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A Further Related Works

Unpaired Multimodal Learning. Unpaired data has long been used for image-to-image [60, 30, 1,
47] and text-to-text translation [24] . More recently, several works have also proposed learning from
unpaired data by inferring coarse- or fine-grained alignments through distribution matching or optimal
transport objectives [55, 7, 46]. In contrast, we leverage unpaired data for learning representations
without the need for explicit or inferred alignment. [53, 52] theoretically analyze the problem
of identifying shared latent components and causal structures in unaligned multimodal mixtures.
Most closely related to our work is [28], which leverages coarse-grained text data such as class
names to improve image classification on CLIP using a shared linear head. Another related line of
works [44, 42, 35, 12] leverage prompting templates and pretrained LLMs to generate descriptive class
captions, showing improved image classification performance with CLIP. Nonetheless, these methods
operate on CLIP with pre-aligned representation spaces, whereas our approach also learns from
unpaired data without assuming prior alignment. Several works have also proposed learning large
multitask multimodal models with joint encoders and unified embedding spaces [51, 50, 59, 14, 13],
often using joint training over separate tasks and/or masked prediction objectives. In a similar vein,
[5] uses a stage-wise training strategy with both unpaired and paired data, and [16] trains a single
model across visual modalities. However, most of these methods rely on some amount of paired data
for preliminary alignment and then leverage abundant modality-specific unpaired data for further
improvement. In contrast, our approach demonstrates that a model can implicitly learn cross-modal
correlations from purely unpaired data, without requiring explicit alignment as a prerequisite.

Multimodal Representation Alignment. Our method relies on the notion of shared information
and structure between unaligned modalities. Closely related to this are works demonstrating that
unimodal representations trained without multimodal data are nevertheless converging. [19] presents
evidence that better-performing language models exhibit increased alignment to self-supervised
vision models. Similarly, [34] shows a latent space alignment between vision and text encoders
across backbones and training paradigms, and uses the CKA metric to connect unaligned encoders
zero-shot. Earlier works also note alignment between models trained with different datasets and
modalities [38, 40]. Several works have also shown that a linear projection or MLP is sufficient to
stitch together the latent spaces of pretrained vision and language models [36, 29, 22]. [57] extends
this to training a text encoder to align to a frozen pretrained image model; this method was in turn
used to integrate DINOv2, a large self-supervised vision model, with a text encoder [21].

B Supplementary Experimental Details and Assets Disclosure

B.1 Assets

We do not introduce new data in the course of this work. Instead, we use publicly available widely
used image datasets for the purposes of benchmarking and comparison.

B.2 Hardware and setup

Each experiment was conducted on 1 NVIDIA Tesla V100 GPUs, each with 32GB of accelerator
RAM. The CPUs used were Intel Xeon E5-2698 v4 processors with 20 cores and 384GB of RAM.
All experiments were implemented using the PyTorch deep learning framework.

B.3 Datasets

B.3.1 Image Classification Benchmarks

We evaluate on the following widely-used classification benchmarks: ImageNet [8], StanfordCars [23],
UCF101 [49], Caltech101 [11], Oxford Flowers [39], SUN397 [56], DTD [6], FGVCAircraft [33],
OxfordPets [41], and Food101 [4]. More details about the dataset and splits is provided in Table 2.

B.3.2 Constructing text templates

To construct conceptually related yet unpaired text data, we generate text templates that capture
varying granularities of information about the dataset. Our first approach (Vanilla) uses the straight-

11



Table 2: Detailed statistics of the 10 datasets for image classification.

Dataset Classes Train Val Test
Caltech101 [11] 100 4,128 1,649 2,465
OxfordPets [41] 37 2,944 736 3,669
StanfordCars [23] 196 6,509 1,635 8,041
Oxford Flowers [39] 102 4,093 1,633 2,463
Food101 [4] 101 50,500 20,200 30,300
FGVCAircraft [33] 100 3,334 3,333 3,333
SUN397 [56] 397 15,880 3,970 19,850
DTD [6] 47 2,820 1,128 1,692
UCF101 [49] 101 7,639 1,898 3,783
ImageNet [8] 1,000 1.28M N/A 50,000

415 forward template ‘‘a photo of a {}’’ with a natural language label for each category, resulting
416 in a basic text description for each class. However, this simple textual corpus lacks fine-grained
417 information necessary to distinguish between visually similar subcategories or to resolve contextually
418 ambiguous terms. To address this, for the second template, we draw from the extensive literature on
419 improving text prompts for zero-shot classification in CLIP [12, 35, 42, 44]. Specifically, for the
420 second approach (GPT-3 Descriptions), we adopt the text prompt generation strategy developed
421 by Pratt et al. [42], using large language models such as GPT-3 to generate diverse and contextually
422 rich prompts for each image category. We use three generic hand-written sentences across the datasets:
423

424 Describe what a/the {} looks like:
425 Describe a/the {} :
426 What are the identifying characteristics of a/the {}7

427 The blank portion of each template is populated with the category name, along with the category type
428 for specialized datasets (e.g., “pet” + {} for Oxford Pets or “aircraft” + {} for FGVC Aircraft). The
429 type specification is important for disambiguating categories with multiple interpretations. Some
430 examples of these descriptions are provided in Table 3 for the Oxford Pets dataset.

Table 3: Sample text descriptions per class for Oxford Pets dataset

Class Examples

Wheaten Terrier A wheaten terrier is a small, shaggy dog with a soft, silky coat.
A wheaten terrier has a soft, wheat-colored coat that is low-shedding and hypoallergenic.
The wheaten terrier is a medium-sized, hypoallergenic dog breed.
A pet Wheaten Terrier usually has an intelligent expression and a soft, wheat-colored coat.

Great Pyrenees A great pyrenees is a large, white, shaggy-coated dog.
A Great Pyrenees is a large, fluffy dog with a calm, gentle disposition.
The great pyrenees was originally bred to protect livestock from predators.
Great Pyrenees are known for being very large, white dogs with thick fur.

Sphynx A pet Sphynx typically has a small, wrinkled head and a hairless body.
A Sphynx is a hairless cat breed known for its soft, warm skin.
A Sphynx often displays large ears, pronounced cheekbones, and no fur.
Sphynx are unique cats characterized by their lack of coat and wrinkled skin.

Birman A Birman is a long-haired, color-pointed cat with a “mask” of darker fur on its face.
A Birman has silky, pale cream to ivory fur with deep seal- or lilac-colored points.
Birman cats possess striking blue eyes and contrasting white “gloves” on their paws.
They are known for being gentle, affectionate, and smooth-coated companions.

Pomeranian A Pomeranian is a small, fluffy dog with a thick double coat.
Pomeranians are toy-sized, alert dogs with fox-like faces and plumed tails.
A pet Pomeranian often comes in orange, black, white, or mixed coat colors.
They are lively, outgoing, and known for their bold, friendly personalities.

12
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B.3.3 ImageNet-ESC Dataset

Experimental Setup. We extend our results beyond vision and language to an audiovisual-language
dataset: the ImageNet-ESC benchmark [28]. This benchmark combines ImageNet (1000 object cate-
gories) and ESC-50 (50 environmental sound classes) by matching classes that logically correspond.
For example, the dog (barking) class from ESC-50 aligns with various dog breeds from ImageNet,
while the clock-alarm sound maps to both analog clock and digital clock. This alignment captures
the relationship between visual objects, their sounds, and their textual descriptions. The benchmark
consists of two versions: 1) ImageNet-ESC-27: A broader set including loosely matched visual-audio
pairs (e.g., drinking-sipping to water bottle); 2) ImageNet-ESC-19: A more precise subset containing
only accurate visual-audio matches.

B.4 Training Protocol

B.4.1 Image Classification using Image and Unpaired Texts

For text, we use OpenLLaMA-3B as our default encoder and ablate against BERT-Large, RoBERTa-
Large, GPT-2 Large, and the pre-aligned CLIP text encoder, keeping the text encoder frozen. For
images, our main backbone is ViT-S/14 DINOv2, with ablations across other DINOv2 variants and
the CLIP vision encoder. In the linear-probe setting, all encoder weights stay fixed and we train only
a single linear classification head; in full fine-tuning, we jointly update the image backbone and that
head, while still freezing the text encoder.

We optimize cross-entropy loss via AdamW [31] and perform an extensive grid search over learning
rate, weight decay, cosine learning rate scheduling with linear warmup, dropout, and a learnable,
modality-specific scaling on the logits. The results are reported for the best-performing model on
the validation dataset. We report results for the model achieving highest validation accuracy; the full
hyperparameter ranges are in Table 4.

For full fine-tuning, we jointly update the image backbone and classification head with a fixed
learning rate of 5 x 10~°, batch size 64, and omit learnable modality-specific scaling, since it showed
no benefit in this setting.

Table 4: Hyperparameter grid for linear probing.

Hyperparameter Values
Optimizer adamw
Learning rate {0.001, 1e-4}
Weight decay {0.0, 0.01, 0.001}
LR scheduler cosine
Batch size {8, 32}

Max iterations 12,800
Warmup iterations 50

Warmup type linear
Warmup min LR le-5

Dropout {0.0}
Modality-specific learnable scaling  {False, True}
Early-stop patience 10

B.4.2 Evaluation on ImageNet-ESC

Similar to our vision-language experiments, we perform few-shot evaluation using the 5-fold splits
defined in the benchmark. Each fold contains 8 samples per class, with one fold used for training
and validation and the remaining four for testing. We repeat the process over 5 random splits and
report the average performance. For audio encoding, we use AudioCLIP with an ES-ResNeXT
backbone [17]. AudioCLIP is pretrained on AudioSet and generates audio embeddings in the same
representation space as CLIP. Following the instructions in [17, 28], we use train () mode in Pytorch
to extract the features since eval () mode yields suboptimal embeddings. We evaluate our models on
two tasks—audio classification and image classification—comparing the unimodal baseline against
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two multimodal variants in which the primary modality is each time augmented by one of the other
modalities.

