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ABSTRACT
In recent years, the field of talking head generation has made sig-
nificant strides. However, the need for substantial computational
resources for model training, coupled with a scarcity of high-quality
video data, poses challenges for the rapid customization of model
to specific individual. Additionally, existing models usually only
support single-modal control, lacking the ability to generate vivid
facial expressions and controllable head poses based on multiple
conditions such as audio, video, etc. These limitations restricts the
models’ widespread application. In this paper, we introduce a two-
stage method called Control-Talker to achieve rapid customiza-
tion of identity in talking head model and high-quality generation
based on multimodal conditions. Specifically, we divide the training
process into two stages: prior learning stage and identity rapid-
customization stage. 1) In the prior learning stage, we leverage a
diffusion-basedmodel pre-trained on the high-quality image dataset
to acquire a robust controllable facial prior. Meanwhile, we innova-
tively propose a high-frequency ControlNet structure to enhance
the fidelity of the synthesized results. This structure adeptly ex-
tracts a high-frequency feature map from the source image, serving
as a facial texture prior, thereby excellently preserving facial texture
of the source image. 2) In the identity rapid-customization stage,
the identity is fixed by fine-tuning the U-Net part of the diffusion
model on merely several images of a specific individual. The entire
fine-tuning process for identity customization can be completed
within approximately ten minutes, thereby significantly reducing
training costs. Further, we propose a unified driving method for
both audio and video, utilizing FLAME-3DMM as an intermediary
representation. This method equips the model with the ability to
precisely control expressions, poses, and lighting under multi con-
ditions, significantly broadening the application fields of the talking
head model. Extensive experiments and visual results demonstrate
that our method outperforms other state-of-the-art models. Addi-
tionally, our model demonstrates reduced training costs and lower
data requirements.

CCS CONCEPTS
• Computing methodologies→ Computer vision.
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Figure 1: Control-Talker involves two training stages: Prior
Learning and Identity Rapid-Customization. The blue areas
represent the U-Net part of the diffusion model, while the
yellow areas denote the proposed HF-ControlNet. FFHQ and
VFHQ are high quality image and video datasets.

KEYWORDS
TalkingHeadGeneration,Multi-Condition Control, High-Frequency
ControlNet, Rapid-Customization Diffusion

1 INTRODUCTION
Talking head generation is the task of animating a static source
portrait to generate vivid expressions and controllable head poses
guided by a driving video or audio segment. This is a challenging
endeavor with critical implications across various domains such as
video conferencing [6, 30, 37], virtual reality [7, 36], etc.

Recent works on talking head generation can roughly be classi-
fied into two categories: subject-agnostic and subject-dependent
methods. 1) Subject-agnostic methods [24, 25, 27, 29, 33, 36, 39]
are capable of driving any portrait by learning robust facial priors
from large-scale video datasets. The datasets required are often chal-
lenging to collect, and the computational resources needed for training
are increasingly becoming difficult to afford, especially when train-
ing a talking head model capable of handling multi-condition inputs.
LipFormer [29] attempts to train on high-quality image datasets to
reduce the substantial training costs. However, this approach con-
strains the synthesized area to the mouth and is limited to process-
ing audio inputs only. StyleHEAT [33] proposes achieving adaptabil-
ity to multiple conditions by performing inversion on a pre-trained
StyleGAN [15] model. Nevertheless, errors in the inversion method
often lead to modifications in identity and excessively smooth syn-
thetic results. 2) Subject-dependent methods [22, 26, 28], on the
other hand, focus on learning personalized head animation models
by constructing datasets for a specific individual, ranging from
several minutes to tens of hours in length. As shown in Table 1,
while subject-dependent methods do not demand vast amounts of
data, collecting high-quality videos of a specific individual is still
time-consuming and labor-intensive. SynObama [28] collects ap-
proximately 16 hours of Obama’s speech videos. Typically, it is not
feasible to gather data of this scale for any other specific individual.
Besides, both AD-NeRF [10] and DFRF [26] require several hours
of training time, hindering their rapid transfer to other individuals.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Table 1: Comparisons among several talking head generation model. Note that the Wav2Lip and SynObama can not generate
talking head videos with only the driving video. "-" indicates that personalized training is not required or unknown. ’a’ denotes
subject-agnostic and ’d’ signifies subject-dependent.

