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A Further Related Works368

Unpaired Multimodal Learning. Unpaired data has long been used for image-to-image [60, 30, 1,369

47] and text-to-text translation [24] . More recently, several works have also proposed learning from370

unpaired data by inferring coarse- or fine-grained alignments through distribution matching or optimal371

transport objectives [55, 7, 46]. In contrast, we leverage unpaired data for learning representations372

without the need for explicit or inferred alignment. [53, 52] theoretically analyze the problem373

of identifying shared latent components and causal structures in unaligned multimodal mixtures.374

Most closely related to our work is [28], which leverages coarse-grained text data such as class375

names to improve image classification on CLIP using a shared linear head. Another related line of376

works [44, 42, 35, 12] leverage prompting templates and pretrained LLMs to generate descriptive class377

captions, showing improved image classification performance with CLIP. Nonetheless, these methods378

operate on CLIP with pre-aligned representation spaces, whereas our approach also learns from379

unpaired data without assuming prior alignment. Several works have also proposed learning large380

multitask multimodal models with joint encoders and unified embedding spaces [51, 50, 59, 14, 13],381

often using joint training over separate tasks and/or masked prediction objectives. In a similar vein,382

[5] uses a stage-wise training strategy with both unpaired and paired data, and [16] trains a single383

model across visual modalities. However, most of these methods rely on some amount of paired data384

for preliminary alignment and then leverage abundant modality-specific unpaired data for further385

improvement. In contrast, our approach demonstrates that a model can implicitly learn cross-modal386

correlations from purely unpaired data, without requiring explicit alignment as a prerequisite.387

Multimodal Representation Alignment. Our method relies on the notion of shared information388

and structure between unaligned modalities. Closely related to this are works demonstrating that389

unimodal representations trained without multimodal data are nevertheless converging. [19] presents390

evidence that better-performing language models exhibit increased alignment to self-supervised391

vision models. Similarly, [34] shows a latent space alignment between vision and text encoders392

across backbones and training paradigms, and uses the CKA metric to connect unaligned encoders393

zero-shot. Earlier works also note alignment between models trained with different datasets and394

modalities [38, 40]. Several works have also shown that a linear projection or MLP is sufficient to395

stitch together the latent spaces of pretrained vision and language models [36, 29, 22]. [57] extends396

this to training a text encoder to align to a frozen pretrained image model; this method was in turn397

used to integrate DINOv2, a large self-supervised vision model, with a text encoder [21].398

B Supplementary Experimental Details and Assets Disclosure399

B.1 Assets400

We do not introduce new data in the course of this work. Instead, we use publicly available widely401

used image datasets for the purposes of benchmarking and comparison.402

B.2 Hardware and setup403

Each experiment was conducted on 1 NVIDIA Tesla V100 GPUs, each with 32GB of accelerator404

RAM. The CPUs used were Intel Xeon E5-2698 v4 processors with 20 cores and 384GB of RAM.405

All experiments were implemented using the PyTorch deep learning framework.406

B.3 Datasets407

B.3.1 Image Classification Benchmarks408

We evaluate on the following widely-used classification benchmarks: ImageNet [8], StanfordCars [23],409

UCF101 [49], Caltech101 [11], Oxford Flowers [39], SUN397 [56], DTD [6], FGVCAircraft [33],410

OxfordPets [41], and Food101 [4]. More details about the dataset and splits is provided in Table 2.411

B.3.2 Constructing text templates412

To construct conceptually related yet unpaired text data, we generate text templates that capture413

varying granularities of information about the dataset. Our first approach (Vanilla) uses the straight-414
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Table 2: Detailed statistics of the 10 datasets for image classification.
Dataset Classes Train Val Test