B.4.3 Transfer Learning from Language to Vision

To adapt a language model to image classification, we embed image patches using a linear projection
and add positional encodings to capture spatial structure. We then use transformer layers initialized
from pretrained BERT, and finally, a 2-layer MLP classification head. Specifically, we split each
image of size 224 x 224 into patches of size 16 x 16 with 196 patch tokens. Each patch is then
projected into the model’s embedding space of dimension d(e.g. d=768 for GPT-2, d = 1024
for BERT) via a learned linear layer. We then prepend a learnable “[CLS]” token, add learned
positional embeddings of shape (N + 1) x d, and apply dropout with probability p = 0.1. This
(N +1) x d sequence is passed into the pretrained transformer stack (either GPT-2 or BERT), using a
full bidirectional attention mask over all patch tokens and the CLS token. We extract the final hidden
state corresponding to the CLS token and feed it through a two-layer MLP classification head.

During training, we evaluate two scenarios: 1) one where the pretrained backbone is frozen and only
the patch embedding and linear head are trained, and 2) another where the backbone is initially frozen
to align the trainable layers (patch embedding and head) with the pretrained language backbone, and
then unfrozen after 2000 steps for end-to-end training. This approach allows us to test whether the
semantic richness captured by language models provides a strong initialization, leading to better
convergence and performance compared to training ViT from scratch.

C Proofs of Theoretical Results

In this section, we present complete derivations and proofs of the main theoretical claims. Ap-
pendix C.1 gathers all definitions and background required for our arguments. Appendix C.2
formalizes the linear data-generating model, derives closed-form maximum-likelihood estimators for
each modality and their joint estimator, and computes the corresponding block-wise Fisher informa-
tion. Finally, Appendix C.3 provides the detailed proofs of our variance-reduction claims, showing
rigorously how unpaired multimodal estimation strictly lowers estimator variance.

C.1 Background and Definitions

In this section we revisit the mathematical definitions used in our theoretical analysis, including
matrix-orderings, characterization of symmetric matrices and Fisher information.

Definition 1 (Positive Semidefinite Matrix). A real symmetric matrix A € R4*? is positive semidefi-
nite if for all vectors v € R%, vT Av > 0. Equivalently, all eigenvalues of A are nonnegative. We
denote the set of all d x d symmetric, positive-semidefinite matrices as SZ,,.

Definition 2 (Positive Definite Matrix). A real symmetric matrix A € R?*? is positive definite if
for every nonzero v € R%, v " Av > 0. Equivalently, all eigenvalues of A are strictly positive. We
denote the set of all d x d symmetric, positive definite matrices as SZ,.

Definition 3 (Loewner Order). For two real symmetric matrices A, B € R*4 we write A <

B <= B — Ais positive semidefinite and A < B <= B — A is positive definite. This defines
a partial order on the cone of symmetric matrices.

Definition 4 (Fisher Information Matrix). Given a parametric family of densities p(x; @) on data z,
the Fisher information matrix at parameter 6 is

1(0) = Eqmp(0)[Vologp(;0) Vg logp(a;0) ]
Equivalently, for regular models, I(6) = —E[V3logp(;6)].
C.2 Maximum Likelihood Estimators and Fisher Contributions

In this section we revisit our linear data—generating model, introduce notations for the X—only,
Y —only and joint likelihoods, derive the closed-form MLEs 0 x, 6y and 6x y-, and formalize their
information contributions towards estimating the ground truth parameters 6 = [0, 0., 0,] .
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Data Generating Process. Recall our linear data-generating process: Assume that all factors of
variation in reality live in a single d-dimensional space Z* = # € R? modeled using a linear
data-generating pipeline. This parameter can further be decomposed as 6 = [0, 0., Oy]T where
0, € Rée 9, € Rdw,ﬂy € R% and d. + d, + d, = d. Here, 0. captures the common (shared)
parameters that affect both modalities, 6, denotes the parameters that only affect modality X, and
6, denotes the parameters that only affect modality Y. We observe two independent datasets, one

from each modality { X;}¥, € R™ and {Y; } 1 € R™, each reflecting partial measurements of the
ground truth latent space Z*:

X; = Acife + Apibs + ex, ex,i ~N(0,021,,) (1
Yj = Bejbe + By;0y + evy, ey ~N(0, oyly,). @

Here, A.;, Ay i, Be j, By, ; are known design blocks capturing how each sample probes the latent
factors and €X,i-€Y,; represent the independent measurement noise.

In our linear setting, estimating the true latent state 6—and hence the underlying reality Z*—is
governed by the Fisher information matrix 1(f) = —E[V3 ¢(6)], which measures how sharply the
likelihood “curves” around the true 6. High curvature along a particular axis means the data tightly
constrain that component, driving down estimator variance there.

Unimodal Estimators. We first estimate 6 using only the X —dataset. Stacking {X z}iv:ﬁ yields a
design matrix A with block rows [A. ;, A, i, 0]. The least-squares solution

N
§X = argmginZHXi —Acibe— Ay, ngQ

i=1
omits ¢, entirely. Consequently, the Fisher information on 6, vanishes, making it unidentifiable.
Analogously, stacking {Y]}j\[:“1 defines B with block rows [B, ;, 0, By ;| and yields
Ny
gy = argmeinj;HYj — B j0.— By 9y||2.

This estimator doesn’t depend on 6, providing zero coverage for that component. Thus, each
unimodal estimator entirely fails to recover the parameters exclusive to the omitted modality.

Multimodal Estimators. Despite the lack of one-to-one pairing, both {X;} and {Y}} share the
common parameters .. Since the two distributions are independent, the joint likelihood factorizes as

N, Ny
[Io(Xi16c,6.) x []p(Y; | 6e.6y).
i=1 j=1

Maximizing this yields the combined estimator

N’_'-/
ny—arg min {ZHX Apife— Ay 0] + Z|5@-Bc,jec_3y,j9y||2}.

0c,04,0 Y =1

Intuitively, there is no requirement to match up individual (X, Y;) pairs. Instead, the estimate for 6,
is improved by both modalities while remaining unpaired.

Fisher Information. In our linear model, each dataset contributes block-structured Fisher information.
For the X —dataset:

Iy =Y [ AlLA AlA. o,
i=1 0 0 0
and for the Y —dataset:
Ny

B!;B.; 0 B![;By;
0 0 0
BJJBCJ 0 B;jByJ

~
h-<
I
.
Il
o
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Because X and Y samples are independent, their curvature contributions add pointwise, resulting in
the joint Fisher information being simply the sum of the unimodal blocks.

Zi ALAW- +Zj B;':ij- * *
Ixy =Ix+1Iy = * D A;:r,iAI,i 0 ,
* 0 Zj B;jBy,j

9

where “x” denotes the cross-modal blocks. In particular, we have the shared-parameter block as
N Ny
(Ixy)o.0. = > AliAci+Y BB,
i=1 j=1

C.3 Theorems and Proofs

The aim of this section is to detail the proofs of the theoretical results presented in the main manuscript
The key theoretical tools driving our analysis are already prepared in Appendix C.1 and Appendix C.2.
Core to our theoretical analysis are a few lemmas around the Loewner-order monotonicity result for
inverses that we prove below.

Lemma 1 (Loewner Order reversal for inverses). Let M, N € S‘io with M < N (or M < N). Then
N ' <M(orN"V <M1,

Proof. Since N > 0, N~/ exists and is nonsingular. Define C' := N~1/2MN~1/2 < I. Because
a congruence with an invertible matrix preserves positive-definiteness, C' = 0; hence C ! is well
defined and C~! = [ (the scalar map x — z~ " is strictly decreasing on (0,c)). Undoing the
congruence gives

M t=N"'2CIN"V2 o NTUVZINTV2 = N7 O

Lemma 2 (Inverse—monotonicity of the Moore—Penrose pseudoinverse). Let M, N € Sdzo satisfy
M < N andker M = ker N =: K. Then their pseudoinverses obey NT < M7,

Proof. Set S := K and let P := Pg be the orthogonal projector onto S. Because M and N vanish
on K, we have the decompositions M = PM P and N = PN P. Restricted to .S both matrices are
positive—definite: ~ 3 _ ~ }
M := PMP, N:=PNPecSims M<N.
Apply Lemma 1 to M, N to obtain N~! < M~ on S. The Moore—Penrose pseudoinverse equals
the ordinary inverse on S and is zero on K:
Mt =pPM~'P, NT=PN7'P.
Therefore Nt = PN~'P < PM~'P = M*. O

Lemma 3 (Directional Loewner Order reversal). Let M, N € Sio with M < N. If a non-zero
vector v satisfies v' Mv < v" Nv, then

1. For the vector v, it holds that v' M~Yv > o' N~Yv, with strict inequality oMty >
v" N~ if and only if (N — M)M v # 0.

2. There exists a non-zero vector u € R% such that u' M~ Yu > u' N~ tu.

Proof. Denote the Loewner gap A := N — M > 0. Then, the assumption v" Nv > v Mu is
equivalent to v Av > 0. Introduce the congruence—invariant normalisation C' := M ~Y/2AM~1/2 -
0. Now, using A = MY/2C'M*'/? and properties of inverse,

N = MY*(I+C)MY?, Nt = M~ Y214+ 0) T2,
since I + C = 0 (because C > 0 and I > 0). Thus,

M1 _N"l= M—1/2[I —(I+ (J)—l}M—l/2
=M7\Po(I+ )M,
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because (I — (I + C)~1)(I + C) = C. Finally, evaluating in the direction v, we have
o' (ML= N"Yo =0T MTV2(1 4+ )M
=u' (I+C)"'Cu (where u = M~/%)
Now, since (I +C)~! € Sy ¢ and C € Sy, commute, the matrix (I +C)~1C is positive semidefinite
and it has exactly the same kernel as C. Thus, if C' = Q diag()\;)Q " (\; > 0), we have

g
14+ X\

w'C(I+C) u= Z

i

(Qw)? > 0.