Method Method
Categories

Audio
Driven

Video
Driven

Exp&Pose
Control

Light
Control

Personalized
Training Time

Personalized
Dataset Size

Wav2Lip [24] a ✓ - -
MakeItTalk [39] a ✓ - -
FOMM [27] a ✓ ✓ - -

StyleHEAT [33] a ✓ ✓ ✓ - -
SynObama [28] d ✓ - >16 h
AD-NeRF [10] d ✓ ✓ 36 h >3 min
DFRF [26] d ✓ ✓ 7 h >10 s
Ours a & d ✓ ✓ ✓ ✓ 10 min 20 frames

Moreover, due to the lack of a unified representation, these methods
fail to generate videos with vivid expressions and poses driven by
multiple conditions, i.e., video and audio.

In summary, both of the aforementioned methods are signifi-
cantly limited by their excessive demands for high-quality video
data and computational resources, and they generally fail to handle
inputs under multi-condition scenarios (please refer to Table 1).
Given a reconsideration of these issues, we propose a two-stage
method called Control-Talker for the rapid customization and
multi-condition control of talking head model. We innovatively
propose that the training of the diffusion-based talking head gen-
eration model can be divided into Prior Learning and Identity
Rapid-Customization stage, as shown in Figure 1.

1) Prior Learning. We decomposes the task of prior learning
into two processes: Controllable Facial Prior learning and Fa-
cial Texture Prior learning. Firstly, we leverage a diffusion-based
model pre-trained on a high-quality image dataset to learn the con-
trollable facial prior. This learning process enables our model to
possess the capability of implementing fundamental controls over
expressions, poses, and lighting. However, the synthesized results
often lack detailed textures, that is, over-smoothed phenomenon.
Therefore, we secondly propose a well-designed high frequency
ControlNet (HF-ControlNet) structure to learn the facial texture
prior. This structure enhances the model’s focus on high-frequency
textures to enhance the fidelity of the synthesized results while
preserving its controllability. Specifically, we segment the image
to focus the model exclusively on the significant foreground por-
trait area. Subsequently, operations such as image sharpening and
high-frequency filtering are employed to extract high-frequency
texture feature map from the foreground portrait. This extracted
feature map, along with physical buffers rendered by DECA de-
coder, are then fed into a structure similar to ControlNet. Through
the steps above, HF-ControlNet facilitates the augmentation of high
frequency textures in the synthesis results.

Leveraging the effective prior learning stage, our model facili-
tates controllable image generation with faithful texture preserva-
tion. To further enable our model to handle multi-condition inputs,
we employ FLAME-3DMM as the intermediate representation, de-
signing a unified drivingmethod formultiple condition. This unified
method comprises an easily implementable video-driven pipeline
and an ingenious Audio2FLAME structure for audio-driven appli-
cations, which enhances the model’s controllability and adapts it
to a broader range of application scenarios.

2) Identity Rapid-Customization. Unlike other methods that
gather extensive video data for training, we collect only 20 images
of a specific individual from the internet or directly extract pictures
of different poses from a video. Then through a few fine-tuning
steps within merely 10 minutes, we fix the identity of the specific
individual to achieve the goal of rapid customization. Furthermore,
we retain the multi-condition control from the controllable facial
prior and the texture enhancement from the facial texture prior,
significantly enhancing the controllability and fidelity of the results.

Extensive experiments and ablation studies demonstrate that
our method outperforms other state-of-the-art models in terms
of training costs, synthesis quality, and identity preservation. The
main contributions are summarized as follows:

• We propose a two-stage rapid customization method called
Control-Talker for talking head generation.This method
benefits from facial priors derived from high-quality image
and video datasets, enabling rapid identity customization on
a small subset of specific individuals.

• A high-frequency ControlNet architecture is introduced,
which effectively preserves the texture details of the source
image and enhances the fidelity of the results.

• By utilizing FLAME-3DMM as an intermediary representa-
tion, we design a unified driving method for multiple con-
ditions, which enables the control of expression, pose, and
lighting based on video and audio inputs.

2 RELATEDWORK
2.1 Talking Head Generation

Subject-agnostic methods. Subject-agnostic methods aim to
construct a universal methodology for driving arbitrary objects by
learning robust facial structure and texture prior from large-scale
datasets [7, 19, 24, 25, 36, 39]. However, it leads to an increasing
demand for high-quality video dataset and unsustainable training
costs, particularly when training a model capable of handling multi-
condition inputs. Wav2Lip [24] introduces a reconstruction training
strategy that synthesizing the talking head videos by inpainting
the masked mouth area. However, artifacts are often present in
the synthesis results, and there is no direct control over head pose
and facial expressions. MakeItTalk [39] introduces an intermediary
representation based on facial keypoints, which decomposes the
task into two stages: mapping audio to keypoints and then synthe-
sizing these keypoints into images. While MakeItTalk reduced the
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Figure 2: Overview of Control-Talker. Control-Talker utilizes FLAME-3DMM as the intermediate representation to achieve a
unified video and audio driving approach, and can realize the editing of exp, pose and lighting. The U-Net part of the diffusion
model is used to introduce a Controllable Facial Prior learned from high-quality image datasets, while the well-designed
HF-ControlNet part incorporates facial texture priors by extracting high-frequency feature map from the source image.