Caltech101 [11] 100 4,128 1,649 2,465
OxfordPets [41] 37 2,944 736 3,669
StanfordCars [23] 196 6,509 1,635 8,041
Oxford Flowers [39] 102 4,093 1,633 2,463
Food101 [4] 101 50,500 20,200 30,300
FGVCAircraft [33] 100 3,334 3,333 3,333
SUN397 [56] 397 15,880 3,970 19,850
DTD [6] 47 2,820 1,128 1,692
UCF101 [49] 101 7,639 1,898 3,783
ImageNet [8] 1,000 1.28M N/A 50,000

forward template “a photo of a {}” with a natural language label for each category, resulting415

in a basic text description for each class. However, this simple textual corpus lacks fine-grained416

information necessary to distinguish between visually similar subcategories or to resolve contextually417

ambiguous terms. To address this, for the second template, we draw from the extensive literature on418

improving text prompts for zero-shot classification in CLIP [12, 35, 42, 44]. Specifically, for the419

second approach (GPT-3 Descriptions), we adopt the text prompt generation strategy developed420

by Pratt et al. [42], using large language models such as GPT-3 to generate diverse and contextually421

rich prompts for each image category. We use three generic hand-written sentences across the datasets:422

423

Describe what a/the {} looks like:424

Describe a/the {} :425

What are the identifying characteristics of a/the {}?426

The blank portion of each template is populated with the category name, along with the category type427

for specialized datasets (e.g., “pet” + {} for Oxford Pets or “aircraft” + {} for FGVC Aircraft). The428

type specification is important for disambiguating categories with multiple interpretations. Some429

examples of these descriptions are provided in Table 3 for the Oxford Pets dataset.430

Table 3: Sample text descriptions per class for Oxford Pets dataset
Class Examples
Wheaten Terrier A wheaten terrier is a small, shaggy dog with a soft, silky coat.

A wheaten terrier has a soft, wheat-colored coat that is low-shedding and hypoallergenic.
The wheaten terrier is a medium-sized, hypoallergenic dog breed.
A pet Wheaten Terrier usually has an intelligent expression and a soft, wheat-colored coat.

Great Pyrenees A great pyrenees is a large, white, shaggy-coated dog.
A Great Pyrenees is a large, fluffy dog with a calm, gentle disposition.
The great pyrenees was originally bred to protect livestock from predators.
Great Pyrenees are known for being very large, white dogs with thick fur.

Sphynx A pet Sphynx typically has a small, wrinkled head and a hairless body.
A Sphynx is a hairless cat breed known for its soft, warm skin.
A Sphynx often displays large ears, pronounced cheekbones, and no fur.
Sphynx are unique cats characterized by their lack of coat and wrinkled skin.

Birman A Birman is a long-haired, color-pointed cat with a “mask” of darker fur on its face.
A Birman has silky, pale cream to ivory fur with deep seal- or lilac-colored points.
Birman cats possess striking blue eyes and contrasting white “gloves” on their paws.
They are known for being gentle, affectionate, and smooth-coated companions.

Pomeranian A Pomeranian is a small, fluffy dog with a thick double coat.
Pomeranians are toy-sized, alert dogs with fox-like faces and plumed tails.
A pet Pomeranian often comes in orange, black, white, or mixed coat colors.
They are lively, outgoing, and known for their bold, friendly personalities.
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B.3.3 ImageNet-ESC Dataset431

Experimental Setup. We extend our results beyond vision and language to an audiovisual-language432

dataset: the ImageNet-ESC benchmark [28]. This benchmark combines ImageNet (1000 object cate-433

gories) and ESC-50 (50 environmental sound classes) by matching classes that logically correspond.434

For example, the dog (barking) class from ESC-50 aligns with various dog breeds from ImageNet,435

while the clock-alarm sound maps to both analog clock and digital clock. This alignment captures436

the relationship between visual objects, their sounds, and their textual descriptions. The benchmark437

consists of two versions: 1) ImageNet-ESC-27: A broader set including loosely matched visual-audio438

pairs (e.g., drinking-sipping to water bottle); 2) ImageNet-ESC-19: A more precise subset containing439

only accurate visual-audio matches.440

B.4 Training Protocol441

B.4.1 Image Classification using Image and Unpaired Texts442

For text, we use OpenLLaMA-3B as our default encoder and ablate against BERT-Large, RoBERTa-443

