
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ON THE RELATION BETWEEN LINEAR DIFFUSION AND
POWER ITERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, diffusion models have gained popularity due to their impressive generative
abilities. These models learn the implicit distribution given by the training dataset, and
sample new data by transforming random noise through the reverse process, which can
be thought of as gradual denoising. In this work, we examine the generation process
as a “correlation machine”, where random noise is repeatedly enhanced in correlation
with the implicit given distribution. To this end, we explore the linear case, where the
optimal denoiser in the MSE sense is known to be the PCA projection. This enables
us to connect the theory of diffusion models to the spiked covariance model, where
the dependence of the denoiser on the noise level and the amount of training data can
be expressed analytically, in the rank-1 case. In a series of numerical experiments,
we extend this result to general low rank data, and show that low frequencies emerge
earlier in the generation process, where the denoising basis vectors are more aligned
to the true data with a rate depending on their eigenvalues. This model allows us to
show that the linear diffusion model converges in mean to the leading eigenvector
of the underlying data, similarly to the prevalent power iteration method. Finally, we
empirically demonstrate the applicability of our findings beyond the linear case, in the
Jacobians of a deep, non-linear denoiser, used in general image generation tasks.

1 INTRODUCTION

Recently, diffusion models have gained much popularity as very successful generative models, showcasing
impressive performance in image generation tasks (Dhariwal & Nichol, 2021; Ho et al., 2020; Song &
Ermon, 2019; Song et al., 2021c). These models learn the implicit distribution given by the training dataset,
and sample new data by transforming random noise inputs through a reverse diffusion process, which
can be thought of as gradual denoising. More formally, it has been shown in Kadkhodaie et al. (2024)
that learning the underlying distribution is equivalent to optimal denoising at all noise levels.

In order to shed more light onto the mechanism behind the success of diffusion models, in this work
we analyze the behavior of denoisers in the context of image generation, where pure noise is gradually
processed into a sample from a given (implicit) distribution by gradual denoising. Unlike other works,
e.g. Kadkhodaie et al. (2024), we focus on the denoiser(s) throughout the generation process, and not
only on the final generated data.

To this end, we suggest the following simple model to illustrate our point. Consider the class of linear
denoisers, where the optimal denoiser is given by a PCA projection. To simulate the diffusion generation
process, we learn a series of projections onto noisy data at different noise levels, and use them to transform
pure noise into samples from the underlying distribution. Given this simple model we can inspect
the evolution of eigenvectors spanning gradual projections with decreasing noise levels, as well as the
distribution of the generated data samples.

We show that the correlation of the noisy basis eigenvectors with their clean version decays as the noise level
increases, with a rate determined by the eigenvalues and the size of the training dataset. In other words, we
show that low frequencies, corresponding to large eigenvalues, emerge earlier in the reverse process as was
empirically observed in (Ho et al., 2020), and analyze how more training data contributes to generalization
(Kadkhodaie et al., 2024). Analytically, this corresponds to the spiked covariance model (Johnstone, 2001),
in which we bound this decay for the leading eigenvector (corresponding to the largest eigenvalue).
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Next, we demonstrate the applicability of our findings to more general, non-linear deep denoisers.
Although the network is not linear, its application can be written as a linear operation of the Jacobian
calculated on the input image. We empirically show that the aforementioned decay of eigenvector
correlations is prevalent also in in the Jacobians of a deep denoiser, in the final stages of image generation,
thus showing the relevance of our analysis in a broader context, and not just in a simplified linear case.

2 BACKGROUND AND RELATED WORK

Since their introduction by Sohl-Dickstein et al. (2015), diffusion models have been vastly used in image
generation tasks (Dhariwal & Nichol, 2021; Ho et al., 2020; Song & Ermon, 2019; Song et al., 2021c),
more general computer vision tasks (Amit et al., 2021; Baranchuk et al., 2022; Brempong et al., 2022; Cai
et al., 2020), and in other domains such as natural language processing (Austin et al., 2021; Hoogeboom
et al., 2021; Li et al., 2022; Savinov et al., 2022; Yu et al., 2022) and temporal data modeling (Alcaraz
& Strodthoff, 2023; Chen et al., 2021; Kong et al., 2021; Rasul et al., 2021; Tashiro et al., 2021). On
top of their practical success, different flavors of training and sampling have risen based on interesting
theoretical reasoning, e.g., considering the statistical properties of the intermediate data (Song et al., 2021a;
Sohl-Dickstein et al., 2015), or by framing the problem in the form of stochastic differential equations
(SDEs) (Karras et al., 2022; Song et al., 2021b;c; Chen et al., 2024) or score based generative models (Song
& Ermon, 2019; 2020). In this work, we look at diffusion models in the context of iterative denoising,
and focus on the properties of the learned denoiser (Milanfar & Delbracio, 2024).

Recently Kadkhodaie et al. (2024) showed that the learned denoising functions are equivalent to a shrinkage
operation in a basis adapted to the underlying image. In this sense the diffusion denoiser is an adaptive
filter (Milanfar, 2013; Talebi & Milanfar, 2014; 2016). While they focus on the analysis of the nonlinear
denoiser at the point of the final generated data, we are interested in the evolution (adaptation) of the
denoiser throughout the generation process, and its dependence on the noise level. To this end, we suggest
a simple linear denoising model, presented in Section 3. In this case, the (optimal) denoiser does depend on
the underlying image, and its dependence on the noise level can be traced analytically, as we show hereafter.