requirements for input driving video, it still failed to improve con-
trollability or diminish the occurrence of artifacts. PIRenderer [25]
proposes using 3D Morphable Model to control expressions and
poses, achieving a unified driving method for both audio and video.
However, this method requires frame-by-frame training on a large-
scale video dataset, necessitating significant training costs. Unlike
these methods above, we obtain controllable facial prior from a pre-
trained diffusion model to reduce training costs and design a novel
HF-ControlNet to learn texture facial prior for texture enhancement.
Our method also uses FLAME-3DMM to unify multiple conditions,
which provides expansion space for fine-grained control.

Subject-dependent methods. Unlike Subject-agnostic meth-
ods that generally focus on synthesizing arbitrary objects, Subject-
agnostic methods emphasize the synthesis of specific individu-
als [10, 26, 28]. SynObama [28] demonstrates a noteworthy syn-
thesis outcome by compiling 16 hours of speech videos of Obama.
However, this technique’s substantial data requirements hinder its
applicability to other specific individuals. AD-NeRF [10] introduces
a method based on 3D NeRF rendering, achieving the synthesis of a
specific individual from a video spanning 3 to 5 minutes, reducing
the difficulty of data collection. Nevertheless, the high training costs
associated with AD-NeRF limit its broader adoption. Building upon
the AD-NeRF framework, DFRF [26] incorporates a pre-trained
NeRF model, enabling the fine-tuning of a specific individual’s
identity with approximately 10 seconds of short video, yet still ne-
cessitates around 7 hours of training. To reduce training costs and
data requirements, our Control-Talker method acquires the robust
facial priors from high-quality image and multi-view video datasets,
enabling the identity rapid-customization stage to require only a
mere 20 images and approximately 10 minutes of fine-tuning.

2.2 Diffusion Model on Face Image Generation
Denoising Diffusion Probabilistic Models (DDPM) [13] have made
significant strides in the fields of image generation. Building upon

this, a series of methods for face image generation have been de-
veloped. DiffBir [21] utilize the powerful Stable Diffusion model as
a prior, employing ControlNet to achieve facial image restoration.
DiffusionRig [5] enhances the controllability of facial synthesis
networks by integrating the FLAME model, and it improves the
fidelity of synthesized images by utilizing the high-quality FFHQ
image dataset for training. FaceX [11] enhances the Stable Diffu-
sion model by incorporating an attribute decomposition network,
enabling simultaneous processing of multiple facial editing tasks.
Leveraging the powerful image synthesis capabilities of these dif-
fusion model, we can significantly reduce the training costs and
achieve enhanced high-frequency texture details through the pro-
posed HF-ControlNet.

3 METHOD
In this section, we present our Control-Talker as shown in Figure 2.
We first describe our design of the multiple conditions control,
which encompasses a review of the 3D Morphable Face Models,
along with introductions to both the Video-Driven and Audio-
Driven (Audio2FLAME) pipelines (Section 3.1). Then, we provide
a detailed introduction to the learning process of the facial tex-
ture prior from a well-designed high frequency ControlNet (HF-
ControlNet) and the controllable facial prior from a pre-trained
diffusion model(Section 3.2). Finally, we describe the process re-
quired for identity rapid customization (Section 3.3).

3.1 Multi-Condition Control
3D Morphable Face Models. 3D Morphable Face Models are

widely used in talking head generation [25, 32, 38], image syn-
thesis [4, 5, 20] and other fields, which can be used to accurately
represent head posture, facial geometry, facial expression, etc. In
this paper, we utilize a popular 3D Morphable Model (3DMM),
FLAME [18], to precisely control aspects such as facial expressions,
poses, and identities of the head. It takes shape 𝛽 , pose 𝜃 , and ex-
pression𝜓 as inputs and outputs a full face mesh with 𝑁 vertices.
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Figure 3: The structure of the Audio2FLAME.

