 350M, the perplexity difference be-
tween these granularities is minimal and both configurations
outperform AdamW and GaLore. These results demon-
strate that using a tensor-wise scaling factor is sufficient
for modest rank training (one-quarter of the original dimen-
sion). However, in extreme low-rank scenarios, tensor-wise
scaling factor (APOLLO-Mini) outperforms channel-wise
ones (APOLLO), as shown in Fig. 6 (d).

APOLLO: SGD-like Memory, AdamW-level Performance

Figure 5. Visualization of the channel-wise scaling factor ratio for APOLLO with rank 1/8n and 1/4n, compared with AdamW (full rank
n). The empirical data aligns well with the theoretical ratios 1 :

→
2 : 2

→
2, validating the bounds across various layer types and stages on

the LLaMA-350M model.

(a) (b) (c) (d)

Figure 6. (a-c) Comparison results of various optimization methods using singular value decomposition or random projection. The
experiments were conducted on LLaMA-60M/130M/350M models for C4 pretraining tasks. (d) Validation perplexity with varying rank
sizes, where 128 is one-quarter of the original model dimension. The red dashed line indicates the performance of full-rank AdamW.

A.3.4 A4: APOLLO performs better with larger model
sizes and more training tokens.

Fig. 7 illustrates the validation perplexity across the training
process for LLaMA-350M models. In the early training
stages, Fira shows faster convergence and lower perplex-
ity. However, APOLLO gradually catches up, achieving
improved performance in the later stages. This observation

suggests that AdamW optimization states play a more cru-
cial role in the initial phase (as Fira maintains the low-rank
format of these states), while compressing the optimization
states into gradient scaling factors (as done in APOLLO)
becomes more effective in later stages. Additionally, Fig. 7
indicates that APOLLO seem to benefit from increased train-
ing tokens. To quantify this effect, we pre-trained LLaMA-
130M models for {20k, 30k} steps, with final perplexities

APOLLO: SGD-like Memory, AdamW-level Performance

Early Middle Late

Figure 7. Validation perplexity of pretraining LLaMA-350M on
the C4 dataset, with zoomed-in figures showing early, middle, and
late stages of training at top, with full training period at bottom.

for Fira and APOLLO reaching {22.73, 21.69} and {22.84,
21.71}, respectively, further confirming that APOLLO can
gradually catch up Fira with more training tokens. Further-
more, Tab.2 shows that as model size increases, APOLLO
demonstrates better scaling capabilities than Fira: valida-
tion perplexity decreases from 31.55 to 14.20 when scaling
model sizes from 60M to 1B, whereas Fira only improves
from 31.06 to 14.31. Overall, APOLLO exhibits superior
performance with both larger model sizes and additional
training tokens.

A.3.5 A5: APOLLO performs on par with or even better
than AdamW in the long-context setting.

Training LLM with long context windows is computation-
ally expensive, but it is critical to enhance LLM performance
by involving more contexts to reason. Here, we further vali-
date the effectiveness of the APOLLO series on pre-training
a LLaMA-350M with a long context window of 1024, four
times over original GaLore uses. To establish a strong base-
line, we vary AdamW’s learning rate across a range of [1e-3,
2.5e-3, 5e-3, 7.5e-3, 1e-2]. We also lazily tune the scale
factor of APOLLO-series by varying APOLLO’s in [

↗
1,
↗
2,↗

3] and APOLLO-Mini’s in [
↗
128,

↗
256,

↗
384], under

a fixed learning rate 1e-2.

As shown in Fig. 8, both APOLLO and APOLLO-Mini
demonstrate better performance than AdamW while achiev-
ing drastic reductions in optimizer memory costs—1/8 or
even 1/1024 of AdamW’s memory usage. Note that our
methods generally exhibit even better performance in the
later stage with more training tokens involved, marking it
a promising candidate in partial LLM pre-training settings,
i.e., long-context window and trillions of training tokens.

A.4 Extra Insights on Why a Stateless Optimizer Can
Beat AdamW in Pre-training

We provide preliminary insights on why a stateless APOLLO
can surpass AdamW in certain scenarios, and we leave a

Surpasses AdamW with
more token exposure

Figure 8. Perplexity curves of the LLaMA-350M model trained
in a long-context window setting. APOLLO and APOLLO-Mini
outperform AdamW with a grid-searched learning rate, demon-
strating the effectiveness of the APOLLO series in industrial LLM
pre-training settings(long sequences and extensive training tokens).

formal one as the future work.