Due to their phenomenal empirical success, some attempts have been devoted towards providing theory
supporting the sample and iteration complexity of diffusion models. The current body of work can be
generally parted to attaining iteration complexity bounds assuming approximately accurate scores (Li et al.,
2024b;a; Chen et al., 2023b; Huang et al., 2024; Benton et al., 2024), and to assessing the sample complexity
to learn the score functions (Chen et al., 2023a; Block et al., 2020; Biroli & Mézard, 2023). Among these
works, many assume a low dimensional data distribution (Bortoli, 2022; Li & Yan, 2024; Oko et al., 2023;
Chen et al., 2023a; Wang et al., 2024), which is a reasonable assumption in practice (see e.g., Pope et al.
(2021)). Yet, it might particularly explain the gap between the current iteration bounds and the much lower
complexity apparent in practice (Li & Yan, 2024). In our work, we consider linear models and deduce
a linear sample complexity bound associated with learning the score function in Sec. 4 and discuss the
tradeoffs of the synthesis conversion rate in Sec. 4.1. The previous works mentioned above mainly develop
bounds assuming specific samplers and scaling details, which differ from our setting. In addition, they
generally bound the Total Variation distance (under varying assumptions on the target distributions), which
is not trivial to translate to the generated covariance matrix that we focus on even in the linear Gaussian
case (Devroye et al., 2018). The difference in our setting enables us to connect the theory of diffusion
models to a broad body of work concerning the spiked covariance model (Johnstone, 2001), and supports
the analysis of denoising diffusion as a correlation machine, which is the main purpose of this paper.

In the setting of Statistical Mechanics, Biroli & Mézard (2023) analyses diffusion models in very large
dimensions, focusing on the Curie-Weiss model of ferromagnetism. As an introduction to their work,
they also discuss a simple linear score model, in the context of the sample complexity of learning the
score function. They focus their discussion on the case of Gaussian data, where the eigenvalues of the
covariance matrices can be typically characterized. Unlike their work, we consider data that reside in a
low dimensional subspace, with no specific distribution, described in Sec. 4.

Power iteration is a fundamental algorithm for approximating the dominant eigenvalue and eigenvector
of a matrix. It relies on iteratively multiplying an initial vector by the matrix, where its convergence
rate is proportional to the ratio of the largest and second-largest eigenvalues. The method’s simplicity
and scalability have made it a cornerstone in various fields, including numerical linear algebra, machine
learning, and graph theory. For the ease of reading, we include a formal presentation of the method and
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discuss its convergence in Appendix A. In this work, we shall show how a linear denoising chain converges
in mean to the celebrated power iteration method.

3 LINEAR DIFFUSION - PROBLEM SETUP

For our analysis, we define the following simple iterative linear generation model. First, define the standard
diffusion model. Let q denote the natural data distribution and let x0∼ q be a sample from the natural
data (x∈Rd). The forward (diffusion) process is defined (Ho et al., 2020) by

q(xt|xt−1)=N (
√
1−βtxt−1,βtI) (1)

for some fixed noise schedule {βt}Tt=1 and x0∼q. It can be shown that

q(xt|x0)=N (
√
ᾱtx0,(1−ᾱt)I), (2)

where αt=1−βt and ᾱt=Πt
s=1αs. For our simplified model, consider the process (without scaling),

q(xt|xt−1)=N (xt−1,σ
2
t I). (3)

This implies that xt = xt−1+ϵσt
, where ϵσt

∼N (0,σ2
t I) for some fixed noise schedule {σt}Tt=1. We

discard the scaling to comply with previous analysis of the spiked covariance model (Nadler, 2008) (more
details in Section 4). This corresponds to the ”Exploding Variance” formulation, used with Langevin
dynamics to sample data as a variant of score based diffusion models (Song & Ermon, 2019; Song et al.,
2021c; Song & Ermon, 2020). We choose to present the ”standard” diffusion models in the setting of
denoising diffusion Ho et al. (2020) and not using the score-based approach entirely, as we focus our
discussion on the qualities of the denoiser.

The reverse (generation) process is defined using a parameterized distribution model pθ, generally defined
by the Markov process

pθ(x0:T )=p(xT )Π
T
t=1pθ(xt−1|xt), (4)

pθ(xt−1|xt)≜N (µθ(xt,t),Σθ(xt,t)), (5)

where p(xT )=N (0,I). By choices of parametrization and loss manipulations (see (Ho et al., 2020)), one
generally learns to estimate the error ϵθ(xt,t), where

µθ(xt,t)=
1
√
αt

(
xt−

βt√
1−ᾱt

ϵθ(xt,t)
)
, (6)

Σθ(xt,t)=e2tI, and et is a designed schedule (usually chosen to be equal to σt). Thus, the reverse process
can be expressed as a denoising chain

Dt(xt)=
1
√
αt

(
xt−

βt√
1−ᾱt

ϵθ(xt,t)
)
+etz, (7)

where z∼N (0,I) and z1=0. This is a stochastic denoiser, which preserves the Markovian property of
the forward process. Later versions suggested similar (non Markovian) deterministic denoisers, e.g., DDIM
(Song et al., 2021a), or more general stochastic denoiser chains, for a continuous forward model (InDI
(Delbracio & Milanfar, 2023)).