The FLAME-3DMM model can be expressed as follows:

𝑀 (𝛽, 𝜃,𝜓 ) : R |𝛽 |× |𝜃 |× |𝜓 | → R3𝑁 (1)

Building on FLAME, the DECA model [9] further uses Lambertian
reflectance and Spherical Harmonics (SH) lighting to represent the
appearance of the face. As shown in Figure 2, we roughly divide the
controllable parameters of the DECA model into identity(shape) 𝛽 ,
expression𝜓 , pose 𝜃 and lighting 𝜆. Therefore, through the DECA
model, we can easily realize the basic control of face 3D model by
changing pose, exp, lighting and other parameters.

Video-Driven Pipeline. Given a single source portrait 𝐼𝑠 , and
target video sequences 𝑉𝑡 = {𝐼1𝑡 , 𝐼2𝑡 , ..., 𝐼𝑁𝑡 }, we first apply DECA to
each frame of the source and target images to extract parameter
sets {𝛽 , 𝜓 , 𝜃 , 𝜆}. Subsequently, for any pair of source and target
images, we can easily manipulate facial attributes by exchanging
parameters {𝛽𝑠 ,𝜓𝑠 , 𝜃𝑠 , 𝜆𝑠 } and {𝛽𝑡 ,𝜓𝑡 , 𝜃𝑡 , 𝜆𝑡 } between them. For the
purpose of talking head generation, 𝛽𝑠 of the source image should be
preserved tomaintain the identity of source portrait. Then, the facial
parameter set {𝛽𝑠 ,𝜓𝑡 , 𝜃𝑡 , 𝜆𝑡 } is transmitted to the DECA decoder
to render the physical buffers. These physical buffers contain the
identity information of the source image, as well as the expression,
pose, and lighting details of the target image, thereby enabling
precise control over attributes in subsequent image synthesis task.
Other combined forms of the parameter set {𝛽 ,𝜓 , 𝜃 , 𝜆} can also be
implemented in this way.

Audio-Driven Pipeline. We propose an Audio2FLAMEmodel,
as shown in Figure 3, to bridge the gap between audio and video.
Unlike previous work, our model does not directly learn the map-
ping of audio to DECA expression 𝜓 and pose 𝜃 parameters, but
leverages an off-the-shelf Mesh Generator to provide rich lip syn-
chronization priors. To be specific, we first extract audio feature
through the pre-trainedWav2vec [1] model. Then, a trainable linear
layer maps the audio features to appropriate dimensions. Following
this, the pre-trained Mesh Generator [8] receives the audio features,
mesh template, and random identity as inputs and outputs the pre-
dicted complete head mesh. Here, the random identity represents
the speaking style attributes.

We employ two structurally analogous 1D convolutional blocks
to map the head mesh vertices to the expression and pose parame-
ters, respectively. To decouple facial expressions from mouth move-
ments, we retain only the lower half of the mesh points that are
relevant to mouth motion for input into the pose predictor. In ad-
dition, the audio feature mapped by Mapping layers are further
injected into the predictor through a cross-attention layer.

To mitigate potential prediction errors during the training pro-
cess, we further employ audio sequences spanning a total duration
of 2𝑇 frames, incorporating 𝑇 frames before and after the target
frame, as input to the Mesh generator. This approach yields an out-
put of head mesh vertices for the 2𝑇 frame interval. Subsequently,
these 2𝑇 frame head mesh vertices are utilized to predict the ex-
pression and pose parameters of one target frame. Furthermore,
we concurrently predict parameters for several successive frames,
represented as𝑁 , to enhance temporal stability within a batch. Tem-
poral discriminators 𝐷𝑒𝑥𝑝 and 𝐷𝑝𝑜𝑠𝑒 are also implemented follows
the structure of PatchGAN [14].

The loss function for the Audio2FLAME model comprises two
components: Reconstruction loss 𝐿𝑟𝑒𝑐 and GAN loss 𝐿𝑔𝑎𝑛 . In the fol-
lowing formulas, pose 𝜃 , and expression𝜓 parameters are uniformly
represented by the symbol 𝑐 . 𝐿𝑟𝑒𝑐 quantifies the error between the
predicted 𝑐1:𝑁𝑡 and ground truth 𝑐1:𝑁𝑡 parameters:

𝐿𝑟𝑒𝑐 =

𝑁∑︁
𝑛=1

∥𝑐𝑛𝑡 − 𝑐𝑛𝑡 ∥22, (2)

where 𝑁 is the length of consecutive frames in a training batch.
We use the temporal discriminator 𝐷𝑒𝑥𝑝 and 𝐷𝑝𝑜𝑠𝑒 to improve

the fidelity and smoothness of the predicted parameters, which are
trained jointly with the Audio2FLAME model:

𝐿𝑔𝑎𝑛 = E𝑐𝑡 [log(1 − 𝐷 (𝑐1:𝑁𝑡 ))] . (3)

The total loss of Audio2FLAME model can be expressed as follows:

𝐿𝑎𝑙𝑙 = 𝜆𝑟𝑒𝑐𝐿𝑟𝑒𝑐 + 𝜆𝑔𝑎𝑛𝐿𝑔𝑎𝑛, (4)

where 𝜆𝑟𝑒𝑐 = 100 and 𝜆𝑔𝑎𝑛 = 0.1.