This expression is strictly positive exactly when u has a component in any eigen-subspace with
Ai > 0i.e when u & ker(C). Since M1/2 € S.,Cu=0 = M YV2AM Y2y =0 =
AM 'y = 0. Thus, this expression is strictly positive if AM ~1v # 0.

Now, from the premise v" Av > 0, it follows that A # 0. Since M = 0, M ~1/2 i5 invertible, C
is also not the zero matrix. Since C' > 0, this means that C' must have at least one strictly positive
eigenvalue. Let A > 0 be such an eigenvalue, and let z # 0 be a corresponding eigenvector. Define,
x = MY22 #0. Thus, we have 2" (M~' = N~ = TC(I+C) 'z = |2 > 0, showing
the existence of a non-zero vector x such that z' M 'z > 2" N~ 'z.

iz

O

Theorem 1. Let Ox,0y be the least-squares estimators for 0 using only {X;} and only {Y;} and
let éX7y be the joint estimator using both unpaired datasets. Then, under the assumption that
at least one B, ; where j € {1,2,...Ny} has full rank, the common-factor covariance satisfies
0,.0. Var(eX)ac,ec’
information on 0, strictly increases when combining both modalities, despite not having sample-wise
pairing:([x + Iy)gmgc - (Ix)gmgc.

the strict Loewner ordering i.e. Var(éxy) or equivalently, the Fisher

Proof. For any statistic S(0) = Vy log p(x; 0) and vector v,
v I(0)v=v"E[S(0)S®) ]v=E[(v"S(6))*] > 0.
Thus, a Fisher Information Matrix is a positive semidefinite matrix.

In our linear-Gaussian model, the X—dataset contributes (Ix)g,9, = vaz’l Al A and the
Y —dataset gives (Iy)g, 0, = Z;V:yl B! B, ;. Since at least one B ; has full column rank, (y ), o,
is positive-definite on the ¢, subspace. Now, if at least one B, ; € R™*de has full column rank d.,
then for any v € R4 \ {0},
TRT 2
v B, ;jBcjv= | Be,;v]|” > 0.

Hence, each summand in (Iy )g, ¢, is positive semidefinite and at least one is positive definite, so
their sum ) j BZj B, ; is positive definite on the 6. subspace. Thus,

\(Ix)ec,ec =< (Ix)o.0. + (Iy)o.0. = (Ix + Iy )e, 0,

Now, for regular exponential families (including Gaussian linear models), the covariance matrix of
the maximum likelihood estimator 6 near the true 6 is (asymptotically) the inverse of the Fisher
information matrix i.e. Var(f) ~ I(f)~!. Precisely, as the sample size n — oo, we have:

Vil — 00) % N(0,1(60)71),

where 6 is the true parameter value, 1(f) is the Fisher Information Matrix evaluated at 6y and
N(0,1(6p)~") denotes a multivariate normal distribution with mean 0 and covariance matrix I(6o)~!.
Thus, we compare variances via the Moore—Penrose pseudoinverse of the information matrices.

Let Mx = (Ix)gmgc, My = (Iy)gmgc and MX7y = (IX + Iy)@mgc. Since My = 0, MX7y =
Mx + My is also positive definite (as Mx y > My > 0). Thus, Var(fxy) = M;ly We have
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established Mx < Mx y. Assuming Mx is positive definite (to define the matrix Var (é X’y) 0.0 ),

we apply Lemma 1 to get M)Zly < M)zl. Thus,

Var(fxy), , = Myy < My'=Va(fx), ,

This proves the statement under the condition that M x is positive definite. Note here that, on spaces

unidentifiable by X-alone i.e. v € ker(Mx ), we have Var(éx)e‘ g = 0. Since Mx y is positive

definite, it has finite variance along such v i.e. Var(éxy) 0. 0. < 00, thus strictly reducing the
variance of the estimator. Thus, adding the unpaired Y -modality strictly reduces the variance (or,
dually, increases the Fisher information) on the common factors 6..

O

Theorem 2. Let all notation be as in Theorem 1, and define Mx = (Ix)o, 0., My = (Iv)o..0.,
and Mxy = Mx + My. Let v € R% \ {0}. If there exists at least one index j € {1,2, ...INy } such
that B, jv # 0, then the following hold:

1. The Fisher information strictly increases in direction v i.e. v Mxyv>vl Mxv.

2. The variance of the estimator in direction v is strictly reduced i.e v’ Var(é X7y) v <

0c,0c
vl Var(éx)e o Vs if v & range(Mx). For v € range(Mx ), this strict inequality holds
for v under an additional invertibility condition and is always guaranteed for some u €

range(Mx) i.e. Jus.t. u' Var(éx,y) u<ul Var(éx)

0..0. 0,00 %

Proof. Define Mx := (Ix)g,.0,, My := (Iy)e,,, andMxy = Mx + My . By assumption, 35
such that B, jv # 0. Thus:

Ny
oI Myv =" |Beol?* > || Beol* > 0.
j=1

Hence My is positive-definite in direction v, implying Mx y > Mx in this direction:

UTMny = UTM)(’U + UTMy’U > ’UTM)(U,
thus proving the first part of the theorem.
Case 1: v ¢ Range(Mx). If v ¢ Range(Mx ), then v has a non-zero component in ker(Mx ). Let
v = vg + vk, where vg € Range(Mx) and vg € ker(Mx ) with vg # 0. The linear combination
of parameters 10, = vg 0. + v}@c. Since vi € ker(Mx), the component U;HC is not identifiable

by the X -only model. Consequently, the asymptotic variance of an unbiased estimator for v " 6, using
only the X -dataset is infinite. We denote this as v Var(fx)g, g, v = 00.

The strict inequality v Mxyv > 0, ensures that v ¢ ker(Mxy ), and thus v € Range(Mxy ).
Since v € Range(Mxy ) and v # 0, M}T(Yv is well-defined. Furthermore, because M xy is positive
semidefinite, M;(Y is also positive semidefinite and shares the same kernel as Mxy (since Mxy is

symmetric). As v # 0 and v ¢ ker(Mxy ), thus v ¢ ker(M;r(Y), which ensures UTM;L(YU is a finite
positive value. Thus,
v Var(Ox.y )a..0,v < 0.

Comparing this to the variance from the X -only model in this case:
’()Tvar(éx’y)gmgc’() < oo = ’UTVaI'(éx)gc’@CU7

and the strict inequality holds.

Case 2: v € Range(Mx). Let S := Range(Mx) and let Ps be the orthogonal projector onto S.
Because M x = Mx Ps and M xy = Mx + My, the restrictions

My := PsMxPs, Myy := PsMxy Ps = Mx + PsMy Ps
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are positive-definite on S; To see this, take any non-zero w € S. Since w € range(Mx ), Psw = w;
hence ~
w Mxw=w'Mxw > 0 (Psgis identity when restricted to .S)

Thus M x >~ 0on S. Because Pg My Pg = 0, adding it preserves positive-definiteness, so

Myxy = Mx + PsMyPs = Mx = 0 onS.

Applying Lemma 3(1) to Mx and Mxy on S gives us ’UTMXY’U < UTM v. Strlct inequality

v Myiv < v' Mx'v holds if and only if the condition C,, := ((Mxy — Mx )My v # 0) is met.
Therefore, if cond1t10n C, holds, the directional variance along this constrained space S is strictly
reduced: R ~ ~ R

v Var(Ox y)a, 0,0 =v' Mxypv <v' My'v=uv"Var(fx)g, o0

Further, from Lemma 3(2), there exists some non-zero vector u € S such thatu Myyu < u' My u.
Thus we have,

uTVar(éx,y)gmgcu < uTVaI‘(éx)gc,gcu.
Thus, completing the proof.
O

Corollary 1. Assume a direction v € R \ {0} with a = v (Ix)g,p,v > 0 and b =
T(Iy)g, 0, v > 0 where v is the common eigenvector of (Ix)e, o, and (Iy)a, .. Then the variance
in direction v contracts by the factor

v Var(fx.y)v _ 1/(a+b)  a <1
UTVaI‘(éx)’U 1/a a+b ’

So the joint estimator achieves strictly lower error along v.

Proof. Let Mx = (Ix)a, 0, and My = (Iy)s, g.. By assumption, v is a common eigenvector of
Mx and My. Thus, Mxv = Axv and Myv = Ayv for some eigenvalues Ax and Ay. From the
assumptions, we have A\x = a/|[v[|? > 0 and Ay = b/||v||* > 0. Since Mx is symmetric and

Mxv = Axv with Ax > 0, the pseudoinverse acts as M ;r(v = )\;(11). Therefore, the variance in
direction v for the X -only estimator is

v Var(0x)a, 0, v = v Miv=1v" (A50) = A5 v]]> = a Yul|*.
Since v is a common eigenvector, it is also an eigenvector of M xy = Mx + My
(MX + My)’u =Mxv+ Myv=Axv+Ayv = ()\X + )\y)’U.

The corresponding eigenvalue is Axy = Ax + Ay. Since Ax > 0 and Ay > 0, Axy > 0. Thus,
(Mx + My)™v = (Ax + Ay)~'v. The variance in direction v for the joint estimator is

v Var(fx,y)o,0.v =v" (Mx + My)Tv = (Ax + Ay) o] = (a + )7 [|v]|*.
Now, we form the ratio of these variances:

UTVaI(éX’y)gmgcv Ax _a <1
’UTVaI'(éx)gc,gC v Ax+Ay  a+b '

O

Corollary 2. Assume a direction v € R% \ {0} withv" (Ix)s.6.v = 0 and v' (Iy)e, 6. v > O.