In our case, we restrict the denoisers to be a linear function of xt. Thus, the optimal denoiser (in the ℓ2
sense) is given by the PCA projection onto the target distribution (for more on the optimality of PCA
and alternative linear denoising chains, see Appendix B). For the reverse process, we learn a simple PCA
denoiser (projection) based on Xt−1, which is the cleaner version of the training set X={x1,...,xn} at
time t−1. Thus, at each time step we learn

Dt
PCA(xt)=Dt

PCA(xt;Xt−1)=Pt(xt;X0+Eσ̄t), (8)

where each column in Eσ̄t
is distributed by N (0,σ̄2

t I) and σ̄t is a function of {σs}ts=1. Our simple
denoising procedure is based on the sequential application of Pt ∈ Rd×d, which is the projection
on perturbed principal components with respect to the clean data distribution q. It is a deterministic
denoiser given the sampling of training data and noises, which does not depend neither on xt nor on x0.
Nevertheless, this model is relevant in differentiable environments of more complex settings such as DNN
based denoisers, as we show in Section 5.
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Figure 1: Digit generation from pure noise (class conditioned). The reverse process runs from left to right.

Empirical Demonstration of a Linear Diffusion Model. To illustrate the forward and backward
processes in the linear case, we perform a numerical simulation using the MNIST dataset, which is simple
enough to be estimated via a linear model. We start here with the training and generation procedures,
and use the same setting and trained denoiser to demonstrate our findings throughout the paper.

In the following experiment we simulate the process described above using the MNIST dataset (we use the
default train / test splits). In the class conditioned case, we learn a PCA denoiser with 30 components for
each time step where xt=xt−1+ϵσt

, σt∝t, and T=65 iterations. Figure 1 shows a (decimated) example
of digit generation from pure noise, where we apply the sequence of denoisers Dt

PCA=Pt, which will
be more accurately defined in Section 4. In order to understand the reverse process, we now turn to analyze
the gradual change of Pt, that might be expressed by the angle between the clean and noisy components
over time.

Notations. We use At to denote the matrix A at time t, and ati to denote the ith column of At.

4 LINEAR DIFFUSION AS BASIS PERTURBATION

We now turn to analyze the linear model presented above and show how the generation process can be
seen as a kernel “correlation machine”. Specifically, we are interested in the temporal (i.e., noise level)
dependence of the denoiser Equation 8 throughout the generation process. Recall that at each time step
xt=xt−1+ϵσt

, where ϵσt
∼N (0,σ2

t I) (Equation 3). Since the noise is assumed to be Gaussian, we can

write xt=x0+ϵσ̄t
, where σ̄t=

√∑t
i=0σ

2
i . Assume that the data distribution is such that its population

covariance is given by

Σt=Ex0x†0+σ̄2
t I=

r−1∑
i=0

λ2iuiu
†
i+σ̄2

t I≜Σ0+σ̄2
t I, (9)

where r−1<d, i.e., the data reside in a low dimensional subspace (which is generally true for natural
data). This is known as the “spiked model” (Johnstone, 2001), with a vast body of work covering the
distribution and identifiability of the spikes spectrum (e.g., (Nadler, 2008)). Throughout the paper, we
use the term ”index” to refer to to the index i in 9, where the eigenvalues λi are ordered largest to smallest.

Given n samples concatenated as columns in the matrix X0, at each time step we learn the PCA basis
associated with Xt=X0+Eσ̄t , by the diagonalization of the sample covariate matrix

Σ̂t=
1

n
XtX

†
t =

1

n
(X0X

†
0+X0E

†
σ̄t
+Eσ̄t

X†
0+Eσ̄t

E†
σ̄t
)≜UtStU

†
t . (10)

Thus, during the reverse process, at each time step we apply the projection

Dt
PCA=Pt=UtU

†
t . (11)

In order to understand the diffusion generation process, we analyze the decay of the product ⟨uti,ui⟩ over
time, where uti is the ith column of Ut. Note, that there are two drivers of change in the perturbation of ui
to uti. The first being the added noise, i.e., ∥Σt−Σ0∥. This is the key in the diffusion process and our main

focus. The second, is in the finite sample approximation
∥∥∥Σ̂t−Σt

∥∥∥. This source of error is interesting
in the context of sample complexity, as it encompasses the approximation of the denoiser learned from a
finite dataset, the equivalent of the sample complexity of learning the score function in (Chen et al., 2023a;
Block et al., 2020; Biroli & Mézard, 2023).