3.2 Prior Learning
In the prior learning stage, a pre-trained controllable image gener-
ation model is utilized to provide robust controllable facial prior
and a well-designed high-frequency ControlNet (HF-ControlNet)
is proposed to learn facial texture prior.

3.2.1 Controllable Facial Prior. We use DiffusionRig [5] as the
base image generation model, which take surface normals, albebo,
and lamlertian render images as inputs, and then generate the
coarse results. The surface normals, albedo, and Lambertian render
images can be easily rendered using the DECA decoder through
the aforementioned Video or Audio-Driven Pipeline. Although pre-
liminary results can be obtained through the pre-trained model,
the synthesized facial images lack detailed textures, that is, over-
smoothed phenomenon (as shown in Figure 9 (a)). Consequently,
it is necessary to further incorporate a learning process for facial
texture priors to enhance the fidelity of talking head generation.
The high-frequency ControlNet is designed to address this issue.

3.2.2 Facial Texture Prior. We design theHF-ControlNet struc-
ture to introduce high-frequency texture details from the source
portrait as facial texture prior. Given a source portrait 𝐼𝑠 , we first
employ the Segmentor to segment the foreground area 𝐼𝑓 , effectively
eliminating interference from the background area. Subsequently,
we use Laplace kernel to obtain the sharpened image 𝐼𝑠ℎ𝑎𝑟𝑝 , which
includes enhanced detail texture. Then we utilize Sobel kernel to
detect the edge information in the image following the method
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Figure 4: Multi-view dataset preprocessing pipeline.

in [2], so as to obtain the high-frequency feature map 𝐼ℎ𝑓 . The
whole process can be expressed by the following two formulas:

𝐼𝑠ℎ𝑎𝑟𝑝 = 𝐼𝑓 + 𝜆(𝐼𝑓 ⊗ 𝐾𝐿), (5)

𝐼ℎ𝑓 = (𝐼𝑠ℎ𝑎𝑟𝑝 ⊗ 𝐾ℎ + 𝐼𝑠ℎ𝑎𝑟𝑝 ⊗ 𝐾𝑣) ⊙ 𝐼𝑠ℎ𝑎𝑟𝑝 , (6)
where, 𝐾𝐿 denotes the Laplacian kernel, 𝜆 represents the coefficient
governing the sharpening effect. 𝐾ℎ , 𝐾𝑣 indicate the horizontal and
vertical Sobel kernels, respectively, serving as high-pass filters. ⊗
,⊙ refer to convolution and Hadamard product.

After obtaining the high-frequency feature map 𝐼ℎ𝑓 , we design
a HF-ControlNet structure similar to the ControlNet network. This
structure receives the high-frequency feature map 𝐼ℎ𝑓 and physical
buffers as inputs to introduce high-frequency texture information
into the diffusionmodel. Please refer to the supplementarymaterials
for detailed structure.

Multi-View Dataset and Random Target Strategy. Instead of
directly using the source high-frequency map in the HF-ControlNet
training process, we propose to construct amulti-view dataset based
on the existing video dataset to avoid the gap between image re-
construction and driving tasks (as shown in Figure 4). By sampling
images from videos at equal intervals, we are able to obtain multi-
view pictures of the same individual while simultaneously reducing
the training costs for the model. When training the HF-ControlNet,
we randomly select a target high-frequency feature map to serve
as a texture supplement for the source image, achieving a mapping
between the texture and the spatial positioning of the coarse physi-
cal buffers. The detailed process for data preparation can be found
in the supplementary materials.