Then v Var(§x)v = oo and v Var(fx.y)v < oo i.e. adirection unidentifiable from X alone
becomes well-posed with even unpaired data from 'Y .

'We note that true asymptotic variance defined as v' Var(0x.y)o, 0,0 = ’UTM)T(Y’U, ’UTM;(YU =

v M <yv if S is an invariant subspace of Mxy and Mxy is block-diagonal with respect to S and S+
(i.e., PsMxy Pg1 = 0, which implies PsMy Pg1 = 0).
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Proof. This corollary follows directly from Case 1 of Theorem 2. The condition v (Ix)g, 6, v = 0
for v # 0 implies v € ker((Ix)g,,0, ), and thus v & range((Ix)g, .0, ). Given the additional condition
vl (Iy)e,.0, v > 0, the conclusions of Case 1 of the theorem apply directly. O

Corollary 3 (Variance Reduction for Eigenvectors of Mx). Let v € R% \ {0} be an eigenvector of
Mx = (Ix)o. 0. with a corresponding eigenvalue Ax > 0. If the Y -dataset provides information
in this direction v (i.e., v Myv > 0, where My = (Iv)e..0.) then the variance in direction v is
strictly reduced by incorporating the Y -dataset:

UTVaI"(éX7y)9C796 v < vTVar(éX)gc,gc .

Specifically, v Var(x)g, 9,0 = A vll?

Proof. Let Mx = (Ix)..0, and My = (Iy)g, 0,. Since v is an eigenvector of M x with a positive
eigenvalue \x > 0, it follows that v € Range(Mx). Let S = Range(Mx). The variance using
only the X -dataset in direction v is given by

v Var(fx)g,.0,v = vTM;r(v.
Because v is an eigenvector of Mx with Ax > 0, M;L(U = )\;(111. Thus,
v Var(fx), 0.0 = v’ (Ax'v) = A |v]*.
This scenario falls under Case 2 of Theorem 2, specifically its conclusion regarding v € S. According

to that theorem, strict variance reduction UTVar(é XY )00,0,0 < UTVaI‘(éx)gmgc’U occurs if the

condition C,, = ((PsMy Ps)(Mx|s)~*v # 0) holds. Here, Ps is the orthogonal projector onto S,

and M |g is the restriction of Mx to S, so (Mx|s) tv = )\)_(111.

The condition C, thus becomes (PsMy Ps)(Ay'v) # 0. Since Ax > 0, this is equivalent to
PgMy Psv # 0. We are given that v " Myv > 0. Asv € S, Psv = v. Therefore, v’ Myv =
v PsMy Psv > 0. Let Ag = PsMy Pg restricted to S. Ag is a positive semidefinite operator on
S. The condition v' Agv > 0 for v € S,v # 0 implies that Agv # 0 (because if Agv = 0, then
v Agv = 0, which contradicts v Agv > 0). Thus, PgMy Psv # 0, which means the condition C,
is satisfied.

Since v € S and the condition C,, for strict inequality is met, by Theorem 2, it follows that
’UTVaI‘(éX,y)@mgc v < ’UTVaI‘(éx)gwgc v. O

Theorem 3. Define for any m, Ig(m) = Yt AlLAc and I}(,m) = Z;nzl BLBCJ. If

range (I)(/m)) Z range(I;n)), then there exists a nonzero v € R% such that vTI}(,m) v > leg(m)v.

Proof. Let Ry := range([&m)), Ry = range(lg,m)). By the assumption Ry Z Ry, choose a
vector w € Ry \ Rx. Since R4 is a finite dimensional inner product space and Rx is its finite
dimensional subspace, we can decompose w = wj| + v with w € Rx and v € Rf(. Because
w ¢ Ry, the orthogonal component v is non-zero.

(i) Term from Ig(m). From the Fundamental Theorem of Linear Algebra, for any symmetric matrix S,
ker S = range(S)L; hence R+ = ker I{"™. Thus

UTI;,m)v =0.

(ii) Term from Ii(,m). Because w € Ry = range(lg/m)), there exists u with w = IX(/m)u. Suppose, for
contradiction, that IS(,m)v = 0. Then v € ker IX(/m) = Ry, sov Lw. Butw-v=(wj+v)-v=

wy-v+[|v]|? = |[v]|? > 0 because v L wy while v 0. This contradicts v L w; therefore 18y £ 0
and, by positive semidefiniteness,

UTI§,m)v > 0.

Combining the above inequalities yields v" I > vT I{™ v, with v # 0, which is the desired
inequality. O
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D UML Algorithm Pseudocode

In this section we present the full pseudocode for UML as shown in Algorithm 1.

Algorithm 1 Pytorch Pseudocode

# f_img: image encoder (frozen or trainable)

# is_trainable: True if f_img is trainable else False
# f_text: frozen text encoder

# g: alignment network

# h: classification head

while not converged: # training loop
x_img = fetch_next(image_loader) # image minibatch
x_text = fetch_next(text_loader) # text minibatch (random/unaligned)

z_img = f_img(x_img) # image embeddings
z_text = f_text(x_text) # text embeddings

logits_img = h(z_img) * alpha_image # predict image labels
logits_text = h(z_text) * alpha_text # predict text labels

loss_img = CE(logits_img, labels_img) # image classification loss
loss_text = CE(logits_text, labels_text) # text classification loss
loss = loss_img + lambda * loss_text # total loss

loss.backward() # back-propagate
update(h, f_img) if is_trainable else update(h) # SGD update

# Define Cross-Entropy loss
def CE(logits, labels):
return -sum(labels * log_softmax(logits, dim=1)) / len(labels)

E Additional Experiments

E.1 Improving Image Classification using Unpaired Texts (Unaligned encoders)

In this section we report image-classification results on ten benchmarks (see Appendix B.3), covering
three settings:

1. Full-dataset fine-tuning: train both the vision backbone and classification head (Ap-
pendix E.1.1).

2. Full-dataset linear probe: train only the classification head (Appendix E.1.2).

3. Few-shot linear probe: train only the classification head under few-shot conditions (Ap-
pendix E.1.3).

In each setting, we compare UML with baselines across all datasets and multiple DINO-initialized
vision backbones.

E.1.1 Supervised Finetuning (across architectures)

In this section, we fine-tune both the vision backbone and the linear classifier on ten downstream
tasks, comparing UML against strong image-only baselines. We evaluate four DINO-initialized
backbones:

e ViT-B/16 in Table 5

e ViT-B/8 in Table 6

e DINOV2 ViT-S/14 in Table 7
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722
723
724
725

* DINOv2 ViT-B/14 in Table 8

Results for DINOv2 ViT-L/14 are omitted due to computational constraints. Across all backbones,
UML consistently improves over the image-only baseline by leveraging unpaired text embeddings. For
some backbones such as DINOv2 VIT-B/16, our head-initialization variant (Ours (init)) outperforms
training using unpaired multimodal data from scratch (Ours), while in others it does not.

Table 5: Full finetuning on classification with ViT-B/16 DINO and OpenLLaMA-3B. We compare
our proposed approach with the image-only baseline when fine-tuning on the target dataset. All
vision encoders are initialized from DINO weights, and our approach leverages unpaired text data
using OpenLLaMA-3B embeddings.

Dataset

%) 5 5

g 5 g z ﬁ

S 3 £ £ 2

T 5 3 5 2 = T = %

s 5 5 B B : £ : : ¢
Method 5 7 o a ! © o) S O <
Unimodal 7841 63.99 62.12 74.17 81.43 8238 92.00 9824 9631 81.01
Ours 82.56 67.04 6738 7642 8406 8179 9320 9898 97.04 83.16

Ours (init) 81.95 67.12 68.29 73.84 8431 81.12 92.60 98.73 96.84 82.76

Table 6: Full finetuning on classification with ViT-B/8 DINO and OpenLLaMA-3B. We compare
our proposed approach with the image-only baseline when fine-tuning on the target dataset. All
vision encoders are initialized from DINO weights, and our approach leverages unpaired text data
using OpenLLaMA-3B embeddings.

Dataset

%] = 5

g g i) § —

© 5 g £ 3

E g8 S S & T T 5 9

s 5 & £ 6 % £ £ = &
Method % 7 it a ! © S S O <
Unimodal 85.67 68.04 72.60 76.65 8394 8532 93.06 99.22 96.82 84.59
Ours 8795 70.28 7531 77.19 8559 84.83 93.05 9943 97.12 85.64

Ours (init) 87.44 70.03 76.09 7624 86.49 8471 93.81 99.27 97.16 85.69

Table 7: Full finetuning on classification with ViT-S/14 DINOv2 and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when fine-tuning on the target dataset.
All vision encoders are initialized from DINOv2 weights, and our approach leverages unpaired text
data using OpenLLaMA-3B embeddings.

Dataset
= 2

g & “ 5 _

@] R= ki u% P

T 5 5 S 2 3 T = %

S £ 3z £ B % £ £ 2 ¢
Method A 7 it a) ! £ o ) O >
Unimodal 79.45 6620 66.99 72.16 83.18 80.65 90.67 99.18 9545 81.54
Ours 84.87 66,72 7154 74.14 8477 81.16 91.87 99.55 97.03 83.52

Ours (init) 86.39 66.03 7344 7427 84.69 8197 091.72 99:82 97.60 83.99
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Table 8: Full finetuning on classification with ViT-B/14 DINOv2 and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when fine-tuning on the target dataset.
All vision encoders are initialized from DINOv2 weights, and our approach leverages unpaired text
data using OpenLLaMA-3B embeddings.

