APPENDIX

A VISUAL PRESENTATION OF PREDICTION
RESULTS

The visualization results for the other datasets are shown below:
Figurel demonstrates PastNet’s proficiency in the KTH pedestrian
motion dataset, accurately predicting future pedestrian trajectories;
Finally, Figure2 illustrates PastNet’s capability in predicting the
systematic evolution of physical dynamics datasets such as RDS,
EDPS, and FS.
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Figure 1: Example of prediction results on the KTH dataset.
Top: input Pedestrian movement sequence; Middle: future

real Pedestrian movement sequence; Bottom: PastNet pre-
dicted Pedestrian movement sequence.
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Figure 2: Examples of prediction results on the Reaction
Diffusion System, Elastic Double Pendulum System and Fire
System datasets; two input frames predict two output frames;
from left to right, the input sequence, the target sequence
and the PastNet prediction sequence.

B DESCRIPTION OF THE DETAILS OF THE
PDE EQUATIONS

B.1 2D Navier-Stokes Equations

This paper considers the 2D Navier-Stokes equations for a viscous,
incompressible fluid with vorticity in the form of a curl on the unit
torus.

orw(x,t) +u(x,t) - Vw(x, t) = vAw(x, t) + f(x) x € (0, 1)2,t € (0,T]
x € (0,1)%¢te[0,T]
x € (0,1)?

V-u(x,t) =0,

w(x,0) = wo(x),

1

In this context, u € C([0, T];err((o, 1)2;R?)) for any r > 0 is
the velocity field, w = Vxu is the vorticity, wy € LIZJ orper((0,1)%;R)
is the initial vorticity, v € R* is the viscosity coefficient, and f €
lejer((O, 1)%;R) is the forcing function. The time evolution of the
equation is visualized in Figure 3.
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Figure 3: This visualization concerns the time evolution of
data generated by the 2D Navier-Stokes equations.

B.2 2D Shallow-Water Equations

The Navier-Stokes equations are the fundamental equations that
describe viscous flow in fluid mechanics. The shallow water equa-
tions can be derived from the Navier-Stokes equations and are used
to model free-surface flow problems. In two dimensions, these equa-
tions can be expressed as a system of hyperbolic partial differential
equations.
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Figure 4: This visualization concerns the time evolution of
data generated by the 2D shallow water equations.

th+dxhu+9dyhv = 0 (2)
1
8thu + 0y (uzh + Egrhz) = —grhaxb (3)
2, 1 09
dtho + 9y [v°h + Egrh = —grhoyb (4)

In the shallow water equations, which are used to model free-
surface flow problems, u and v represent the horizontal and vertical
velocities, h represents the water depth, and b describes the spatial
variation of the depth. The terms hu and hv can be interpreted
as the directional momentum components, and g represents the
acceleration due to gravity.

The benchmark for the shallow water equation problem pre-
sented in Subsection ?? includes a specific simulation of a two-
dimensional radial dam-breaking scheme. The simulation takes
place on a square domain Q = [-2.5, 2.5]2, where the initial water
height is represented by a circular bulge at the center of the domain.

2.0, forr<+x%+y?
h(t=0,x,y) = —— (5)
1.0, forr>+/x*+y

The time evolution of the equation is visualized in Figure 4.
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