For the rank-1 case, Nadler (2008) presented a finite sample theorem which holds with high probability
for the closeness between the leading eigenvalue and eigenvector of sample and population PCA under
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Figure 2: The sine of the angle between the clean principal components and their noisy versions, colored
by the order of the eigenvalues (the darkest being largest eigenvalue). Low frequencies emerge earlier
in the generation process (at higher noise levels). This motivates Assumption 4.1, that extends Equation 12
to higher ranks.

a spiked covariance model similar to Equation 9. They bound the angle between the leading empirical
eigenvector and its population counterpart with approximately O(d) sample complexity, and a linear
dependence on the noise level:

EsinθPCA=E
√
1−⟨ut,u⟩2≈ σ̄t

λ

√
d

n
, (12)

where σ̄t is assumed to be small and d≫1. This result shows that the leading eigenvector rotates in a
rate proportional to the noise level. Our numerical experiments on the MNIST dataset (detailed in Section
4.1) show that this is a good approximation in practice, also for the rank-r case (Fig. 2).

Notice that in Equation 12 the angle is inversely linked to the eigenvalue, inferring a slower change with
higher eigenvalues. In the reverse process, we gradually move from pure noise or high noise levels to
smaller noise variance. Given the lower slope of the components corresponding to larger eigenvalues,
we interpret the result in Fig. 2 as the earlier emergence of low frequencies in the generation process. The
first component to be visible in the generated image is the one with the largest eigenvector, as it is the first
one that shows a correlation in high noise levels. Throughout the generation process, when the noise level
decreases, the next components take presence, by the order of their associated eigenvalue - from the larger
to the smaller. Finally, the components with the smallest eigenvalues appear when the noise level is low.

In the linear case, Equation 12 shows that the diffusion model’s sample complexity is determined by the
sample complexity of PCA, with a linear dependence on the dimension of the data. To further enhance
our understanding of the relationship between the amount of training data and the generalization of the
diffusion model, we repeat the experiment with varying datasets sizes. Figure 3 shows the angle to noise
profile for selected principal components, with the indices 0,5,10 (left to right; index 0 corresponds to
the largest in a list of ordered eigenvalues). Increasing the amount of training data improves robustness to
noise and enables the emergence of higher frequency components at higher noise levels, thereby capturing
more nuances in the generated data.

4.1 THE GENERATED DISTRIBUTION

We now turn to discuss the distribution of the generated output, and how it relates to the natural data
distribution. First, we analyze a generation process by repetitive denoising without additional noise, and
show how it relates to power iteration. Then we discuss a similar process only with the injection of noise,
reminiscent of other common sampling methods (e..g (Ho et al., 2020)). Given our linear model, the
generation process is essentially the linear transformation given by the matrix

PT =ΠT
t=0Pt=P0···Pt···PT . (13)

The generated output can be expressed as
xg=PT ξ, (14)

where ξ∼N (0,σT ). Other than the visual aesthetic of the generated images, we are interested in their
distribution, and how well it represents the natural distribution of train images. Thus, we would like to
compare the generated covariance Exgx†g to the natural covariance Σ0.

5
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Figure 3: Effect of dataset size. The plots show sinθPCA at different noise levels when trained on datasets
with increasing size (lighter color). Each plot is of a different component index, for indices 0,5,10 (left
to right; index 0 corresponds to the largest eigenvalue). Increasing the amount of training data improves the
robustness to noise, and allows the appearance of high frequencies at higher noise levels, hence capturing
more data nuances in the generated data and better generalization.

In this context, a natural comparison is the power iteration (PI) method, which may be used to estimate the
leading eigenvector of a matrix. This can be seen as another iterative form of generating data from random
vectors. Unlike our projection, in PI we ”project” a random vector onto the entire matrix, i.e. including
the eigenvalues. In this case the denoiser would be Dt

PI=Σ0∀t, where we ignore the normalization and
focus on the direction of the final vector, since there is no normalization constraint for generated data
in diffusion models.

We now turn to show how the reverse process performed by a repeated denoising as in Equation 13
converges in mean to PI. To this end, we make the following assumptions.
Assumption 4.1. Assume that Equation 12 holds for all eigenvectors, i.e.,

E
√
1−⟨uti,ui⟩2≈

σ̄t
λi

√
d

n
, (15)

for i=0,...,r−1.

This assumption is the extension of Equation 12 to higher ranks, and is motivated by our simulations (Fig.
2). In addition, we make the following assumption regarding the cross products of components of different
indices, at consecutive time steps.
Assumption 4.2. For each index i there exists a time τi, where for t≤τi and j≤i,

E⟨uti,ut+1
j ⟩=0. (16)

In addition, τi>τj for i<j.

This assumption is supported by our simulations in Fig. 5, and will be further discussed hereafter.
Assumptions 4.2, 4.1 are an extension of Nadler (2008) to higher ranks. We leave their explicit derivation
to future work, and focus on their implications to linear diffusion.

We are now ready to state our main result.
Theorem 4.3 (Convergence to Power Iteration). Let σt= 1

T , t=0,...,T . Assuming 4.2, 4.1, in the limit
T→∞,

Exgx†g∝u0u
†
0. (17)

Proof. Let us analyze the product in Equation 13 to show how it relates to the power method. The linear
operator representing the reverse process can be written as

PT =U0Π
T−1
t=0 (U†

tUt+1)U
†
T . (18)

The matrix product U†
tUt+1 can be analyzed using the extension of Equation 12 to higher ranks. Given

4.1, the expected inner product with the natural data component ui=ut=0
i is given by

E⟨uti,ui⟩≈1−
σ̄2
t

λ2i

d

n
. (19)
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u

ut+1

ut

1− σ̄2
t

λ
d
n

θt

θt+1

Figure 4: Schematic illustration of the basis perturbation, per index.