Adam(W) applies G̃t =
Mt↔
Vt+ω

, which can be viewed as

scaling the raw gradient Gt by a scaling matrix S = G̃t
Gt

.
APOLLO observes that this fine-grained, parameter-wise
scaling S can be approximated at the channel or tensor level,
validated in Fig. 3. Although coarser, this scaling largely
preserves the original gradient direction, (e.g., Gts

R in
APOLLO-Mini) and thus behaves similarly to SGD. Such
an “SGD-like” update depends more on the current gradient
and injects greater randomness during training, enhanc-
ing the ability to escape local optima and yielding better
generalization performance(Zhou et al., 2020; Keskar &
Socher, 2017). This explains why APOLLO series can sur-
pass AdamW, especially at later training stages (when gener-
alization becomes critical) and for larger models (with more
complex loss landscapes). Key observations supporting this
claim include:

• In Sec. 3.2, Fig. 3, the structured AdamW (APOLLO-
style update rule) underperforms AdamW initially but
eventually surpasses it.

• In Sec. 5.4 (Ablation A.3.4), APOLLO typically outper-
forms AdamW at later stages of training.

Why APOLLO Resembles SGD Yet Performs Well for
LLM Training? While SGD is associated with stronger
generalization, it often struggles with Transformer train-
ing (Pan & Li, 2023; Zhang et al., 2024a). APOLLO recon-
ciles SGD’s generalization benefits with AdamW’s conver-
gence speed, as illustrated by the following two hypothe-
ses (Pan & Li, 2023; Zhang et al., 2024a).

Hypothesis 1: Directional Sharpness (Pan & Li, 2023)
A key finding in (Pan & Li, 2023) is that Adam achieves
lower directional sharpness than SGD, thereby improving
Transformer training. The directional sharpness of f at x
along direction v (with ↔v↔2 = 1) is v↑⇑2

f(x)v. Lower

APOLLO: SGD-like Memory, AdamW-level Performance

Table 10. Directional sharpness comparison across different opti-
mizers.

Epoch SGD Adam APOLLO APOLLO-Mini

2 1.959722 0.009242 0.006024 0.004017
5 1.512521 0.000509 0.000249 0.000107

10 2.471792 0.000242 0.000163 0.000056
20 3.207535 0.000399 0.000261 0.000101

directional sharpness implies the possibility of taking larger
effective steps, potentially yielding a greater local decrease
in the objective. In contrast, if the directional sharpness is
large, we have no choice but to take a tiny step, as otherwise
the loss would blow up due to the second-order term.

Empirical tests on APOLLO/APOLLO-Mini (using a small
T5 model for a machine translation task following (Pan &
Li, 2023)) show significantly reduced sharpness relative to
SGD and comparable to or better sharpness than Adam(W)
(see Tab. 10). This provides a theoretical underpinning for
APOLLO ’s effectiveness in LLM training.

Hypothesis 2: Adaptive Learning Rates for Transform-
ers (Zhang et al., 2024a) Transformer blocks display
varying Hessian spectra, suggesting that block-wise adap-
tive learning rates are advantageous (Zhang et al., 2024a),
which can render naive SGD less suitable. However, fully
parameter-wise adaptive learning rates (as in AdamW) can
be redundant, as shown in Adam-Mini (Zhang et al., 2024a),
which replaces the second-order moment with group-wise
averaging—thereby reducing optimizer memory usage by
up to 50%.

APOLLO applies adaptive learning rates in a structured
channel-/tensor-wise manner and goes beyond Adam-Mini
by reducing memory usage for both first- and second-
order moments, even eliminating optimizer memory in
APOLLO-Mini.

A.5 Training throughput of GaLore-type Optimizer
on LLaMA-1B

We further show the training throughput for Galore-type low-
rank optimizer (Galore, Fira) in Fig. 9. At every 200 update
step, they need to call SVD to update the projection matrix,
leading to a drastic drop in training throughput. Although
Galore tries to amortize the cost by relaxing the update
gap, the significantly high cost is hard to amortize fully as
we still keep a short update gap to keep performance; for
example, to update the projection matrix for a LLaMA 7B
model needs 10 mins, while inference takes seconds.