Large, GPT-2 Large, and the pre-aligned CLIP text encoder, keeping the text encoder frozen. For444

images, our main backbone is ViT-S/14 DINOv2, with ablations across other DINOv2 variants and445

the CLIP vision encoder. In the linear-probe setting, all encoder weights stay fixed and we train only446

a single linear classification head; in full fine-tuning, we jointly update the image backbone and that447

head, while still freezing the text encoder.448

We optimize cross-entropy loss via AdamW [31] and perform an extensive grid search over learning449

rate, weight decay, cosine learning rate scheduling with linear warmup, dropout, and a learnable,450

modality-specific scaling on the logits. The results are reported for the best-performing model on451

the validation dataset. We report results for the model achieving highest validation accuracy; the full452

hyperparameter ranges are in Table 4.453

For full fine-tuning, we jointly update the image backbone and classification head with a fixed454

learning rate of 5⇥ 10�5, batch size 64, and omit learnable modality-specific scaling, since it showed455

no benefit in this setting.456

Table 4: Hyperparameter grid for linear probing.
Hyperparameter Values
Optimizer adamw
Learning rate {0.001, 1e-4}
Weight decay {0.0, 0.01, 0.001}
LR scheduler cosine
Batch size {8, 32}
Max iterations 12,800
Warmup iterations 50
Warmup type linear
Warmup min LR 1e-5
Dropout {0.0}
Modality-specific learnable scaling {False, True}
Early-stop patience 10

B.4.2 Evaluation on ImageNet-ESC457

Similar to our vision-language experiments, we perform few-shot evaluation using the 5-fold splits458

defined in the benchmark. Each fold contains 8 samples per class, with one fold used for training459

and validation and the remaining four for testing. We repeat the process over 5 random splits and460

report the average performance. For audio encoding, we use AudioCLIP with an ES-ResNeXT461

backbone [17]. AudioCLIP is pretrained on AudioSet and generates audio embeddings in the same462

representation space as CLIP. Following the instructions in [17, 28], we use train() mode in Pytorch463

to extract the features since eval() mode yields suboptimal embeddings. We evaluate our models on464

two tasks—audio classification and image classification—comparing the unimodal baseline against465
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two multimodal variants in which the primary modality is each time augmented by one of the other466

modalities.467

B.4.3 Transfer Learning from Language to Vision468

To adapt a language model to image classification, we embed image patches using a linear projection469

and add positional encodings to capture spatial structure. We then use transformer layers initialized470

from pretrained BERT, and finally, a 2-layer MLP classification head. Specifically, we split each471

image of size 224 ⇥ 224 into patches of size 16 ⇥ 16 with 196 patch tokens. Each patch is then472

projected into the model’s embedding space of dimension d(e.g. d=768 for GPT-2, d = 1024473

for BERT) via a learned linear layer. We then prepend a learnable “[CLS]” token, add learned474

positional embeddings of shape (N + 1) ⇥ d, and apply dropout with probability p = 0.1. This475

(N +1)⇥ d sequence is passed into the pretrained transformer stack (either GPT-2 or BERT), using a476

full bidirectional attention mask over all patch tokens and the CLS token. We extract the final hidden477

state corresponding to the CLS token and feed it through a two-layer MLP classification head.478

During training, we evaluate two scenarios: 1) one where the pretrained backbone is frozen and only479

the patch embedding and linear head are trained, and 2) another where the backbone is initially frozen480

to align the trainable layers (patch embedding and head) with the pretrained language backbone, and481

then unfrozen after 2000 steps for end-to-end training. This approach allows us to test whether the482

semantic richness captured by language models provides a strong initialization, leading to better483

convergence and performance compared to training ViT from scratch.484

C Proofs of Theoretical Results485

In this section, we present complete derivations and proofs of the main theoretical claims. Ap-486

pendix C.1 gathers all definitions and background required for our arguments. Appendix C.2487

formalizes the linear data-generating model, derives closed-form maximum-likelihood estimators for488

each modality and their joint estimator, and computes the corresponding block-wise Fisher informa-489

tion. Finally, Appendix C.3 provides the detailed proofs of our variance-reduction claims, showing490

rigorously how unpaired multimodal estimation strictly lowers estimator variance.491

C.1 Background and Definitions492

In this section we revisit the mathematical definitions used in our theoretical analysis, including493

matrix-orderings, characterization of symmetric matrices and Fisher information.494

Definition 1 (Positive Semidefinite Matrix). A real symmetric matrix A 2 Rd⇥d is positive semidefi-495

nite if for all vectors v 2 Rd, v>Av � 0. Equivalently, all eigenvalues of A are nonnegative. We496

denote the set of all d⇥ d symmetric, positive-semidefinite matrices as Sd
⌫0.497