Dataset

5 3 5 2 3

E X < 3 3 = o = %

= o Q — — = = Q <

= 2 z &2 B T £ £ £
Method 7 7 4 a ! £ S S O <
Unimodal 89.62 7145 77.29 73.88 88.00 82.94 9455 99.88 97.69 86.14
Ours 90.93 70.97 80.02 75.83 87.52 86.25 94.74 99.88 97.57 87.08

Ours (init)  90.73  70.92 80.23 75.87 87.60 83.43 9447 9980 9793 86.77

726 [E.1.2 Linear Probing (across architectures)

727 In this section, we train only the linear classifier, on top of the frozen vision and language backbone,
728 on ten downstream tasks, comparing UML against strong image-only baselines. We evaluate five
729 DINO-initialized backbones:

730 * ViT-B/16 in Table 9
731 * ViT-B/8 in Table 10
732 * DINOvV2 ViT-S/14 in Table 11
733 * DINOv2 ViT-B/14 in Table 12
734 e DINOv2 ViT-L/14 in Table 13

735 Across all backbones, UML consistently improves over the image-only baseline by leveraging
736 unpaired text embeddings. For all backbones, our head-initialization variant (Ours (init)) outperforms
737 training using unpaired multimodal data from scratch (Ours).

Table 9: Full linear probing on classification with ViT-B/16 DINO and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when training a linear probe on the
target dataset. All vision encoders are initialized from DINO weights, and our approach leverages
unpaired text data using OpenLLaMA-3B embeddings.

Dataset

5 3 5 & 3

T 5 3 s S 3 B = %

S oz 2 g B 3 £ £ I ¢

— <
Method & 7 i a =) i 3 5 S z
Unimodal  67.10 64.63 56.02 7242 8127 7496 93.07 9832 9501 78.08
Ours 6871 65.14 5742 7295 8206 7530 93.18 98.46 96.19 78.82

Ours (init) 68.60 65.59 5798 73.11 8240 7573 93.62 9842 9635 79.09
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Table 10: Full linear probing on classification with ViT-B/8 DINO and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when training a linear probe on the
target dataset. All vision encoders are initialized from DINO weights, and our approach leverages
unpaired text data using OpenL.LaMA-3B embeddings.

Dataset

&} %’ 3 = =

o >~ — — —

é % @) S 9 E E f& 50

s 5 % & © B £ £ £ ¢z
Method 5 7 i a) ! © S o) O <
Unimodal 72.01 67.19 62.02 76.18 82.95 7857 91.99 98.78 96.23 80.66
Ours 7293 68.17 6349 7713 83.16 79.87 92.59 9850 96.47 81.37

Ours (init) 72.81 68.36 64.09 7648 83.72 80.01 9250 98.74 96.43 81.46

Table 11: Full linear probing on classification with ViT-S/14 DINOv2 and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when training a linear probe on the
target dataset. All vision encoders are initialized from DINOv2 weights, and our approach leverages
unpaired text data using OpenLLaMA-3B embeddings.

Dataset
= 2

g g “ :

S 2 £ = 2

T 5 5 S 2 3 T = %

s 5 5 B B : g2 : 3 ¢
Method % 7 = a ! © S ) O <
Unimodal 77.48 70.72 6628 7825 82.64 8439 9429 9962 97.00 83.40
Ours 7845 7153 6733 7870 83.51 84.67 9470 99.82 97.11 83.98

Ours (init) 78.58 72.24 67.50 79.51 83.57 84.74 94:78 99:89 97.15 84.22

Table 12: Full linear probing on classification with ViT-B/14 DINOv2 and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when training a linear probe on the
target dataset. All vision encoders are initialized from DINOv2 weights, and our approach leverages
unpaired text data using OpenLLaMA-3B embeddings.

Dataset
& Z

& 5 % z -

@) = E u% )

T 8 S s S =2 T 2 %

s 5 5 B B : g2 £ : ¢
Method @ 7 = ) ) e ®) ®) @) <
Unimodal 85.46 7542 7234 7973 87.26 88.70 95.56 99.76 97.81 86.89
Ours 85.40 7522 7522 80.73 87.21 89.02 9583 99.88 97.85 87.37

Ours (init) 85.74 75.70 74.17 81.32 87.26 88.78 95:78 99.88 97.93 87.40
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Table 13: Full linear probing on classification with ViT-L/14 DINOv2 and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when training a linear probe on the
target dataset. All vision encoders are initialized from DINOv2 weights, and our approach leverages
unpaired text data using OpenLLaMA-3B embeddings.

Dataset
O = 3 = 3
T 5 5 S 2 3 T = %
E £ 3z £ B ®B 2 £ £ &
Method % 7 it a ! i S S O <
Unimodal 88.16 77.26 7432 81.56 89.82 90.95 9627 99.84 97.97 88.46
Ours 8845 7720 7693 8239 90.19 91.09 9651 99.92 98.01 88.97

Ours (init) 87.99 77.75 77.20 82.51 90.17 91:29 96.32  99.92 9793 89:01
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E.1.3 Few-shot Linear Probing (across architectures)

In this section, we train only the linear classifier, on top of the frozen vision and language backbone,
for few-shot classification on ten downstream tasks, comparing UML against strong image-only
baselines. We evaluate five DINO-initialized backbones: ViT-B/16 in Table 15, ViT-B/8 in Table 14,
DINOvV2 ViT-S/14 in Table 16, DINOv2 ViT-B/14 in Table 18, DINOv2 ViT-L/14 in Table 18. Across
all backbones, UML consistently improves over the image-only baseline by leveraging unpaired text
embeddings. For all backbones, our head-initialization variant (Ours (init)) outperforms training
using unpaired multimodal data from scratch (Ours).

Table 14: Linear evaluation of frozen features on 11 fine-grained benchmarks for few-shot
learning. We compare our proposed approach with the image-only baseline by training a linear
classifier on top of frozen VIT-B/8 DINO features. Our method leverages unpaired text data using
OpenLLaMA-3B

Dataset

2 5 < z S & =2 T 3 b

g 2 g = ) 3 g < Z = g

Train Shot Method & &3 tag a =) is E IS o) 3 z
1 Unimodal 740 2637 12.16 28.62 3975 1923 4281 5497 5822 74.13 36.37
Ours 771 2801 13.56 3322 4208 21.13 4327 5585 58.61 77.51 38.10

Ours (init) 924 3423 1449 3627 47.55 2481 4675 60.09 61.59 8023 41.52

2 Unimodal 1443 37.96 2028 39.80 53.03 30.62 5475 68.12 7759 8191 47.85
Ours 1571 4074 21.04 4374 5586 33.52 5449 69.86 77.18 8452 49.67

Ours (init) 1694 45.16 22.17 4543 59.02 3589 5678 71.57 77.94 86.06 51.70

4 Unimodal 25.67 4923 2939 5252 6427 4382 61.64 7585 8741 9036 58.02
Ours 2730 5123 3143 5431 6672 4558 6151 7751 87.96 9136 59.49

Ours (init) 28.54 53.68 3131 56.13 6747 4740 62.84 79.10 8829 91.98 60.67

8 Unimodal 41.04 56.86 40.03 61.15 7239 5447 66.10 8230 9395 9228 66.06
Ours 4376 58.14 4256 63.12 73.13 5630 6636 8427 9425 9271 67.46

Ours (init) 44.16 59.80 4230 64.46 7430 57.07 67.18 84.85 9400 9324 68.14

16 Unimodal 5772 6174 52.63 67.69 7618 62.63 68.87 8731 9641 9427 7254
Ours 60.11 6321 5453 6933 78.13 6374 6944 8773 9689 9454 7376

Ours (init)  60.36  64.26 54.81 70.27 7876 64.13 70.05 8823 96.63 94.73 74.22

Table 15: Linear evaluation of frozen features on 11 fine-grained benchmarks for few-shot
learning. We compare our proposed approach with the image-only baseline by training a linear
classifier on top of frozen VIT-B/16 DINO features. Our method leverages unpaired text data using
OpenLLaMA-3B

Dataset
. -
=} < ) 3 _
© s s & =2 2
E 5 = s & £ ® ® %§ &
E 2 @ = 3 2 £ & £ 3
. S § a, 2 o S g X X < >
Train Shot Method 7] %] 53 [a} =] = = o o ] <
1 Unimodal  6.28 2243 972 2922 37.85 1540 38.67 60.12 54.62 73.25 34.76
Ours 7.89 2608 1041 3245 40.27 18.14 39.28 60.88 5832 75.66 36.94
Ours (init) 896  31.34 12.12 3422 4432 2146 4268 6639 60.37 79.74 40.16
2 Unimodal 12.64 35.64 1498 3893 51.14 26.05 50.34 70.84 75.61 83.16 4593
Ours 1438 38.62 17.00 4037 5428 29.24 50.83 72.88 77.14 8595 48.07
Ours (init)  15.99 4231 17.65 4289 56.46 32.15 5290 74.82 77.32 87.34 4998
4 Unimodal 22.60 4595 2427 5030 63.00 3851 5799 80.14 85.60 89.67 55.80
Ours 2483 48.62 2576 52.64 6439 40.74 5796 8092 8720 91.17 5742
Ours (init)  25.83 51.01 26.35 55.06 6586 42.69 5932 8223 87.83 9199 5882
8 Unimodal 37.68 5294 33.67 59.18 70.62 4948 6297 8526 92.83 93.17 63.78
Ours 39.31 5531 3556 6048 71.88 5046 63.08 8625 9323 9347 64.90
Ours (init)  40.50 57.03 35.64 6227 73.18 51.50 64.09 86.93 93.59 93.71 65.84
16 Unimodal 52.48 58.27 4534 6481 7572 56.24 6636 88.57 9590 9427 69.80
Ours 55.84 60.57 47.70 6621 7681 5826 6647 89.60 96.55 95.12 71.31

Ours (init) 5582 61.73 48.14 67.02 77.39 5876 67.08 90.53 96.62 94.98 71:81
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Table 16: Linear evaluation of frozen features on 11 fine-grained benchmarks for few-shot
learning. We compare our proposed approach with the image-only baseline by training a linear
classifier on top of frozen VIT-S/14 DINOv2 features. Our method leverages unpaired text data using
OpenLLaMA-3B

