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A APPENDIX
In this supplement, we offer a detailed description of some imple-
mentation details of the proposed Control-Talker in Section A.1,
and we also provide additional results in Section A.2.

A.1 Implementation Details
Model Architecture. The detailed architecture of the proposed

Control-Talker is shown in Figure 1. And the configurations for
training HF-ControlNet are presented in Table 1. As discussed in
our main paper, we initialize the U-Net part of the diffusion model
with DiffusionRig [1] model pretrained on the FFHQ dataset and we
employ a structure akin to ControlNet [4] for the extraction of high-
frequency texture features. Specifically, the HF-ControlNet initially
employs the Input Hint Block shown in Figure 1 (c), to perform
feature extraction on the concatenated input 𝐶 = {𝐼ℎ𝑓 , 𝐼𝑝𝑏 }, where
𝐼ℎ𝑓 represents the high-frequency feature map and 𝐼𝑝𝑏 denotes the
combination of physical buffers. Subsequently, we employ a struc-
ture identical to that of the DiffusionRig Encoder for the ControlNet
to ensure better feature integration. Finally, similar to the struc-
ture in ControlNet, we preserve the capabilities of the DiffusionRig
model through the implementation of zero convolution.

Video Inference. During the video inference phase, we do not
employ the Random Target Strategy which is used in the training
process. Instead, we directly extracted the high-frequency feature
map from the source image to serve as a supplement for textures
in the video synthesis process. In addition, we perform inference
with Denoising Diffusion Implicit Model-based (DDIM) [2] iterative
denoising steps. The length of the denoising step T is set as 20.

Dataset Processing. We train ourHF-ControlNet on the VFHQ
dataset [3], which consists of 15,204 training videos and 50 test
videos. This dataset is commonly used for video super-resolution
tasks. In this paper, we obtain approximately 210k frames of dataset
through the construction method of the multi-view dataset pro-
posed in the main paper, including 10,000 identities. We present an
example of the results obtained from processing the VFHQ video
dataset, as shown in Figure 5, where a multi-view dataset com-
prising 20 frames is extracted from a video of approximately 200
frames. Specifically, the multi-view dataset includes aligned im-
ages, high frequency feature maps, masks, albedo, surface normals,
and lambertian rendered images. HDTF dataset [5] comprises 396
videos with a total duration of approximately 16 hours. We ran-
domly selected 300 of these to serve as the training dataset for our
Audio2FLAME model.

Personal Dataset Collection. As discussed in our main paper,
we identify two methods for collecting a personal dataset for a
specific individual. These methods can be categorized into extract-
ing images with different poses and expressions from a video, or
collecting and downloading images from the Internet. We utilize
the dataset depicted in Figure 2 to train a model on the identity of
Barack Obama. It is observed that personalized images obtained

Table 1: Training and fine-tuning configurations of the pro-
posed two-stage model Control-Talker.

Stage 1 Stage 2

Image Size 256
Optimizer Adam
Diffusion Steps 1000
Channels 128
Channels Multiple 1,1,2,2,4,4
Attention Resolution 16
High Frequency Threshold 10
Batch Size 64 4
Iterations 50k 2k
Learning Rate 4 × 10−5 4 × 10−6
Dataset Size 210k frames 20 frames
Device 4 A40 1 A40

from videos exhibit superior identity consistency, offering diverse
expressions and poses within the same scene. Conversely, images
collected from the Internet demonstrate greater variability, encom-
passing a broader range of lighting conditions and more extensive
pose variations. Therefore, we can flexibly choose these two meth-
ods for data collection according to different application scenarios.

A.2 Additional Results
Supplementary Video. We provide a supplementary video that

includes the following content:

• Results of the audio-driven talking head generation.
• Results of the video-driven face editing and self-reconstruction.

Please refer to the ’.mp4’ file in the supplementary materials.

Multi-Condition Face Editing. Our proposed model, Control-
Talker, can achieve multi-condition facial editing by manipulating
parameters such as expressions, poses, and lighting conditions
within the parameter sets {𝛽 , 𝜓 , 𝜃 , 𝜆}. As shown in Figure 3, we
achieve the synthesis of talking head videos under varying lighting
conditions by manipulating 𝜆. Therefore, we can readily achieve
control over the lighting in talking head videos to accommodate
various application scenarios.

Furthermore, we attempt to use different driving videos to indi-
vidually provide the parameters𝜓 , 𝜃 , and 𝜆, for random combina-
tions of expressions, poses, and lighting conditions. As illustrated
in Figure 4, the videos in the first row provide the information for
expressions, those in the second row for poses, and the images on
the left side for lighting. The synthetic results successfully achieve
a combination of multiple conditions while ensuring identity con-
sistency and preserving the textural details of the source image.
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Figure 1: Detailed architecture of the proposed Control-Talker. ’k3p1’ denotes a convolutional kernel with a kernel size of 3
and padding of 1.
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Figure 2: Examples of personal dataset collections.

Figure 3: Examples of Mulit-Condition Control 1: Light + Exp & Pose.
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Figure 4: Examples of Mulit-Condition Control 2: Light + Exp + Pose.
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Figure 5: Examples of multi-view dataset preprocessing results.
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