The evolution of this product over time is depicted in Figure 4. We are interested in the projection of ut+1

onto ut, which is the cosine of the angle ∆θ=θt+1−θt. This angle is tractable for small noise levels, so
we divide our analysis to two parts: 0≤t≤τ and τ≤t≤T , where the choice of τ will soon be motivated.

First, we inspect the limit of t→0 (0≤t≤τ). For small angles, we can write

∆θ=arccos
(
1−

σ̄2
t+1

λ2
d

n

)
−arccos

(
1− σ̄2

t

λ2
d

n

)
≈ d

λ2n
(σ̄2

t+1−σ̄2
t )=

σ2
t+1d

λ2n
, (20)

since arccosθ≈ π
2−θ and σ̄2

t =
∑t

τ=0σ
2
τ . The diagonal elements in U†

tUt+1 are then given by

E⟨uti,ut+1
i ⟩≈cos

σ2
t+1d

λ2in
, (21)

where the off-diagonal elements are negligible, since

E⟨uti,ut+1
j ⟩≈E⟨u

t
i,u

t
j⟩=0, (22)

which holds for t ≤ τr−1 by Assumption 4.2. Notice, that in small angles, ⟨uti − ut+1
i , u⟩ =

(σ2
t+1d)/(λ

2n)→0, so the vectors uti are co planar, as depicted in Figure 4. Thus, the time point basis

correlations U†
tUt+1 form an approximately diagonal matrix with the fraction ci ≜ cos

σ2
t+1d

λ2
in

on the
diagonal, where ci > cj for i < j. We eliminate the dependence of ci on t by choosing the constant
schedule σt=1/T ∀t, to simplify the proof. However, many schedules can be used, as long as ci,t>cj,t
remains correct. Define the partial linear diffusion operator until time τ by EPτ =Πτ

t=0Pt. Then

EPτ =U0

cτ0
. . .

cτr−1

U†
τ =U0c

τ
0

1 (
c1
c0

)τ
. . .

U†
τ →
τ→T

U0

cτ0
0

. . .

U†
τ , (23)

where the diagonal elements decay as τ grows larger, as ci>cj for i< j. Similarly to power iteration,
the convergence rate depends on the ratio c1/c0. The convergence rate might not be fast enough for the
process to converge while the small angles approximation still holds. Thus, we continue with the second
phase of our analysis, showing the convergence of the full reverse process.

We now turn to analyse the phase where τ≤t≤T . In high noise levels, the correlation with the natural
basis is low, and the products U†

tUt+1 are not exactly diagonal. However, the correlation ”leaks” to a
close neighborhood of the original component and the temporal products are still somewhat concentrated
around their diagonal. This process happens in accordance with Equation 4.1, where the spreading of
the diagonal elements happens for high indices in lower values of t (less noise is needed to spread the
correlation). This leads us to Assumption 4.2, claiming that for each index i there exists a time τi after
which the small angle approximation does not hold; τi>τj for i< j. This is apparent in practice, and
depicted in 5 (left image per duo). However, given the decaying diagonal structure of the partial operator
Pτ , we will now show that 4.2 is sufficient for the total operator to converge as desired.

Suppose we added one more matrix multiplication to our former analysis, i.e. observe

EPτUτ+1=U0c
τ
0

1 (
c1
c0

)τ
. . .

U†
τUτ+1. (24)
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Figure 5: The time point basis correlation matrices UT
τ Uτ+1 (left per pair), together with the partial

product Πτ
t=0(U

†
tUt+1) (right per pair) at different time points. This justifies Assumption 4.2, and shows

that the total projection (bottom right image, for τ =T ) converges to the first eigenvector, similarly to
the power method.

Assumption 4.2 guarantees U†
τUτ+1 is diagonal just enough not to spoil the diagonality of the next partial

operator EPτ+1. To see this, let us inspect some intermediate index i, where the entries in j>i are already
practically zero. Thus, we have

EPτiUτi+1=U0c
τi+1
0


1

. . . (
ci
c0

)τi
O


︸ ︷︷ ︸

≜Cτi


1

. . .
ci
c0

A

=U0c
τi+1
0


1

. . . (
ci
c0

)τi+1

O



where O is a block of zeros and A is a block matrix the same size as O, that can have nonzero entries,
by Assumption 4.2. Since the elements of the partial product Cτi decay faster with i than any single
product U†

τiUτi+1, Cτi+1 is also diagonal. Overall, the final product is a diagonal matrix with a spectrum
that converges to be concentrated around the first eigenvalue, where we can control the distribution of
the generated data by the choice of the diffusion parameters. Figure 5 shows our simulation of the process,
supporting both assumption 4.2 and the result stated by this theorem.

Oftentimes, the reverse process includes the injection of noise to the intermediate images (e.g. (Ho et al.,
2020)). The overall transformation in this case is given by

xg=ΣT
t=0Π

t
τ=0Pτξt=P0···PT ξT+···+P0ξ0 (25)

for some schedule {ξt}Tt=0 (for example, ξT ∼N (0,1) and ξt=N (0,1/T) for t=0,...,T−1). In this case,
the generated output is a combination of a (purely) noisy image that was repeatedly correlated to converge
to v0 (as shown above), with generally lower noise levels that are ”lightly” correlated, although to the
cleaner projection operators. The generated output can thus be seen as a combination of three conceptual
parts, with a different balance of the noise level and the portrayed components.