Definition 2 (Positive Definite Matrix). A real symmetric matrix A 2 Rd⇥d is positive definite if498

for every nonzero v 2 Rd, v>Av > 0. Equivalently, all eigenvalues of A are strictly positive. We499

denote the set of all d⇥ d symmetric, positive definite matrices as Sd
�0.500

Definition 3 (Loewner Order). For two real symmetric matrices A,B 2 Rd⇥d, we write A �501

B () B � A is positive semidefinite and A � B () B � A is positive definite. This defines502

a partial order on the cone of symmetric matrices.503

Definition 4 (Fisher Information Matrix). Given a parametric family of densities p(x; ✓) on data x,504

the Fisher information matrix at parameter ✓ is505

I(✓) = Ex⇠p(·;✓)
⇥
r✓ log p(x; ✓)r✓ log p(x; ✓)

>⇤.
Equivalently, for regular models, I(✓) = �E

⇥
r2

✓ log p(x; ✓)
⇤
.506

C.2 Maximum Likelihood Estimators and Fisher Contributions507

In this section we revisit our linear data–generating model, introduce notations for the X–only,508

Y –only and joint likelihoods, derive the closed-form MLEs b✓X , b✓Y and b✓X,Y , and formalize their509

information contributions towards estimating the ground truth parameters ✓ ⌘ [✓c, ✓x, ✓y]>.510
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Data Generating Process. Recall our linear data-generating process: Assume that all factors of511

variation in reality live in a single d-dimensional space Z⇤ ⌘ ✓ 2 Rd modeled using a linear512

data-generating pipeline. This parameter can further be decomposed as ✓ ⌘ [✓c, ✓x, ✓y]> where513

✓c 2 Rdc , ✓x 2 Rdx , ✓y 2 Rdy and dc + dx + dy = d. Here, ✓c captures the common (shared)514

parameters that affect both modalities, ✓x denotes the parameters that only affect modality X , and515

✓y denotes the parameters that only affect modality Y . We observe two independent datasets, one516

from each modality {Xi}Nx
i=1 2 Rm and {Yj}

Ny

j=1 2 Rn, each reflecting partial measurements of the517

ground truth latent space Z⇤:518

Xi = Ac,i ✓c + Ax,i ✓x + ✏X,i, ✏X,i ⇠ N
�
0, �2

xImi

�
(1)

Yj = Bc,j ✓c + By,j ✓y + ✏Y,j , ✏Y,j ⇠ N
�
0, �2

yInj

�
. (2)

Here, Ac,i, Ax,i, Bc,j , By,j are known design blocks capturing how each sample probes the latent519

factors and "X,i,"Y,j represent the independent measurement noise.520

In our linear setting, estimating the true latent state ✓—and hence the underlying reality Z⇤—is521

governed by the Fisher information matrix I(✓) = �E
⇥
r2

✓ `(✓)
⇤
, which measures how sharply the522

likelihood “curves” around the true ✓. High curvature along a particular axis means the data tightly523

constrain that component, driving down estimator variance there.524

Unimodal Estimators. We first estimate ✓ using only the X–dataset. Stacking {Xi}Nx
i=1 yields a525

design matrix A with block rows [Ac,i, Ax,i, 0]. The least-squares solution526

b✓X = argmin
✓

NxX

i=1

��Xi �Ac,i ✓c �Ax,i ✓x
��2

omits ✓y entirely. Consequently, the Fisher information on ✓y vanishes, making it unidentifiable.527

Analogously, stacking {Yj}
Ny

j=1 defines B with block rows [Bc,j , 0, By,j ] and yields528

b✓Y = argmin
✓

NyX

j=1

��Yj �Bc,j ✓c �By,j ✓y
��2.

This estimator doesn’t depend on ✓x, providing zero coverage for that component. Thus, each529

unimodal estimator entirely fails to recover the parameters exclusive to the omitted modality.530

Multimodal Estimators. Despite the lack of one-to-one pairing, both {Xi} and {Yj} share the531

common parameters ✓c. Since the two distributions are independent, the joint likelihood factorizes as532

NxY

i=1

p(Xi | ✓c, ✓x) ⇥
NyY

j=1

p(Yj | ✓c, ✓y).