Loss function. We utilize the reconstruction loss to train the
proposed HF-ControlNet. Given a source image 𝐼𝑠 , a random tar-
get high-frequency feature map 𝐼ℎ𝑓 , and source physical buffers
denoted as 𝐼𝑝𝑏 , we can represent the model’s condition set as
𝐶 = {𝐼ℎ𝑓 , 𝐼𝑝𝑏 }. The denoising network can be represented as 𝑓𝜃 ,
which learns the reverse process of a Markov Chain of length 𝑇
and predicts noise at time 𝑡 : 𝜖𝑡 , where 𝑡 ∈ [1, ...,𝑇 ]. The pre-
dicted noise can be formally expressed as 𝜖𝑡 = 𝑓𝜃 (𝑥𝑡 , 𝑡,𝐶), where
𝑥𝑡 = 𝛼𝑡𝑥0 +

√︃
1 − 𝛼2𝑡 𝜖𝑡 , 𝛼𝑡 is hyperparamter, 𝜖𝑡 is noise, 𝑥0 repre-

sents the original image 𝐼 without any added noise. The training of
HF-ControlNet is then modeled as a conditional denoising process
optimized with the following objective:

𝐿 := 𝐸𝑥,𝜖∼N(0,1),𝐶,𝑡 [∥𝜀 − 𝑓𝜃 (𝑥𝑡 , 𝑡,𝐶))∥22] . (7)

3.3 Identity Rapid-Customization
At this point, our Control-Talker is equipped with controllable facial
prior and facial texture prior. The former is capable of generating
controllable coarse facial images based on the input of physical
buffers, while the latter enhances the texture details of the results
through the high-frequency feature map extracted from the source
image. To achieve the purpose of identity customization, we collect
20 images of an individual from the internet, featuring different
poses and expressions, or by sampling 20 frames directly from a
video. And then we fine-tune the U-Net part of the diffusion model,
while keeping the parameters of the HF-ControlNet frozen.

When fine-tuning the diffusion model for identity customization,
we also adhere to the Random Target Strategy to randomly select
different high-frequency feature maps as supplements to the source
images. We find that this strategy effectively prevents the model
from overfitting to fixed poses.

4 EXPERIMENTS
4.1 Implementation Details

Dataset. We select the datasets HDTF [38] and VFHQ [31] in our
training and testing processes. We randomly select 10,000 videos
from the VFHQ dataset to serve as the training data for the HF-
ControlNet. For the training of the Audio2FLAME, we randomly
choose 300 videos from the HDTF dataset. We extract the FLAME-
3DMM coefficients for each frame of the dataset videos using the
DECA model [9]. To train the AD-NeRF and DFRF methods, we
collected several videos from YouTube, each with an average length
of over 8 minutes. From these videos, we designate 3 minutes of
videos as the training dataset for AD-NeRF, while a 10-second
segment is selected as the training dataset for DFRF. We use another
two 3-minutes Obama and Biden video clips which are not included
in the training process as test set. Videos in training and testing
processes are all processed using the facial alignment method of
FFHQ [16] and then cropped to 256×256.

Evaluation Metrics. We use the cosine similarity (CSIM) [36]
of identity embdding between the source portrait and the generated
results to evaluate identity preservation. Frechet Inception Distance
(FID) [12], cumulative probability blur detection (CPBD) [23], and
Learned Perceptual Image Patch Similarity(LPIPS) [35] are used
to quantitatively measure the visual quality of the synthesized
videos. The synchrony between audio and video is estimated by the
SyncNet confidence [3]. Additionally, Average Pose Distance (AED)
and Average Expression Distance (APD) is utilized to measure the
facial motion accuracy [25].

Training Details. We initialize the U-Net part of the diffusion
model with DiffusionRig [5] model pretrained on the FFHQ dataset.
We employ Adam optimizer [17] for all experiments. The learning
rate for training Audio2FLAME is set at 1𝑒−4, while the learning
rate for HF-ControlNet is configured to 4𝑒−5. In the identity rapid-
customization stage, We fine-tune our model for 2, 000 iterations
with a batch size of 4. And the learning rate is decreased to 4𝑒−6.

4.2 Comparison
In this section, we select themost frequently used individual, Obama,
as the primary subject of the visualization, with Biden serving as
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Figure 5: Qualitative comparison with the state-of-the-art audio-driven methods. Our approach achieves optimal synthesis
results in terms of image fidelity and identity consistency, and it also exhibits the highest similarity with the source images in
terms of texture details, such as teeth and wrinkles (please zoom in for a better view).

Figure 6: Comparisons with the Subject-dependent methods
in terms of detail texture.

Table 2: Quantitative comparisons with state-of-the-art
audio-driven methods. Note that we evaluate Wav2Lip* in
the multi-driven setting, which means that Wav2Lip only
synthesizes the mouth region. We utilize the 3-min Obama
test set described in the Dataset section to conduct audio-
driven talking head generation for the same identity.