To
ke

n/
se

co
nd

Figure 9. The training throughput of Galore-type low-rank opti-
mizer with many spikes due to the expensive SVD operation every
200 steps.

A.6 Detailed Pre-Training Setting

This section provides an overview of the LLaMA architec-
tures and the hyperparameters used during pre-training. To
ensure a fair comparison, we adopt the same settings as
Zhao et al. (2024). Tab. 11 outlines the hyperparameters for
the various LLaMA model sizes. Across all architectures,
we use a maximum sequence length of 256 and a batch
size of 131K tokens. Additionally, we apply a learning
rate warm-up over the first 10% of training steps, followed
by a cosine annealing schedule that gradually reduces the
learning rate to 10% of its initial value.

APOLLO runs using the same learning rate 0.01 and a sub-
space change frequency T of 200 without tuning, following
the Galore open-sourced settings. The scale factor ς is
considered a fractional learning rate, which is set to 1 by
default in APOLLO for models with a size of less than 1B,
showing our method doesn’t need too much tuning like Ga-
lore and Fira. On 1B-model, we set the high-rank APOLLO
with a ς =

√
1/2 and the high-rank APOLLO w SVD

with a ς = 0.4. As we find the scaling factor increases
with the rank r, therefore we scale the gradient factor in
APOLLO-Mini with setting ς to

↗
128.

A.7 Detailed Fine-Tuning Setting

A.7.1 Commonsense reasoning fine-tuning

We use the implementation from (Liu et al., 2024a) with the
chosen hyperparameters detailed in Table 12.

A.7.2 MMLU fine-tuning

We use the implementation from (Zheng et al., 2024). We
adopt the implementation from (Zheng et al., 2024). For
a fair and comprehensive comparison, we set the rank to
8 and sweep the learning rate across the range [5e-6, 7.5-
6, 1e-5, 2.5e-5, 5e-5, 7.5e-5, 1e-4, 1.5e-4, 2e-4] for Ga-
Lore, Fira, APOLLO, and APOLLO-Mini. Specifically,
APOLLO-Mini uses a scaling factor of

↗
4 for fine-tuning

LLaMA-3-8B and Mistral-7B, while a factor of 1 is applied

APOLLO: SGD-like Memory, AdamW-level Performance

Table 11. Hyper-parameters of LLaMA architectures for pre-training.

Params Hidden Intermediate Heads Layers Steps Data Amount (Tokens)

60M 512 1376 8 8 10K 1.3 B
130M 768 2048 12 12 20K 2.6 B
350M 1024 2736 16 24 60K 7.8 B
1 B 2048 5461 24 32 100K 13.1 B
7 B 4096 11008 32 32 150K 19.7 B

to Gemma-7B, as it exhibits higher sensitivity during fine-
tuning. The full fine-tuning and LoRA results are taken
from (Zhang et al., 2024c).

A.8 Discussion with Fira (Chen et al., 2024)

As suggested by the authors of concurrent work Fira (Chen
et al., 2024), our channel-wise approximation of the element-
wise gradient scaling rule G̃t

Gt
shares a similar format the

scaling factor in the Fira, which is used for normalizing the
error residual between low-rank GaLore and full-rank gra-
dients. While our approach shares a similar mathematical
form, as being a straightforward computation of ε2-norm ra-
tios, it originates from a fundamentally distinct perspective.
We argue that the element-wise gradient scaling rule in equa-
tion 2 is unnecessarily fine-grained and can be effectively
replaced with structured channel-wise or tensor-wise adap-
tation. In contrast, Fira seeks to normalize the error residual
between low-rank GaLore updates and full-rank updates
based on the observation that channel-wise gradient norm
ratios between low-rank and full-rank optimizers are inher-
ently similar. Our method, however, establishes a different
finding: the low-rank approximated channel-wise gradient
scaling factor, G̃t

Gt
, follows a predictable ratio of

√
r/n (see

Theorem A.4) compared to full-rank optimization, which
differs fundamentally from Fira’s observations.