The first eigenvector The first part of the sum in Equation 25 is P0 ···PT ξT , the estimation of the
eigenvector with the largest eigenvalue, as shown above theoretically in Equation 23 and empirically in
the right matrix of the bottom right duo in Fig. 5. The ”strongest” noise is repeatedly correlated to be
concentrated around the first eigenvector.

The entire (clean) spectrum The last part in Equation 25 is P0ξ0, a weak noise level that is spread
across all components. This noise is very lightly and not repeatedly correlated, although to a clean version
of the natural data basis.

In between The third part consists of all the intermediate products Πt
τ=0Pτξt. The product operators

Πt
τ=0Pτ preserve varying parts of the natural spectrum, according to t - as t grows, the total projection

tends to retain only the components associated with larger eigenvalues. This can bee seen in Fig. 5. The
right matrix in each pair shows the product Πt

τ=0Pτ for varying values of t. The total projections range
from the entire spectrum (top left), to only the leading eigenvalue (bottom right). In between, the products
are diagonal matrices where the entries in the indices of the smaller eigenvalues have already diminished,
in a similar way to the convergence described in Equation 23.
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Thus, we get a combination of a solid estimation of the leading eigenvector, together with a more uniform
and week sampling of the components with low eigenvalues in the natural data basis. In between, the
intermediate projections are at different levels of convergence to the leading eigenvector, hence tend to
be more concentrated on components with large eigenvalues as t→T . The freedom in choice of schedule
{ξt}Tt=0, allows control of the spread of the final distribution on the natural data components.

Figure 6: The empirical distribution of generated images over the natural principal components, with
(middle) and without (left) injected noise. On the right - the best configuration with the generated standard
deviation (see Sec. 4.1).

To inspect this, we plot the empirical distribution of generated images over the clean PCs, given by

pi=
1

n

n∑
j=1

|⟨ui,xj⟩|
∥xj∥2

, (26)

where ui is the clean principal component with index i (defined in Equation 9) and xj is a generated sample,
out of n examples. Figure 6 shows the empirical distribution of generated images over the clean principal
components. On the left, we plot the distribution without injected noise, i.e. xg=PT ξ (as in Equation 14),
for various values of T . As we show above, the distribution tends to be concentrated on the first eigenvector
as T increases. The center plot shows the distribution of the process including the injected noise in the
intermediate denoising steps. While in the low indices the dominant behavior is similar to the former
case, the higher orders do not converge to zero and maintain their presence in the generated distribution.
We note, that more sophisticated nonlinear deterministic samplers might not require the injection of noise
in order to converge to the natural data distribution (e.g. Lu et al. (2022)). However, given a linear model, it
is natural to accept added stochasticity in the lack of nonlinearity (more on that in Section 5). On the right,
we picked the best configuration (T=65 in this case) to approximate the natural distribution. Notice, that
the final generated distribution depends on the choice of parameters, where one can control the mean of
the generated spectrum (this might be a feature for some applications, such as segmentation via diffusion,
etc.). It might be interesting to derive the optimal parametrization for the convergence of the linear model
- we leave this for future work. In addition to the convergence in mean, we included the standard deviation
of the natural and generated samples, resulting in a decent fit to the target distribution.

5 EMPIRICAL EXTENSION TO DEEP DENOISERS

In the linear case described above, the optimal denoiser is given by the PCA projection onto the clean(er)
data. These denoisers are computed with the training data, and their principal components do not depend
on the input in the reverse process. When the denoiser is nonlinear, and might be implemented using a
deep neural network, its input-output mapping can be locally expressed via the network Jacobian, by

D(xt)=∇D(xt)xt=VtΛtV
†
t xt, (27)

where VtΛtV
†
t denotes the eigen decomposition of the Jacobian calculated at xt. For simplicity, we assume

that the Jacobian is symmetric and non-negative (which is approximately true (Mohan et al., 2020)). Note
that in this case, the denoising base depends on the input image (and noise level). While the network is
non linear, we can follow the generation path in the sampling process and inspect the basis of the network
Jacobians calculated at the intermediate sampled points xt. We can then trace sinθJ =

√
1−⟨vti,vt=0

i ⟩2
where the subscript ”J” stands for Jacobian, vti is the ith column in Vt defined in Equation 27, in a similar
way to our simulations of the linear case (Figure 2). This can be calculated per generation path, where
x0 is the final generated image, and V0 is the basis of the Jacobian calculated at this final point.
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Figure 7 shows sinθJ calculated using the Jacobians of a UNet based diffusion model, described in
(Ning et al., 2023). This model was simply chosen as the 1state-of-the-art in the task of image generation
considering the CelebA dataset at the time of writing this paper. We used the default settings and calculated
the Jacobians at the final iterations. We plot the results for the leading 300 Jacobian eigenvectors, where
the color is assigned by the index - darker colors for lower indices i. We repeated the experiment sampling
images from the CelebA dataset (left) and CIFAR 10 (right). Even though the denoising model is far from
linear, the decay of the angle between the denoising basis in high noise levels and the natural denoising basis
is similar to the decay in the linear case (compare to Figure 2). In this case as well, the correlation of the low
indices (and hence low frequencies) withstands higher noise levels, thus appearing first in the generation
process. As this is the basis of our analysis comparing the reverse diffusion process to power iteration, this
experiment shows that our analysis is relevant in a broader context and not just in the simplified linear case.