Methods FID↓ CSIM↑ LPIPS↓ CPBD↑ AED↓ Sync↑

Wav2Lip* [24] 10.64 0.936 0.031 0.217 0.841 9.339
MakeItTalk [39] 25.68 0.792 0.289 0.202 1.704 3.132
AD-NeRF [10] 22.35 0.834 0.199 0.224 0.724 5.498
DFRF [26] 21.05 0.850 0.186 0.219 0.701 6.443
Ours 19.67 0.852 0.154 0.283 0.686 6.655

an additional supplement. The experiments are conducted in the
context of audio-driven talking head generation, video-driven face
editing and self-reconstruction.

Audio-Driven Talking Head Generation. We compare our
methodwith several audio-drivenmethods, includingWav2Lip [24],
MakeItTalk [39], AD-NeRF [10], and DFRF [26]. The first two are
categorized as subject-agnostic methods, while the latter two are
considered subject-dependent methods.

As shown in Figure 5, Wav2Lip [24] is capable of achieving
high-degree lip synchronization. However, it often results synthetic
artifacts around the mouth area, leading to unclear results. Similarly,
while MakeItTalk [39] capable of predicting head poses through au-
dio, it lacks explicit control mechanisms, leading to noticeable head
jitter in the synthesized results. Our method, in contrast, produces
more realistic results with the help of the effective facial texture
prior learning. For the two NeRF-based methods, AD-NeRF [10] and
DFRF [26], we observe that AD-NeRF is constrained by the clarity
of the input video, preventing the synthesis of additional texture
details. Conversely, the DFRF method exhibits artifacts around the
head, as shown in Figure 5 Row 5, the synthesis results of Biden.
Furthermore, we conduct a comparison with SynObama [28] and
other subject-dependent methods in terms of detail texture (as
shown in Figure 6). Due to the absence of available checkpoints,
our comparison is directly with the best results showcased in Syn-
Obama’s paper. Although SynObama undergoes training on the
Obama dataset spanning 16 hours, the synthesized results still man-
ifest blurriness like other methods, particularly in the area of the
teeth (red area in the figure). In contrast, our model, owing to
the prior learning stage on the high-quality datasets, is capable of
synthesizing finer details.

We conduct quantitative comparisons on Obama test set in Ta-
ble 2. Wav2Lip solely synthesizes the mouth region of the video,
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Figure 7: Qualitative results of video-driven methods on the
task of self-reconstruction.

Figure 8: Qualitative results of video-driven face editing.
Left Column: the input source image, hf-map, and physi-
cal buffers. Row 1/3/5: the target video that provides the
attributes of expression, lighting, and pose, respectively. Row
2/4/6: generated results.

leaving the remainder identical to the target video. Consequently,
it achieves the highest scores on the identity consistency metric
(CSIM) as well as visual metrics such as FID and LPIPS. However,

Table 3: Quantitative comparisons with some representative
video-driven methods on the self-reconstruction task.

Methods FID↓ CSIM↑ LPIPS↓ CPBD↑ AED↓ APD↓

Bi-layer [34] 99.53 0.426 0.615 0.077 1.203 0.045
FOMM [27] 27.13 0.847 0.118 0.109 0.785 0.044
StyleHEAT [33] 55.67 0.653 0.202 0.038 1.445 0.061
Ours 30.07 0.864 0.165 0.154 0.761 0.026

the Wav2Lip tends to generate artifacts in the facial area, particu-
larly when performing inference at a resolution of 256x256, result-
ing in lower image clarity metric (CPBD). MakeItTalk synthesizes
videos by predicting facial keypoints from audio, which leads to
a decrease in identity consistency due to errors in keypoint pre-
diction. Moreover, it lacks the capability for explicit control over
posture and facial expressions. In contrast, our method utilizes the
FLAME-3DMM as an intermediary representation, and the identity
customization stage further ensures the preservation of identity,
thereby resulting in an enhanced identity consistencymetric (CSIM).
Moreover, through the meticulously designed Audio2FLAME, our
method circumvents the inaccuracies introduced by the prediction
of discrete facial keypoints, thus enabling more precise predictions
of expressions and poses. According to the results, AD-NeRF and
DFRF tend to reconstruct expressions and poses already present
in the training videos, which results in reduced generalizability.
Our method, however, exhibits enhanced generalizability by pre-
training on large-scale image and video datasets.