Dataset
w
o)
Z = z
o z 2 g -
O S 5] = =
e’ ~ R=] = S A~ =) = °
—
) N < S = g 2 2 S %
=) [Se) o — ] o0 el o L i~
[=} > kel 4 o < hv, = = o
. 8 5 B0 = 3] 3 = % % < >
Train Shot Method 7] N 8 a -} sa = o o ] <

Unimodal 13.18 34.15 14.09 36.60 46.74 35.18 36.48 63.51 89.62 76.66 44.62
1 Ours 1495 3725 14.88 3893 49.18 3791 3835 6892 9142 84.04 4758
Ours (init) 1649 41.79 15.63 42.04 5233 4227 42.69 7359 93.64 8452 50.50

Unimodal 24.68 47.88 23.09 47.75 56.81 4854 5041 7532 96.02 86.90 5573
2 Ours 2693 49.65 2429 5099 61.67 51.77 5131 79.44 9690 89.80 58.28
Ours (init) 28.65 53.15 24.78 5325 63.86 54.44 5421 8141 97.63 90.55 60.19

Unimodal 38.76 57.51 32.10 59.69 67.75 60.79 5873 83.89 9859 9348 65.12
4 Ours 41.69 58.87 3338 61.58 69.60 62.69 59.69 86.27 98.84 9456 66.71
Ours (init) 43.17 60.89 33.86 6243 71.13 63.88 6138 87.36 99.17 9496 67.82

Unimodal 54.56 63.00 45.05 64.78 74.19 68.06 64.53 88.68 99.27 9435 71.65
8 Ours 56.27 64.57 4598 6631 75.19 6922 65.14 89.78 99.27 9542 7271
Ours (init) 5791 65.82 4740 67.81 7599 69.71 6640 90.29 99.54 9584 73.67

Unimodal 67.96 67.35 5589 7136 7792 7324 68.14 90.73 99.63 96.43 76.22
16 Ours 69.42 6850 5854 7224 78.69 73.80 6870 91.87 99.72 96.63 77.80
Ours (init) 70.32  69.19 5874 73.17 79.58 7451 69.44 9247 99.82 96.80 78.81

Table 17: Linear evaluation of frozen features on 10 fine-grained benchmarks for few-shot
learning with DINOv2 ViT-B/14. We compare our proposed approach with the image-only baseline
by training a linear classifier on top of frozen VIT-B/14 DINOv?2 features. Our method leverages
unpaired text data using OpenLLaMA-3B

Dataset
: § A

:E 5 = = & 5§ T T 3§ 9

A o = = & 3 3 I s

g g B = S g g % % = £

Train Shot Method 7] N I &) -} = £ o o O <
1 Unimodal 2242 43.03 15.79 38.85 5857 4871 5226 7647 97.12 83.64 53.69
Ours 23.10 45.12 16.22 4269 61.05 51.30 5245 78.14 98.08 87.68 55.58
Ours (init) 2547 48.56 16.83 4531 63.53 54.16 5556 81.08 97.94 88.13 57.66
2 Unimodal 35.17 5541 2554 51.16 6949 62.13 6235 84.31 99.58 89.55 6347
Ours 37.38 5698 25.88 54.65 70.61 63.89 6321 8550 99.70 92.02 64.98
Ours (init)  38.78 59.81 26.00 55.61 7138 66.54 6506 86.49 99.62 9279 66.21
4 Unimodal 5140 63.68 3425 6125 7632 71.60 6886 89.05 99.76 94.51 71.07
Ours 5426 64.65 3552 62.63 76.87 7233 69.14 90.00 99.70 9551 72.06
Ours (init)  55.01 66.55 35.14 6397 77.57 7325 7030 9031 99.57 95.65 72.73
8 Unimodal 66.01 68.88 48.17 66.67 79.92 7626 7248 90.97 99.80 9554 7647
Ours 68.53 69.75 50.88 68.46 81.44 7734 73.12 9239 99.70 96.20 77.78
Ours (init) 6791 70.66 5126 69.56 81.85 77.95 73.75 9250 99.68 96.51 78.16
16 Unimodal 77.31 72.17 6238 7376 83.80 80.74 75.15 9334 99.81 9740 81.59
Ours 7892 7280 64.51 75.16 84.62 81.00 7546 9292 99.59 97.38 82.24

Ours (init) 78.52  73.18 65.81 75.65 84.77 81.18 75.82 9328 99.78 97.57 82.56
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Table 18: Linear evaluation of frozen features on 10 fine-grained benchmarks for few-shot
learning with DINOv2 ViT-L/14. We compare our proposed approach with the image-only baseline
by training a linear classifier on top of frozen VIT-L/14 DINOv2 features. Our method leverages
unpaired text data using OpenLLaMA-3B

Dataset
w g
< g - 2 & B =]
: 5 = s £ § T =T 3§ ¢
E 2 ¢ S 2T 2 & £ & 3
. s 5 ) = 3] s = % = < >
Train Shot Method 7] N 8 a -} sa = o o ] <
1 Unimodal 24.89 48.36 17.69 38.77 6646 5927 5750 79.83 98.13 8296 57.39
Ours 2588 49.63 18.08 4293 69.18 60.12 5837 83.51 9842 8623 59.24
Ours (init) 27.90 52.86 18.95 43.18 7098 63.17 60.80 83.86 98.59 88.17 60.85
2 Unimodal 39.95 5895 26.87 50.18 7579 70.74 67.14 8471 99.74 89.82 66.39
Ours 4122 60.82 27.15 53.01 76.61 72.07 6790 86.07 99.72 91.95 67.65
Ours (init) 4293 63.36 28.14 5496 77.72 73.87 69.20 87.13 99.81 91.71 68.88
4 Unimodal 5649 66.37 38.59 59.08 80.84 77.39 7241 8990 99.73 9444 7352
Ours 58.19 67.36 39.57 61.78 81.36 78.19 7282 90.99 99.76 9527 74.53
Ours (init) 58.60 68.84 39.19 62.77 8150 7899 73.63 90.74 99.88 96.02 75.02
8 Unimodal 70.00 70.71 51.57 6647 83.84 81.69 76.02 9353 99.89 95.55 7893
Ours 71.63 71.59 55.13 6791 8447 82.12 7643 93.62 99.88 9636 7991
Ours (init) 72.02 72.51 5549 69.03 84.57 8252 76.78 93.80 99.89 96.73 80.33
16 Unimodal 80.84 73.83 64.13 7396 8743 8458 77.78 94.69 9991 97.36 83.45
Ours 81.85 7439 6945 7470 87.35 84.58 7835 9459 99.89 97.61 84.28

Ours (init) 82.76 74.80 69.42 7488 87.65 8496 78.58 9442 99.81 97.62 84.49
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E.2 Improving Image Classification using Unpaired Texts (Aligned encoders)

E.2.1 Supervised Finetuning

In this section, we fine-tune both the vision backbone and the linear classifier on nine downstream
tasks, comparing UML against strong image-only baselines. We evaluate two different backbones:
ResNet-50 and VIT-B/16.

As shown in Table 19, across all backbones, UML consistently improves over the image-only

baseline by leveraging unpaired text embeddings. Further, our head-initialization variant (Ours (init))
outperforms training using unpaired multimodal data from scratch (Ours).

Table 19: Supervised finetuning on 9 fine-grained classification benchmarks with CLIP. We
compare our proposed approach with the image-only baseline when fine-tuning on the target dataset.
All vision encoders are initialized from CLIP ResNet50 weights, and our approach leverages unpaired
text data using the corresponding CLIP text encoder.

Dataset
%

z &< 4

3 = 2 g —

o _ &2 £ g

kS N < S = = = S 2

= o Q — i) e] o Q =

I = ¢ 2 S 2 = = = 4

- j=] on o
Method ) n 3 a =) s % @) o @) <
Unimodal 36.12 2593 37.70 51.06 5249 69.24 63.17 88.42 83.61 5642
Ours 37.00 24.05 41.34 5567 6048 69.77 7449 9257 8479 60.02

Ours (init) 72,75  62.33 66.58 56.50

67.54 7695 86.97 9480 87.95 74.71
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Table 20: Full linear probing on classification with CLIP ResNet-50 Image Encoder and Text
encoder. We compare our proposed approach with the image-only baseline when training a linear
probe on the target dataset. All vision encoders are initialized from ResNet-50 weights, and our
approach leverages unpaired text data using the corresponding CLIP text embeddings.

Dataset
& Z

g g “ 5 _

@] R= 8 U% P

2 1N < ) 1S ) ) = )

L [<8) Q — — = = Q S

= 2 z g & % £ £ £ %
Method » 7 i a) ! £ S S O <
Unimodal 76.36 7097 41.88 72.81 81.23 81.60 8839 97.89 090278 78.21
Ours 7723 71.18 42.66 71.81 81.81 81.51 87.84 97.65 93.01 78.30

Ours (init) 79.14 73.83 42.81 73.76 82.13 82.44 90:90 97.69 94.19 79.65

E.2.2 Linear Probing

In this section, we train only the linear classifier, on top of the frozen vision and language backbone
from CLIP, on ten downstream tasks, comparing UML against strong image-only baselines. We
evaluate two different backbones: ResNet-50 and VIT-B/16.

As shown in Table 20, across both backbones, UML consistently improves over the image-only
baseline by leveraging unpaired text embeddings. Further, our head-initialization variant (Ours (init))
outperforms training using unpaired multimodal data from scratch (Ours).

E.2.3 Few-shot linear Probing (across architectures)

In this section, we train only the linear classifier, on top of the frozen vision and language backbone
from CLIP, for few-shot classification on ten downstream tasks, comparing UML against strong
image-only baselines. We evaluate two different backbones: ResNet-50 and VIT-B/16.