This analysis focuses on the local behavior of the nonlinear denoiser at the end of the generation process,
demonstrating its similarity to a linear denoising chain. Each plot represents a single generation path, not
the overall distribution of generated outputs.

While linear diffusion models are easy to analyze, they may struggle to generate complex datasets.
Nonlinear models, on the other hand, can navigate a diverse set of linearized regions during the generation
process (as illustrated in Figure 7). This allows them to generate diverse data even without added noise,
unlike linear models which ultimately converge in mean to a single point (Theorem 4.3) and therefore
require noise injection for diverse outputs. This contrasts with some deterministic nonlinear samplers (e.g.,
Lu et al. (2022)) that do not rely on added noise.

Figure 7: Image generation - the sine of the angle between Jacobian eigenvectors at the final generated
image (t=0) and intermediate iterations (t>0). The diffusion model includes a UNet-based denoiser
trained on CelebA (left) or CIFAR10 (rignt). Color by index (the darker the color the lower the index,
referring to columns of the Jacobian basis Vt). The Jacobians of the nonlinear denoiser conform to the
behavior of the linear model.

6 CONCLUSION

In this paper, we discuss a simple diffusion model with a linear denoiser and normalization free sampler,
that allows us to cast the diffusion problem as noisy PCA, and make the connection to the spiked covariance
model assuming that the natural data distribution reside in a low dimensional subspace. This enables us
to show that in the linear case, the generation process acts as a “correlation machine”, where initial random
noise is repeatedly correlated to noisy estimations of the natural data basis, to finally embody the true
distribution, in a manner similar to the power iteration method. We show that in this process, low frequencies
emerge earlier, and more data contributes to a richer representation per the same diffusion configuration.
Finally, we demonstrate the relevance of our analysis also in a deep, non-linear diffusion denoiser.

We acknowledge the limitation of admitting a linear model, with its lack of ability to represent the
complex data often expected of diffusion models. While our theoretical setting is modest, we empirically
demonstrate how our observations deduced from a simple linear model and classic theory (Johnstone,
2001; Nadler, 2008) are relevant to more general models and datasets. This enables us to shed light on
the internal mechanism powering this technology, and connect it to a rich pool of theory and prevalent
methods such as power iteration.

1https://paperswithcode.com/sota/image-generation-on-celeba-64x64
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A POWER ITERATION AND ITS CONVERGENCE

Power Iteration is a simple algorithm used to compute the dominant eigenvalue and its corresponding
eigenvector of a matrix. It iteratively refines an initial random vector by multiplying it with the matrix,
which gradually aligns with the eigenvector corresponding to the largest eigenvalue. For a thorough
introduction to the method, see e.g. Andrilli & Hecker (2023). Given a square matrix A∈Rn×n, the
goal is to compute the dominant eigenvalue λ1 and its corresponding eigenvector v1. The Power Iteration
algorithm is defined as follows:

Algorithm 1 Power Iteration Algorithm

Input: Matrix A∈Rn×n, initial vector v0∈Rn, number of iterations k
Output: Approximate dominant eigenvector vk
Normalize the initial vector: v0← v0

∥v0∥
for each iteration i=1,2,...,k do

vi←Avi−1

Normalize vi← vi
∥vi∥

end for
return vk

The algorithm starts with an arbitrary vector v0, which is normalized to ensure numerical stability. In each
iteration, the vector vi is updated by multiplying it with the matrix A, followed by normalization. After k it-
erations, the vector vk is expected to be close to the eigenvector corresponding to the largest eigenvalue ofA.

A.1 CONVERGENCE ANALYSIS

Let A be a square matrix with eigenvalues λ1,λ2,...,λn, where the eigenvalues are ordered such that
|λ1|> |λ2|≥···≥|λn|. Denote the corresponding eigenvectors by v1,v2,...,vn, where v1 is the eigenvector
corresponding to the dominant eigenvalue λ1.

The key idea behind Power Iteration is that, after sufficient iterations, the sequence of vectors vi converges
to the eigenvector associated with λ1, under certain conditions.

Let v0 be the initial vector, which can be expressed as a linear combination of the eigenvectors of A:

v0=

n∑
i=1

αivi

where αi are scalar coefficients. After applying the matrix A in each iteration, we obtain the sequence
of vectors:

vi=Avi−1=A

(
n∑

i=1

αivi

)
=

n∑
i=1

αiλ
i
ivi

Thus, the i-th iteration amplifies the component of v0 along the direction of the eigenvector corresponding
to the eigenvalue λ1, while the other components decay at a rate proportional to the magnitude of their
respective eigenvalues. As the iterations proceed, the contribution of the eigenvectors associated with
smaller eigenvalues diminishes, and the vector vi becomes increasingly aligned with v1, the eigenvector
corresponding to λ1.