B ARTIFACT APPENDIX

B.1 Abstract

APOLLO introduces a memory-efficient optimizer designed
for large language model (LLM) pre-training and full-
parameter fine-tuning, for the first time offering SGD-like
memory cost with AdamW-level performance based on only
cheap random projection. APOLLO-Mini is an extremely
memory-efficient version of APOLLO, which uses a rank
of 1 but uses tensor-wise scaling instead of channel-wise
scaling in APOLLO.

Our artifact contains the complete source code for APOLLO
and key experimental scripts to validate APOLLO’s effec-
tiveness on LLM pre-training and fine-tuning as well as
system level benefits, i.e., throughput and memory saving.

The code and artifact are accessible at GitHub.

Our APOLLO has been integrated into Hugging Face Trans-
formers and LLaMA-Factory. Welcome to try our APOLLO
in their code framework as well following their instruction.

B.2 Artifact check-list (meta-information)
• Algorithm: APOLLO, a memory-efficient optimizer.

• Program: Python.

• Data set:

– Pre-training: C4 dataset (Raffel et al., 2020) — a
comprehensive corpus derived from Common Crawl
data, meticulously filtered and cleaned.

– Finetuning: MMLU (Hendrycks et al., 2020) task.

• Run-time environment:

– Python, PyTorch, transformers, bitsandbytes.
– Please refer to the minimal packages and minimal ex-

perimental packages for details.

• Hardware:

– The minimal LLM pre-training example (LLaMA-
60M) requires at least one Nvidia A6000 GPU (48GB)
for 3 hours.

– Our code has been tested on Nvidia A6000 (48GB) and
A100 (80GB).

• Experiments: We prepared two main suites of experiments
to evaluate that APOLLO is functional and avaliable:

– Memory-efficient LLM Pre-training: Use the code
base available on our GitHub.

– Memory-efficient full-parameter LLM Fine-tuning:
Use the code base using LLaMA-Factory, which sup-
port APOLLO natively.

Additionally, scripts are provided to demonstrate extreme
memory efficiency:

– Pretraining a LLaMA-7B model within 12GB memory
(runnable on Nvidia Titan GPU).

• How much disk space required (approximately)?:
100 GB.

• How much time is needed to prepare workflow (approxi-
mately)?: 1 hour.

• How much time is needed to complete experiments (ap-
proximately)?:

https://github.com/zhuhanqing/APOLLO
https://huggingface.co/docs/transformers/main/en/trainer#apollo
https://huggingface.co/docs/transformers/main/en/trainer#apollo
https://github.com/hiyouga/LLaMA-Factory/pull/6617
https://github.com/zhuhanqing/APOLLO/blob/main/requirements.txt
https://github.com/zhuhanqing/APOLLO/blob/main/exp_requirements.txt
https://github.com/zhuhanqing/APOLLO/blob/main/exp_requirements.txt
https://github.com/zhuhanqing/APOLLO
https://github.com/hiyouga/LLaMA-Factory/pull/6617

APOLLO: SGD-like Memory, AdamW-level Performance

Table 12. Hyperparameter of Llama-3.2-1B on the commonsense reasoning tasks.

Hyperparameters AdamW LoRA DoRA Galore Fira APOLLO w.SVD APOLLO APOLLO-Mini

Rank r - 32 32 32 32 32 32 1
ω - 64 64 - - - - -

scale - - - 0.25 0.25 1.0
→
5

→
128

Dropout 0.05
LR [2e-5, 5e-5] 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4

LR Scheduler Linear
Batch size 32

Warmup Steps 100
Epochs 3
Where Q,K,V,Up,Down

– One minimal pre-training example with LLaMA-60M:
3 hours on a single A6000, 1 hour in 4 A6000.

– One fine-tuning example with LLaMA-8B: 3 hours.

• Publicly available?: Yes. Available at the GitHub Repo or
via PyPI.

• Code licenses (if publicly available)?: CC-BY-NC.

• Archived (provide DOI)?
https://doi.org/10.6084/m9.figshare.28558319.v1.

B.3 Description

B.3.1 How delivered

The artifact is delivered via the GitHub Repo or directly
from PyPI. We provide the source codes and essential scripts
to replicate our main results.

Alternatively, you can use APOLLO within the frameworks
of Hugging Face Transformers and LLaMA-Factory, where
APOLLO is natively integrated and supported.