Video-Driven Face Editing and Self-Reconstruction. We com-
pare our method with some representative video-driven methods,
including Bi-layer [34], FOMM [27] and StyleHEAT [33]. As shown
in Figure 7 and Table 3, we can observe that although Bi-layer also
employs a segmentation network to focus on synthesizing the fore-
ground face, it fails to effectively preserve the identity from the
source image, resulting in a CSIM of only 0.426. Additionally, there
are significant artifacts at the junction between the foreground and
background, see Figure 7 Row 2. FOMM can constrain the synthe-
sized regions within the areas of motion through the predicted flow
fields, thereby achieving higher reconstruction metrics. However,
this method yields poor detail in the synthesized results, such as in
teeth area (red areas in the figure). In contrast, our model is capable
of preserving the texture from the original video by introducing
a facial texture prior. StyleHEAT generates images by performing
inversion on a pre-trained StyleGAN model. However, inaccura-
cies in the inversion method frequently result in alterations to the
subject’s identity and cause the final synthesized images to lack tex-
tural details. Our model, by contrast, preserves the high frequency
texture through HF-ControlNet while retaining the identity well.

As our model incorporates both the controllable facial prior and
facial texture prior, it is capable of editing expression and pose
by implementing straightforward modifications to the FLAME-
3DMM parameters. Furthermore, our method allows for varying
lighting renders of the same video due to the introduction of lighting
parameters in DECA, as demonstrated in the Figure 8 Row 4. This
signifies that we can produce talking head videos with controllable
expression, pose, and lighting, thereby broadening the scope of
applications.
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Figure 9: Ablation study of the HF-ControlNet in the (a) Prior
Learning Stage and (b) Identity Rapid-Customization Stage.

Figure 10: Ablation study of the Random Target Strategy.

Figure 11: Visualization of the influence of different high
frequency threshold.

4.3 Ablation study
We perform ablation studies to verify the effectiveness of several
important designs in our method.

Effect of HF-ControlNet. In the prior learning stage, we ran-
domly generate results without fixed identities for comparison. As
shown in Figure 9 (a), results without utilizing HF-ControlNet (di-
rectly sampling from DiffusionRig) generally lack texture details,
exhibiting over-smoothed surfaces. Our HF-ControlNet enhances
the texture consistency by extracting high-frequency feature map

Table 4: Ablation study on the effect of the HF-ControlNet
and Random Target Strategy.

Methods FID↓ CPBD↑ LPIPS↓ APD↓ AED↓

Control-Talker 32.12 0.303 0.186 0.029 0.810
w/o Random Target 33.36 0.440 0.372 0.137 1.650
w/o HF-ControlNet 38.43 0.221 0.141 0.027 0.648

Table 5: Influence of different dataset sizes on Identity Rapid-
Customization.We finally choose 20 as the size of the specific
person dataset.

Dataset Size FID↓ CSIM↑ CPBD↑ LPIPS↓ APD↓ AED↓

5 frames 34.42 0.830 0.250 0.239 0.034 0.837
10 frames 34.49 0.831 0.259 0.190 0.031 0.738
20 frames 32.12 0.835 0.303 0.186 0.029 0.810
40 frames 32.25 0.824 0.262 0.214 0.036 0.765

from the source image, effectively preserving details such as wrin-
kles and teeth. After the identity rapid-customization stage shown
in Figure 9 (b), our proposed HF-ControlNet still manages to cap-
ture more texture details from the Obama image, such as wrinkles
and hairline, resulting in higher CPBD and FID scores. And our
model demonstrates face editing capabilities consistent with the
original DiffusionRig (w/o HF-ControlNet).

Effect of Random Target Strategy. We prevent the overfitting
problem illustrated in Figure 10 by randomly selecting a target high-
frequency feature map in a video during training. This strategy
ensures textures can adapt to diverse poses, expressions, and light-
ing conditions, enhancing the model’s controllability, as indicated
by the AED and APD metrics in the Table 4.

Influence of DifferentHigh Frequency Threshold. Wedemon-
strate the influence of high-frequency feature maps by setting vari-
ous thresholds during the inference process. As shown in Figure 11,
the content in the high-frequency feature maps correspondingly
decreases with the increase of the high-frequency threshold. As a
result, we ultimately selected a threshold of 10 to achieve better
texture preservation.

5 CONCLUSION
In this paper, we propose a two-stage talking head generation
method called Control-Talker for the identity rapid customiza-
tion and multi-condition control. We leverage a diffusion model
pre-trained on a high-quality image dataset to provide the control-
lable facial prior and design a high frequency ControlNet to learn
the facial texture prior. Then, through a few fine-tuning steps, we
achieve rapid customization of specific individual. Furthermore, we
also design a unified driving method for multiple conditions, which
enables the control of expression, pose, and lighting based on video
and audio inputs. Experiments demonstrate the superiority of our
method in terms of training costs, synthesis quality, and identity
preservation.
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