Maximizing this yields the combined estimator533

b✓X,Y = arg min
✓c,✓x,✓y

⇢NxX

i=1

kXi �Ac,i ✓c �Ax,i ✓xk2 +

NyX

j=1

kYj �Bc,j ✓c �By,j ✓yk2
�
.

Intuitively, there is no requirement to match up individual (Xi, Yj) pairs. Instead, the estimate for ✓c534

is improved by both modalities while remaining unpaired.535

Fisher Information. In our linear model, each dataset contributes block-structured Fisher information.536

For the X–dataset:537

IX =
NxX

i=1

0

@
A>

c,iAc,i A>
c,iAx,i 0

A>
x,iAc,i A>

x,iAx,i 0
0 0 0

1

A ,

and for the Y –dataset:538

IY =

NyX

j=1

0

@
B>

c,jBc,j 0 B>
c,jBy,j

0 0 0
B>

y,jBc,j 0 B>
y,jBy,j

1

A .
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Because X and Y samples are independent, their curvature contributions add pointwise, resulting in539

the joint Fisher information being simply the sum of the unimodal blocks.540

IX,Y = IX + IY =

0

B@

P
i A

>
c,iAc,i +

P
j B

>
c,jBc,j ⇤ ⇤

⇤
P

i A
>
x,iAx,i 0

⇤ 0
P

j B
>
y,jBy,j

1

CA ,

where “⇤” denotes the cross-modal blocks. In particular, we have the shared-parameter block as541

(IX,Y )✓c,✓c =
NxX

i=1

A>
c,iAc,i +

NyX

j=1

B>
c,jBc,j ,

C.3 Theorems and Proofs542

The aim of this section is to detail the proofs of the theoretical results presented in the main manuscript543

The key theoretical tools driving our analysis are already prepared in Appendix C.1 and Appendix C.2.544

Core to our theoretical analysis are a few lemmas around the Loewner-order monotonicity result for545

inverses that we prove below.546

Lemma 1 (Loewner Order reversal for inverses). Let M,N 2 Sd�0 with M � N (or M � N ). Then547

N�1 � M�1 (or N�1 � M�1) .548

Proof. Since N � 0, N�1/2 exists and is nonsingular. Define C := N�1/2MN�1/2 � I . Because549

a congruence with an invertible matrix preserves positive-definiteness, C � 0; hence C�1 is well550

defined and C�1 � I (the scalar map x 7! x�1 is strictly decreasing on (0,1)). Undoing the551

congruence gives552

M�1 = N�1/2C�1N�1/2 � N�1/2IN�1/2 = N�1.

Lemma 2 (Inverse–monotonicity of the Moore–Penrose pseudoinverse). Let M,N 2 Sd⌫0 satisfy553

M � N and kerM = kerN =: K. Then their pseudoinverses obey N† � M†.554

Proof. Set S := K? and let P := PS be the orthogonal projector onto S. Because M and N vanish555

on K, we have the decompositions M = PMP and N = PNP . Restricted to S both matrices are556

positive–definite:557

M̃ := PMP, Ñ := PNP 2 SdimS
�0 , M̃ � Ñ .

Apply Lemma 1 to M̃, Ñ to obtain Ñ�1 � M̃�1 on S. The Moore–Penrose pseudoinverse equals558

the ordinary inverse on S and is zero on K:559

M† = PM̃�1P, N† = PÑ�1P.

Therefore N† = PÑ�1P � PM̃�1P = M†.560

Lemma 3 (Directional Loewner Order reversal). Let M,N 2 Sd�0 with M � N . If a non-zero561

vector v satisfies v>Mv < v>Nv, then562

1. For the vector v, it holds that v>M�1v � v>N�1v, with strict inequality v>M�1v >563

v>N�1v if and only if (N �M)M�1v 6= 0.564

2. There exists a non-zero vector u 2 Rd such that u>M�1u > u>N�1u.565

Proof. Denote the Loewner gap � := N � M ⌫ 0. Then, the assumption v>Nv > v>Mv is566

equivalent to v>�v > 0. Introduce the congruence–invariant normalisation C := M�1/2�M�1/2 ⌫567