B.3.2 Hardware dependencies

At least one GPU is required for minimal LLM training
and fine-tuning examples (tested on NVIDIA A6000 and
A100). Moreover, APOLLO enables training a 7B model
on an NVIDIA Titan—demonstrating, for the first time, the
capability to run large-scale models without any system-
level optimizations such as offloading techniques.

B.3.3 Software dependencies

The artifact is implemented in Python and requires several
packages. Please refer to the minimal packages and minimal
experimental packages for details.

B.3.4 Data sets

You can use the streaming mode of the C4 dataset without
the need to download it locally (the full dataset is large,
500GB). The finetuning dataset becomes available once you
set up LLaMA-Factory.

B.4 Installation

Our code and scripts are available at the GitHub Repo,
which includes detailed instructions for installation.

You can install the APOLLO optimizer either from the
source:

git clone https://github.com/zhuhanqing/APOLLO.git
cd APOLLO
pip install -e .

or directly from pip:

pip install apollo-torch

Moreover, our APOLLO has been integrated into Hugging
Face Transformers and LLaMA-Factory. You can directly
try APOLLO within their frameworks by installing their up-
to-date versions.

B.5 Experiment workflow

Please check the detailed usage for APOLLO-series
(APOLLO and APOLLO-Mini) optimizer with hyperpa-
rameter setting.

We provide the following essential experiment scripts to
replicate our method’s results, which can be obtained by
clone our GitHub Repo and install required packages fol-
lowing the repo guide.

Exp1: Pre-train LLaMA on C4 dataset

We provide the scripts in scripts/benchmark c4 for
pre-training LLaMA models with sizes ranging from 60M
to 7B on the C4 dataset.

You can also run LLM pre-training with a long
context window by following the scripts in
scripts/benchmark c4 long context, which
compare Adam, APOLLO, and APOLLO-Mini.

Minimal example: The minimal example is provided in
scripts/pretrain c4/llama 60m apollo.sh
scripts/pretrain c4/llama 60m apollo mini.sh,

https://github.com/zhuhanqing/APOLLO
https://pypi.org/project/apollo-torch/
https://doi.org/10.6084/m9.figshare.28558319.v1
https://github.com/zhuhanqing/APOLLO
https://pypi.org/project/apollo-torch/
https://huggingface.co/docs/transformers/main/en/trainer#apollo
https://github.com/hiyouga/LLaMA-Factory/pull/6617
https://github.com/zhuhanqing/APOLLO/blob/main/requirements.txt
https://github.com/zhuhanqing/APOLLO/blob/main/exp_requirements.txt
https://github.com/zhuhanqing/APOLLO/blob/main/exp_requirements.txt
https://github.com/hiyouga/LLaMA-Factory
https://github.com/zhuhanqing/APOLLO
https://huggingface.co/docs/transformers/main/en/trainer#apollo
https://huggingface.co/docs/transformers/main/en/trainer#apollo
https://github.com/hiyouga/LLaMA-Factory/pull/6617
https://github.com/zhuhanqing/APOLLO?tab=readme-ov-file#-usage
https://github.com/zhuhanqing/APOLLO

APOLLO: SGD-like Memory, AdamW-level Performance

which can be executed on a single GPU (e.g., A100 or
A6000).

Expected outputs: The perplexity results should be similar to
the reported results in Tab. 2, with possibly a slight variance.

Exp2: Pre-Train a LLaMA-7B on Nvidia Titan with
12GB memory!!!

We provide the script in scripts/single gpu for pre-
training a LLaMA-7B model on a single GPU with a batch
size of 1. This configuration allows pre-training within
11GB of memory without any complicated system-level
optimizations, such as sharding or offloading, marking the
first demonstration of this capability.

Exp3: Memory-efficient full-parameter LLM finetuning

We provide the finetuning experiment examples directly
under the widely-used LLaMA-Factory with their direct
support.

Please first install LLaMA-Factory according to their Instal-
lation guide.

The fine-tuning experiments are done inside LLaMA-
Factory repo by cloning their repo from Github,
which contains the official test examples in the
examples/extras/apollo directory.

We provide a demo to perform a comparative evaluation with
GaLore by fine-tuning models and testing on the MMLU
task.