Formally, we express the evolution of vi as:

vi=λi1α1v1+λi2α2v2+···+λinαnvn

The relative influence of the eigenvectors corresponding to λ2,λ3,...,λn decays exponentially as i→∞
because λ1> |λ2|≥···≥|λn|. Specifically, the error in approximating v1 decreases at a rate proportional
to |λ2|

|λ1| , leading to the following convergence result:
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∥vi−λi1v1∥
∥v1∥

≤C
(
|λ2|
|λ1|

)i

for some constant C, where ∥·∥ is the vector norm (usually the Euclidean norm).

Therefore, the Power Iteration algorithm converges to the dominant eigenvector v1 at a rate determined by
the ratio of the magnitudes of the first and second largest eigenvalues, ρ= |λ2|

|λ1| . If λ2 is much smaller than
λ1, convergence is fast. However, if λ2 is close to λ1, convergence can be slow, requiring more iterations
to achieve a satisfactory approximation. The convergence is linear, with the error decaying exponentially
as the number of iterations increases. For a matrix A with a well-separated dominant eigenvalue λ1 (i.e.,
|λ1|≫ |λ2|), Power Iteration converges quickly, typically in O(log(ϵ)/log(ρ)) iterations to achieve an
error of size ϵ.

B PCA OPTIMALITY AND OTHER LINEAR DENOISING CHAINS

In the main text we discuss a gradual denoising chain, where noise is iteratively projected onto cleaner
PCA bases (as defined in 11). In the following, we will clarify the sense in which PCA is optimal, and
present another linear denoising scheme, which will help to frame the subject of this work.

The optimal linear denoiser at time t in the ℓ2 sense is the minimizer of the loss

ℓt+1→t=Ext,w∥Dt(xt+σtw)−xt∥22, (28)

where w∼N (0,I). This can be minimized by deriving the expected loss

Ext,w∥Dt(xt+σtw)−xt∥22=Ext,w[x
†
tD

†
tDtxt−2x†tDtxt+σ2

tw
†
tD

†
tDtwt+x†txt]

=Ext,wTr[D
†
tDtxtx

†
t−2Dtxtx

†
t+σ2

tD
†
tDtwtw

†
t+xtx

†
t ] (29)

=Tr[D†
tDtΣt−2DtΣt+σ2

tD
†
tDt+Σt],

where we have used the fact that wt has zero mean. To derive the optimal linear denoiser, we have

dℓ

dDt
=2DtΣt−2Σt+2σ2

tDt=0, (30)

and so
Dt=(Σt+σ2

t I)−1Σt. (31)
Notice, that in the limit of diminishing σt,

Dt=Ut


λ0

λ0+σ2
t

. . .
λr−1

λr−1+σ2
t

U†
t →
σt→0

UtU
†
t =Dt

PCA. (32)

Alternatively, this can be seen as the minimizer when we average also on the input noise variance. In
this work, we focus on the iterative application of Dt, and use the theory regarding noisy PCA (Nadler,
2008) to analyze the convergence properties of this chain.

Given a similar ℓ2 loss, one might suggest an alternative denoising chain, using multiple estimation of
x0. The corresponding loss is thus

ℓt→0=Ext,w∥Dt(x0+σ̄tw)−x0∥22, (33)

where σ̄t is the overall added noise (see Section 4). The adequate denoising chain in this case is the
application of Dt to estimate x0, followed by the addition of noise with the appropriate variance σ̄2

t−1,
before the iterative application of Dt−1. In this case, the optimal denoiser is given by

Dt=(Σ0+σ̄2
t I)−1Σ0 (34)

=U0


λ0

λ0+σ̄2
t

. . .
λr−1

λr−1+σ̄2
t

U†
0 .
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In order to generate data, this denoiser is applied on a series of noises wt, where wt∼N (0,σ̄2
t I) for some

schedule {σ̄t}Tt=0. The generation starts from the denoising of wT by DT , to get the first estimation of
x0, DTwT . The next denoiser is optimal considering the noise level σ̄T−1, so prior to its application, we
add the next noise instance, wT−1. Thus, the iteration in this denoising chain is given by

xt−1=Dtxt+wt−1, (35)

where again wt∼N (0,σ̄2
t I). Due to the linearity of the denoisers, the final generated output xg can be

expressed as
xg=ΣT

t=0Π
t
τ=0Dτwt=D0···DTwT+···+D0w0. (36)

The difference between the generation path in Equation 36 and the one described in Equation 25 is in
the applied denoisers, where the former utilizes the denoiser defined in Equation 34, and the latter employs
the PCA denoiser (defined in Equation 11 and described in Equation 32). In addition, the accompanying
noise schedules should match the denoiser: {σt} for the PCA denoiser and {σ̄t} considering Equation 34.

Notice, that in this case as well, if we inspect the first element in Equation 36, i.e., D0 ···DTwT , the
dominant direction is concentrated in the first eigenvector of Σ0 (since x

x+a is monotonically increasing for
x,a≥0). Thus, similarly to the case described in Equation 25, the generated output can be interpreted as a
sum of high noise levels that were repeatedly correlated to estimate the leading data eigenvector, and lower
noise level that sample the entire data spectrum, in accordance with our discussion in Section 4.1.
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