0. Now, using � = M1/2CM1/2 and properties of inverse,568

N = M1/2(I + C)M1/2, N�1 = M�1/2(I + C)�1M�1/2,

since I + C � 0 (because C ⌫ 0 and I � 0). Thus,569

M�1 �N�1 = M�1/2
h
I � (I + C)�1

i
M�1/2

= M�1/2C(I + C)�1M�1/2,
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because (I � (I + C)�1)(I + C) = C. Finally, evaluating in the direction v, we have570

v>(M�1 �N�1)v = v>M�1/2(I + C)�1CM�1/2v

= u>(I + C)�1Cu (where u = M�1/2v)

Now, since (I+C)�1 2 S�0 and C 2 S⌫0 commute, the matrix (I+C)�1C is positive semidefinite571

and it has exactly the same kernel as C. Thus, if C = Q diag(�i)Q> (�i � 0), we have572

u>C(I + C)�1u =
X

i

�i

1 + �i
(Q>u)2i � 0.

This expression is strictly positive exactly when u has a component in any eigen-subspace with573

�i > 0 i.e when u 62 ker(C). Since M�1/2 2 S�0, Cu = 0 =) M�1/2�M�1/2u = 0 =)574

�M�1v = 0. Thus, this expression is strictly positive if �M�1v 6= 0.575

Now, from the premise v>�v > 0, it follows that � 6= 0. Since M � 0, M�1/2 is invertible, C576

is also not the zero matrix. Since C ⌫ 0, this means that C must have at least one strictly positive577

eigenvalue. Let � > 0 be such an eigenvalue, and let z 6= 0 be a corresponding eigenvector. Define,578

x := M1/2z 6= 0. Thus, we have x>(M�1 �N�1)x = z>C(I +C)�1z = �
1+�kzk

2 > 0, showing579

the existence of a non-zero vector x such that x>M�1x > x>N�1x.580

581

Theorem 1. Let ✓̂X , ✓̂Y be the least-squares estimators for ✓ using only {Xi} and only {Yj} and582

let ✓̂X,Y be the joint estimator using both unpaired datasets. Then, under the assumption that583

at least one Bc,j where j 2 {1, 2, ...Ny} has full rank, the common-factor covariance satisfies584

the strict Loewner ordering i.e. Var
�
✓̂X,Y

�
✓c,✓c

� Var
�
✓̂X

�
✓c,✓c

, or equivalently, the Fisher585

information on ✓c strictly increases when combining both modalities, despite not having sample-wise586

pairing:(IX + IY )✓c,✓c � (IX)✓c,✓c .587

Proof. For any statistic S(✓) = r✓ log p(x; ✓) and vector v,588

v>I(✓) v = v>E[S(✓)S(✓)>] v = E
⇥
(v>S(✓))2

⇤
� 0.

Thus, a Fisher Information Matrix is a positive semidefinite matrix.589

In our linear–Gaussian model, the X–dataset contributes (IX)✓c,✓c =
PNx

i=1 A
>
c,iAc,i and the590

Y –dataset gives (IY )✓c,✓c =
PNy

j=1 B
>
c,jBc,j . Since at least one Bc,j has full column rank, (IY )✓c,✓c591

is positive-definite on the ✓c subspace. Now, if at least one Bc,j 2 Rm⇥dc has full column rank dc,592

then for any v 2 Rdc \ {0},593

v>B>
c,jBc,j v = kBc,jvk2 > 0.

Hence, each summand in (IY )✓c,✓c is positive semidefinite and at least one is positive definite, so594

their sum
P

j B
>
c,jBc,j is positive definite on the ✓c subspace. Thus,595

(IX)✓c,✓c � (IX)✓c,✓c + (IY )✓c,✓c = (IX + IY )✓c,✓c

Now, for regular exponential families (including Gaussian linear models), the covariance matrix of
the maximum likelihood estimator b✓ near the true ✓0 is (asymptotically) the inverse of the Fisher
information matrix i.e. Var(b✓) ⇡ I(✓0)�1. Precisely, as the sample size n ! 1, we have:

p
n(✓̂ � ✓0)

d! N (0, I(✓0)
�1),

where ✓0 is the true parameter value, I(✓0) is the Fisher Information Matrix evaluated at ✓0 and596

N (0, I(✓0)�1) denotes a multivariate normal distribution with mean 0 and covariance matrix I(✓0)�1.597

Thus, we compare variances via the Moore–Penrose pseudoinverse of the information matrices.598

Let MX = (IX)✓c,✓c , MY = (IY )✓c,✓c and MX,Y = (IX + IY )✓c,✓c . Since MY � 0, MX,Y =599