Use llamafactory-cli train
examples/extras/galore/llama3 full sft.yaml
to fine-tune llama3-8B with GaLore.

Use llamafactory-cli train
examples/extras/apollo/llama3 full sft.yaml
to fine-tune llama3-8B with APOLLO.

Since LLaMA-Factory does not provide
evaluation scripts directly, please copy the
eval llama3 full sft.yaml file from our repos-
itory. And put them under corresponding directory,
examples/extras/METHOD/. METHOD is apollo
or galore. Then run

llamafactory-cli eval
examples/extras/METHOD/eval llama3 full sft.yaml

to get fine-tuned model performance.

Expected outputs:

GaLore Performance:

Average: 64.96
STEM: 55.43

Social Sciences: 75.66

Humanities: 59.72
Other: 71.25

APOLLO Performance (Scaling Factor = 32):

Average: 65.03
STEM: 55.47

Social Sciences: 76.15
Humanities: 59.60

Other: 71.28

Besides performance, you can observe that APOLLO is
significantly faster than GaLore without stall issue, since
APOLLO does not require Singular Value Decomposition
(SVD), eliminating the SVD delays commonly encountered
when using GaLore.

You will not observe significant memory saving between
GaLore and APOLLO since they use the same rank during
fine-tuning.

Exp4: 7B-scale throughput improvement via memory
efficiency

Due to the requirement of high-end GPUs like the 8xA100
to run large-scale pre-training experiments (e.g., LLaMA-
7B/13B), we provide a series of videos available at Videos,
allowing you to inspect the memory cost and throughput
(replicate Experiment in our Fig. 1 (right)).

You can also run the llama-7B experiment by yourself
using the 7B scripts in scripts/benchmark c4 with
APOLLO and APOLLO-Mini at a batch size of 16. How-
ever, AdamW can only run at a batch size of 4 due to exces-
sive optimizer memory cost. (Need A100-80GB)

Exp5: APOLLO can use extreme low rank

One interesting customization is to safely reduce the rank
in APOLLO by a certain ratio and compensate by adjusting
the apollo scale, which will yield similar pre-training
performance. This demonstrates that APOLLO can operate
at very low ranks without a performance penalty, achiev-
ing SGD-like memory efficiency—unlike previous methods
(e.g., GaLore) that require a higher rank to maintain perfor-
mance.

For example, you can set the rank in
scripts/pretrain c4/llama 130m apollo.sh
from 192 to 48, and set apollo scale from 1 to 4. The
model perplexity remains similar. For your reference,
LLaMA-130M has a model dimension of 768; using a rank
of 48 corresponds to using only 48

768 = 1
16 of the full rank,

leading to neligble optimizer memory cost.

This phenomenon is theoretically proved in Appendix A.1.5
and empirically observed in Appendix A.2.

https://github.com/hiyouga/LLaMA-Factory/pull/6617
https://github.com/hiyouga/LLaMA-Factory?tab=readme-ov-file#getting-started
https://github.com/hiyouga/LLaMA-Factory?tab=readme-ov-file#getting-started
https://github.com/zhuhanqing/APOLLO/tree/main/scripts/llama-factory-finetune
https://github.com/zhuhanqing/APOLLO/tree/main/scripts/llama-factory-finetune
https://github.com/hiyouga/LLaMA-Factory/blob/64a6fb9b5056166265abc5acbddffb64cd8b5256/src/llamafactory/train/trainer_utils.py#L282-L284
https://www.youtube.com/playlist?list=PLE0M__TDnJIhvUYG1KRCfzC6gDjt0LV6T

APOLLO: SGD-like Memory, AdamW-level Performance

B.6 Evaluation and expected result

The expected results should match those reported in the
experimental section, including similar perplexity scores
and performance metrics under comparable configurations.

B.7 Experiment customization

You can experiment with different configurations of
APOLLO by following the detailed usage instructions.

B.8 Methodology

Submission, reviewing, and badging methodology:

• http://cTuning.org/ae/
submission-20190109.html

• http://cTuning.org/ae/
reviewing-20190109.html

• https://www.acm.org/publications/
policies/artifact-review-badging

https://github.com/zhuhanqing/APOLLO?tab=readme-ov-file#-usage
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