As shown in Table 21 and Table 22, across both backbones, UML consistently improves over the
image-only baseline by leveraging unpaired text embeddings. Further, our head-initialization variant
(Ours (init)) outperforms training using unpaired multimodal data from scratch (Ours).

E.3 Improving Visual Robustness Using Unpaired Texts

In this section, we evaluate the robustness of models trained with UML to test-time distribution shifts.
We train a k-shot linear probe (where k € {1,2,4,8}) with DINOv2 on ImageNet and evaluate
across four distribution-shifted target datasets: ImageNet-V2, ImageNet-Sketch, ImageNet-A, and
ImageNet-R. Our method consistently improves robustness over the unimodal baseline (Figure 7,
Figure 8, Figure 9 and Figure 10) across different training shots, indicating that language priors help
capture more transferable features.

Unimodal Ours Ours (init)
+16.7% +18.3% 24 +36.5% 18 +55.9% +37.5%

— 3
x42 36
< 22 16 34
g 40
= % 32
g 34 +6.8% 20 +13.5% 14 +24.3%
] +5.2% +11.6%
< 38 30
[%)
& 32 18 12 o8

36 16 26

ImageNet (Source) ImageNetV2 ImageNet-Sketch ImageNet-A ImageNet-R

Figure 7: Robustness under test-time distribution shifts. Our approach (trained on 1-shot) is much
more robust than its unimodal counterpart across four distribution-shuffled target test sets.
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Table 21: Linear evaluation of frozen features on 10 fine-grained benchmarks for few-shot
learning. We compare our proposed approach with the image-only baseline by training a linear
classifier on top of frozen CLIP ResNet50 features. Our method leverages unpaired text data using
the corresponding CLIP text encoder

Dataset
w g
5 £ " E
O 5 o] - = S
2 = 5 — 3 = g = = )
L D < o - 2 g 2 Q 20
= g 2 z 2 £ & < 2 5
. s 5 % 2 3] 8 = g = = >
Train Shot Method 7] N 3 a =} s o = o ] <
1 Unimodal 23.24 29.14 1238 30.24 37.55 2726 34.61 21.36 59.07 6652 34.14
Ours 36.32 4540 16.84 40.92 53.19 49.76 53.03 3648 6856 76.80 47.73
Ours (init) 57.88 64.59 2223 50.85 6599 76.73 86.59 60.92 81.08 83.79 65.06
2 Unimodal 38.37 43.83 18.63 40.33 5325 44.60 47.75 3262 7503 7890 4733
Ours 46.64 53.53 20.81 4835 62.01 56.67 60.64 4221 7797 84.58 5534
Ours (init)  61.86 65.90 24.19 5530 70.39 77.07 87.40 6140 86.20 8594 67.57
4 Unimodal 51.34 5438 23.08 52.07 64.06 5729 61.32 41.72 86.16 8541 57.68
Ours 5521 5948 2477 56.78 67.65 62.68 6731 47.04 8646 8723 61.46
Ours (init) 65.80 68.11 2749 60.13 73.62 77.79 8654 6237 91.60 87.57 70.10
8 Unimodal 61.74 6147 30.22 60.15 70.16 64.63 68.94 4948 9220 89.14 64.81
Ours 62.75 63.70 30.69 61.84 70.74 67.73 73.62 52.14 9231 89.89 66.54
Ours (init) 69.78 69.61 31.62 64.13 77.24 78.58 89.07 63.34 9421 91.58 7292
16 Unimodal 70.94 6553 3591 6430 75.13 70.67 7849 5507 9521 91.26 70.25
Ours 71.58 67.08 3623 65.62 76.09 71.63 79.52 5692 9544 9194 71.20

Ours (init) 7456 7133 37.13 68.09 78.66 79.06 89.71 6431 96.17 9331 75.23

Table 22: Linear evaluation of frozen features on 10 fine-grained benchmarks for few-shot
learning. We compare our proposed approach with the image-only baseline by training a linear
classifier on top of frozen CLIP VIT-B/16 features. Our method leverages unpaired text data using
the corresponding CLIP text encoder

Dataset
Z & 5
=] < ©» 2
O 5 o = 3
- R= — ~ T &) — o
Z 5 = z S ® §& ® 3 &
@ %) = 5 9 ) 3 Q £
s £ & 2 3 s £ £ £ =3 2
Train Shot Method 7] N =3 =} =} = o £ o O <
1 Unimodal 31.53 33.51 17.76 31.72 43.64 3940 3743 2765 6795 71.68 40.23
Ours 4828 53.44 22.06 47.04 63.40 63.92 6095 4735 77.82 83.14 56.74
Ours (init) 67.76  70.13 3226 55.16 75.02 8425 9091 69.50 87.58 88.87 72.14
2 Unimodal 4845 4870 23.38 42.04 60.08 5830 53.56 41.68 82.01 83.20 54.14
Ours 5789 59.95 27.19 5227 69.60 71.18 66.78 5424 8743 90.20 63.67
Ours (init)  70.75 71.52 3399 60.17 7837 8539 90.67 70.19 92.18 90.09 74.33
4 Unimodal 61.64 60.66 31.01 5437 7049 7191 6935 52.15 9099 91.08 65.36
Ours 66.24 65.56 3298 5995 7416 76.19 7592 5850 91.32 9323 69.40
Ours (init) 74.58 73.54 37.38 64.30 81.10 86.05 91.64 70.89 94.80 93.70 76.80
8 Unimodal 71.76 66.67 3847 6196 77.11 78.16 7825 5990 9520 9298 72.05
Ours 7277  69.50 39.09 64.89 79.01 80.07 80.85 62.63 9498 9436 73.82
Ours (init) 7843 75.07 41.77 6850 83.41 86.87 9255 7197 96.94 9527 79.08
16 Unimodal 78.76 71.49 4474 68.79 8043 82.08 85.16 63.87 9697 9454 76.68
Ours 79.40 72.19 4506 69.41 8197 82.12 8592 6493 9649 9528 77.28

Ours (init) 82.38 76.51 47.14 72.13 84.66 86.60 92.68 7279 97.70 96.08 80.87
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Figure 8: Robustness under test-time distribution shifts. Our approach (trained on 2-shots) is
much more robust than its unimodal counterpart across four distribution-shuffled target test sets.
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Figure 9: Robustness under test-time distribution shifts. Our approach (trained on 4-shots) is
much more robust than its unimodal counterpart across four distribution-shuffled target test sets.
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Figure 10: Robustness under test-time distribution shifts. Our approach (trained on 8-shots) is
much more robust than its unimodal counterpart across four distribution-shuffled target test sets.

E.4 Marginal Rate-of-Substitution Between Modalities

How many words is an image worth? In this section, we extend our results to evaluate image-text
conversion ratios using test accuracy isolines on the remaining eight datasets. We measure these
global equivalence ratios by fitting a plane to the accuracy values given the number of image and
text shots. Figures 11 to 18 demonstrate the conversion ratios for DINOv2 VIT-S/14 as the vision
backbone and OpenlLLaMa-3B as the text backbone (unaligned encoders). Analogously, Figures 19
to 26 show the same ratios for CLIP ResNet-50 as the vision and text encoders (aligned encoders).
As expected, with the fully aligned CLIP backbone, each image equates to far fewer text prompts
than under the unaligned DINO setting, showing the higher efficiency of aligned embeddings.

E.4.1 Unaligned Encoders
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E.4.2 Aligned Encoders (CLIP)
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E.5 Impact of Scaling Vision Backbone

In this section, we study how our method’s performance scales with the size and architecture of the
vision backbone. In addition to ViT-S/14 DINOv2, we extend our analysis to a range of ViT-based
architectures, including ViT-B/14 and ViT-L/14 DINOv2 and ViT-B/16 and ViT-B/8 DINO models.
To ensure a fair comparison, we follow the same training protocol as in previous experiments. Our
method consistently outperforms the unimodal baselines in every setting. In few-shot linear probing
across ViT-B/8, ViT-B/16, DINOv2-ViTs and ViT-L/14 backbones (Tables 14 to 18), we see clear
gains. The same holds for full-dataset end-to-end fine-tuning of both encoder and head (Tables 5, 6
and 8 and ??), and even when only the linear classifier is trained on the full splits (Tables 9 to 13).

E.6 Impact of Varying Text Encoders

In this section, we study how our method’s performance varies with different language models used
for generating text embeddings. Through this experiment, we aim to understand how differences in
embedding quality and model capacity affect the integration of textual information in our multimodal
setup. Specifically, we cover LLMs with diverse architectures and scales, including BERT-Large,
RoBERTa-Large and GPT-2 Large. As shown in Figure 28, adding unpaired text embeddings shows
a significant boost in 1-shot accuracy and still decent gains at 16 shots on SUN397 dataset. Overall,
OpenLLaMA-3B outperforms all other language models.
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Figure 28: Few-shot classification accuracy on SUN397 using UML with unpaired, frozen embeddings
from various pretrained language models.

E.7 Learning with Coarse-Grained vs. Fine-Grained Textual Cues

Understanding the type of information extracted from textual cues is crucial to assessing the effective-
ness of our multimodal approach. A key question is whether the model merely utilizes class names or
goes beyond to capture richer, more descriptive features. To investigate this, we compare the perfor-
mance of our method using two types of text templates: a vanilla template that consists solely of the
class name (e.g., "a photo of a [class]") and descriptive templates generated from GPT-3, as detailed
in Section ??. As shown in ?? and Figure 30, both multimodal approaches consistently outperform
the unimodal baseline, with descriptions from GPT-3 offering a more substantial performance gain.
This shows that leveraging richer, contextually diverse text cues can significantly enhance model
performance, even in low-shot learning scenarios.
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Figure 29: Few-shot SUN397 accuracy with UML Figure 30: Few-shot SUN397 accuracy with
using two levels of textual granularity: (a) vanilla UML (init) using two levels of textual granular-
class descriptions and (b) GPT-3—generated fine- ity: (a) vanilla class descriptions and (b) GPT-
grained descriptions. 3—generated fine-grained descriptions.