MX +MY is also positive definite (as MX,Y ⌫ MY � 0). Thus, Var(✓̂X,Y ) = M�1
X,Y . We have600
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established MX � MX,Y . Assuming MX is positive definite (to define the matrix Var
�
✓̂X,Y

�
✓c,✓c

),601

we apply Lemma 1 to get M�1
X,Y � M�1

X . Thus,602

Var
�
✓̂X,Y

�
✓c,✓c

= M�1
X,Y � M�1

X = Var
�
✓̂X

�
✓c,✓c

,

This proves the statement under the condition that MX is positive definite. Note here that, on spaces603

unidentifiable by X-alone i.e. v 2 ker(MX), we have Var
�
✓̂X

�
✓c,✓c

= 1. Since MX,Y is positive604

definite, it has finite variance along such v i.e. Var
�
✓̂X,Y

�
✓c,✓c

< 1, thus strictly reducing the605

variance of the estimator. Thus, adding the unpaired Y -modality strictly reduces the variance (or,606

dually, increases the Fisher information) on the common factors ✓c.607

608

Theorem 2. Let all notation be as in Theorem 1, and define MX := (IX)✓c,✓c , MY := (IY )✓c,✓c ,609

and MXY := MX +MY . Let v 2 Rdc \ {0}. If there exists at least one index j 2 {1, 2, ...Ny} such610

that Bc,jv 6= 0, then the following hold:611

1. The Fisher information strictly increases in direction v i.e. v>MXY v > v>MXv.612

2. The variance of the estimator in direction v is strictly reduced i.e v> Var
�
✓̂X,Y

�
✓c,✓c

v <613

v> Var
�
✓̂X

�
✓c,✓c

v, if v 62 range(MX). For v 2 range(MX), this strict inequality holds614

for v under an additional invertibility condition and is always guaranteed for some u 2615

range(MX) i.e. 9u s.t. u> Var
�
✓̂X,Y

�
✓c,✓c

u < u> Var
�
✓̂X

�
✓c,✓c

u.616

Proof. Define MX := (IX)✓c,✓c , MY := (IY )✓c,✓c , andMXY := MX +MY . By assumption, 9j617

such that Bc,jv 6= 0. Thus:618

v>MY v =

NyX

j=1

kBc,jvk2 � kBc,jvk2 > 0.

Hence MY is positive-definite in direction v, implying MX,Y � MX in this direction:619

v>MXY v = v>MXv + v>MY v > v>MXv,

thus proving the first part of the theorem.620

Case 1: v /2 Range(MX). If v /2 Range(MX), then v has a non-zero component in ker(MX). Let621

v = vS + vK , where vS 2 Range(MX) and vK 2 ker(MX) with vK 6= 0. The linear combination622

of parameters v>✓c = v>S ✓c + v>K✓c. Since vK 2 ker(MX), the component v>K✓c is not identifiable623

by the X-only model. Consequently, the asymptotic variance of an unbiased estimator for v>✓c using624

only the X-dataset is infinite. We denote this as v>Var(✓̂X)✓c,✓cv = 1.625

The strict inequality v>MXY v > 0, ensures that v /2 ker(MXY ), and thus v 2 Range(MXY ).626

Since v 2 Range(MXY ) and v 6= 0, M†
XY v is well-defined. Furthermore, because MXY is positive627

semidefinite, M†
XY is also positive semidefinite and shares the same kernel as MXY (since MXY is628

symmetric). As v 6= 0 and v /2 ker(MXY ), thus v /2 ker(M†
XY ), which ensures v>M†

XY v is a finite629

positive value. Thus,630

v>Var(✓̂X,Y )✓c,✓cv < 1.

Comparing this to the variance from the X-only model in this case:631

v>Var(✓̂X,Y )✓c,✓cv < 1 = v>Var(✓̂X)✓c,✓cv,

and the strict inequality holds.632

Case 2: v 2 Range(MX). Let S := Range(MX) and let PS be the orthogonal projector onto S.633

Because MX = MXPS and MXY = MX +MY , the restrictions634

M̃X := PSMXPS , M̃XY := PSMXY PS = M̃X + PSMY PS
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are positive-definite on S; To see this, take any non-zero w 2 S. Since w 2 range(MX), PSw = w;635

hence636

w>M̃Xw = w>MXw > 0 (PS is identity when restricted to S)

Thus M̃X � 0 on S. Because PSMY PS ⌫ 0, adding it preserves positive-definiteness, so637

M̃XY = M̃X + PSMY PS ⌫ M̃X � 0 on S.