E.8 Impact on Performance with Increasing Unpaired Text Prompts

Here, we investigate how classification accuracy evolves as we augment each image with an increasing
number of unpaired text prompts . Figure 31 shows these accuracy curves as we vary the number of
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initialization (“Ours (init)”’) outperforms training the head from scratch, with most of the gain coming
from the first few prompts and gains tapering off thereafter. Note that we do not enforce diversity or

novelty in the unpaired text prompts—simply adding more sentences does not guarantee additional
information.
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Figure 31: Classification accuracy as a function of the number of text prompts per image shot for the
SUN397 Dataset.

E.9 Additional Experiments for Audio-Visual Setting

In this section, we extend our unpaired multimodal framework to the tri-modal ImageNet—-ESC
benchmark, examining how unpaired audio and text signals can enhance image classification under
both aligned (Appendix E.9.2) and unaligned encoders(Appendix E.9.1). We then reverse the

setting, showing that unpaired visual and textual context likewise improves audio classification
(Appendix E.9.3).

E.9.1 Improving Image Classification with Unpaired Audio and Text (Unaligned encoders)

Image-Only Ours (Image + Audio) Ours (Image + Text)
95 70.0
80 :
9 90 07% Fers 82.5
0 0 +9.7' .
g +10.3%+10.3% o +5.5% < +6.6%| 80.0 +6.3% 85 +6.9%
375 5 90 g65.0
g 85 +5.5% +2.9% g0 +2.8% 775 +3.5%
S 9625 +1.1%
<70 < 75.0 80
8 80 85 $560.0
2 S 72.5
57.5 0.0 75
1-shot classification 2-shot classification 4-shot classification :

1-shot classification 2-shot classification 4-shot classification
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Figure 32: UML improves image classification using unpaired audio and text samples on both

ImageNet-ESC-19 and ImageNet-ESC-27 benchmarks when trained on top of DINOv2 VIT-S/14
and OpenLLaMa-3B.

E.9.2 Improving Image Classification with Unpaired Audio and Text (Aligned encoders)
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Figure 33: UML improves image classification using unpaired audio and text samples on both
ImageNet-ESC-19 and ImageNet-ESC-27 benchmarks when trained on top of CLIP ResNet-50
image and text encoders

E.9.3 Improving Audio Classification with Unpaired Image and Text (Aligned encoders)
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Figure 34: UML improves audio classification using unpaired image and text samples on both
ImageNet-ESC-19 and ImageNet-ESC-27 benchmarks when trained on top of CLIP ResNet-50
image and text encoders

E.10 Gaussian Experiments

Here, we shift our attention to a more nuanced and intriguing question: can incorporating unpaired
multimodal data actually improve the reconstruction quality of a single modality? At first glance, this
seems unlikely—why would adding data from a different modality make X reconstruction better than
training with X ? Moreover, we push this question further: can incorporating data from a different
modality, while keeping the total dataset size fixed, still improve the reconstruction of X compared to
using the same number of samples X dataset alone? This setup isolates the importance of multimodal
information from mere data scaling, and surprisingly, our experiments show that this improvement is
indeed possible.

To investigate this, we design a synthetic experiment inspired by our theoretical framework in ??. We
generate data from two partially overlapping modalities, X and Y, derived from a shared latent space
6., while also containing unique components (6, and 6,). The observations follow the same linear
structure as in our theory:

X, = Ac,iec + Aa:,zea: + €X,i
Y} = Bc,jec + By,jey + €y,j

The overlap ratio, denoted as p, controls how much of the shared latent dimensions are jointly
captured by both X and Y. We set p = 0.2, meaning that only 20% of the shared latent dimensions
are observed by both modalities, while the remaining 40% are exclusively captured by X and Y
respectively. This structured overlap ensures that neither modality alone can fully reconstruct the
shared latent space, forcing the model to integrate complementary information from both.

Our architecture consists of a shared autoencoder with separate input projections for X and Y. Each
modality is first encoded through a modality-specific linear projection layer, followed by a shared
latent encoder composed of two layers with ReLU nonlinearity. The encoded representation is
then passed through a decoder, also consisting of two linear layers, to reconstruct the input. We
use separate heads for the final reconstruction, while keeping the latent space shared to promote
cross-modal alignment.
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As shown in Figure 35, the surprising outcome is that training on both modalities, even when they are
unpaired, consistently improves the reconstruction of X compared to training solely on X. More
strikingly, this improvement holds even when the total number of training samples is fixed, with
half the data coming from X and half from Y'; showing that the model is not just benefiting from
increased data quantity but from the diversity and complementary information provided by the second
modality.

o
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Unpaired (X + Y)-data
X-data only

o
=

Reconstruction Error on X
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Figure 35: Training on N/2 samples from X and N/2 unpaired samples from Y improves test
reconstruction on X, more than training on /N samples from X.

F Analysis of the Learned Classifier

F.1 Change in Decision Boundaries with Unpaired Data from Another Modality

Our decision boundary visualizations are constructed by projecting the high-dimensional embedding
space of a given classifier to a 2D plane. Axis 1 is computed as the normalized difference between
the classifier weights of the two selected classes, representing the primary decision direction. Axis
2 is chosen to be orthogonal to Axis 1, constructed from the difference between the class mean
embeddings after removing the component parallel to Axis 1. This orthogonalization ensures that the
two axes capture complementary aspects: Axis 1 reflects the primary model decision boundary, while
Axis 2 captures the variation orthogonal to that decision. The final 2D projection matrix combines
these two vectors as columns, and embedding vectors are then mapped to this plane using a simple
dot product. Figure 36 and Figure 37 show the change in decision boundary when adding unpaired
textual information for 2-shot classification on top of frozen CLIP ResNet-50 features for DTD and
Oxford Flowers datasets.

F.2 What do models learn from unpaired data?

To understand what the model is truly learning and how its weights evolve, we develop and analyze
three key metrics: functional margin, silhouette score, and class-prototype vectors. These metrics
inform on how well the model distinguishes between classes and how text information influences the
structure of feature-space

Functional margin. This quantifies how confidently a model separates a given sample from the
decision boundary. For a sample ¢ belonging to class y, we calculate the margin relative to the
next highest competing class. Specifically, we identify the second-highest logit among the incorrect
classes, denoted as class j*, and compute the functional margin as

T T
W, T; — W;:«T;

Vi = ———L— 3
[[wy — wj- |2

where wg x; represents the logit for the true class, while wf x; represents the highest logit among the

competing classes. Larger margins indicate more confident and robust classification, while smaller

38



884
885
886
887

888
889
890
891

D Train Image D Test Image Knitted Cobwebbed f \\} Decision Boundary

The knitted texture
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interconnected loops.
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like a spiderweb. .
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Figure 36: Impact of unpaired text on decision boundaries (CLIP ResNet50). (Left) Visual
features alone learn ambiguous class boundaries between knitted and cobwebbed. (Right) Adding
unpaired text sharpens the boundary, leveraging semantic cues to better distinguish similar categories

D Train Image D Test Image Ball Moss Passion Flower f \} Decision Boundary

The flower
passion flower
looks like a
purple and
white flower.

Ball moss is a
small greenish-
brown plant

(a) Unimodal (b) Ours

Figure 37: Impact of unpaired text on decision boundaries (CLIP ResNet50). (Left) Visual
features alone learn ambiguous class boundaries between ball moss and passion flower. (Right)
Adding unpaired text sharpens the boundary, leveraging semantic cues to better distinguish similar
categories

margins imply that the sample lies closer to a misclassification boundary. As shown in Figure 38, both
Ours and Ours (init) exhibit substantially larger classification margins than the unimodal baseline,
demonstrating that augmenting primary-modality training with unpaired multimodal data improves
confidence in predictions over the primary modality.

Unimodal Ours Ours (init)
cl4 2 +707% 1 9 9
> +61.8% 49.99 +58.79
< 0 +49.9% o +419% 8 +58.
12 0 !
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= 9 . 7
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© 1-shot classification 6 2-shot classification 6 4-shot classification 5 8-shot classification 4 16-shot classification

Figure 38: Functional margin of the linear head trained on SUN397 dataset for few-shot classification
significantly increases when training with both UML and UML with linear head initialization.

Silhouette Score and DB-Index. The Silhouette Score indicates how well-separated the clusters
are, while the DB-Index measures intra-class compactness versus inter-class separation. Higher
silhouette and lower DB-Index values mean better-defined clusters, indicating that text helps tighten
intra-class spread and widen inter-class gaps. As shown in Figure 39 and Figure 40, both Ours

39



and Ours (init) exhibit reduced intra-class distances and increased inter-class separations, further
confirming improved class separability.

Unimodal Ours Ours (init)
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Figure 39: Silhouette Score of the linear head trained on SUN397 dataset for few-shot classification
significantly increases when training with both UML and UML with linear head initialization.
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Figure 40: DB-Index of the linear head trained on SUN397 dataset for few-shot classification
significantly improves when training with both UML and UML with linear head initialization.

Class-Prototype Vectors. These vectors are the rows of the final linear layer’s weight matrix,
representing the class centroids in the shared embedding space. We compute a heatmap of inner
products between class prototypes and average text embeddings of the corresponding class to assess
how well text features align with class centers. This helps reveal how the model organizes multimodal
information. Figure 41 shows a pronounced diagonal structure, indicating that each class’s text
embedding aligns closely with the learned weights of the model.
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Figure 41: Inner products between each linear-head weight vector and its class’s mean text embedding,
demonstrating that text features align well with class prototypes.
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