Applying Lemma 3(1) to M̃X and M̃XY on S gives us v>M̃�1
XY v  v>M̃�1

X v. Strict inequality638

v>M̃�1
XY v < v>M̃�1

X v holds if and only if the condition Cv := ((M̃XY � M̃X)M̃�1
X v 6= 0) is met.639

Therefore, if condition Cv holds, the directional variance along this constrained space S is strictly640

reduced:641

v>Var(✓̂X,Y )✓c,✓cv = v>M̃�1
XY v < v>M̃�1

X v = v>Var(✓̂X)✓c,✓cv
1.

Further, from Lemma 3(2), there exists some non-zero vector u 2 S such that u>M̃�1
XY u < u>M̃�1

X u.642

Thus we have,643

u>Var(✓̂X,Y )✓c,✓cu < u>Var(✓̂X)✓c,✓cu.

Thus, completing the proof.644

645

Corollary 1. Assume a direction v 2 Rdc \ {0} with a = v>(IX)✓c,✓c v > 0 and b =646

v>(IY )✓c,✓c v > 0 where v is the common eigenvector of (IX)✓c,✓c and (IY )✓c,✓c . Then the variance647

in direction v contracts by the factor648

v>Var(✓̂X,Y ) v

v>Var(✓̂X) v
=

1/(a+ b)

1/a
=

a

a+ b
< 1,

So the joint estimator achieves strictly lower error along v.649

Proof. Let MX = (IX)✓c,✓c and MY = (IY )✓c,✓c . By assumption, v is a common eigenvector of650

MX and MY . Thus, MXv = �Xv and MY v = �Y v for some eigenvalues �X and �Y . From the651

assumptions, we have �X = a/kvk2 > 0 and �Y = b/kvk2 > 0. Since MX is symmetric and652

MXv = �Xv with �X > 0, the pseudoinverse acts as M†
Xv = ��1

X v. Therefore, the variance in653

direction v for the X-only estimator is654

v>Var(✓̂X)✓c,✓c v = v>M†
Xv = v>(��1

X v) = ��1
X kvk2 = a�1kvk4.

Since v is a common eigenvector, it is also an eigenvector of MXY = MX +MY :655

(MX +MY )v = MXv +MY v = �Xv + �Y v = (�X + �Y )v.

The corresponding eigenvalue is �XY = �X + �Y . Since �X > 0 and �Y > 0, �XY > 0. Thus,656

(MX +MY )†v = (�X + �Y )�1v. The variance in direction v for the joint estimator is657

v>Var(✓̂X,Y )✓c,✓c v = v>(MX +MY )
†v = (�X + �Y )

�1kvk2 = (a+ b)�1kvk4.

Now, we form the ratio of these variances:658

v>Var(✓̂X,Y )✓c,✓c v

v>Var(✓̂X)✓c,✓c v
=

�X

�X + �Y
=

a

a+ b
< 1.

659

Corollary 2. Assume a direction v 2 Rdc \ {0} with v>(IX)✓c,✓c v = 0 and v>(IY )✓c,✓c v > 0.660

Then v>Var(✓̂X) v = 1 and v>Var(✓̂X,Y ) v < 1 i.e. a direction unidentifiable from X alone661

becomes well-posed with even unpaired data from Y .662

1We note that true asymptotic variance defined as v>Var(✓̂X,Y )✓c,✓cv = v>M†
XY v, v>M†

XY v =
v>M̃�1

XY v if S is an invariant subspace of MXY and MXY is block-diagonal with respect to S and S?

(i.e., PSMXY PS? = 0, which implies PSMY PS? = 0).
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Proof. This corollary follows directly from Case 1 of Theorem 2. The condition v>(IX)✓c,✓c v = 0663

for v 6= 0 implies v 2 ker((IX)✓c,✓c), and thus v 62 range((IX)✓c,✓c). Given the additional condition664

v>(IY )✓c,✓c v > 0, the conclusions of Case 1 of the theorem apply directly.665

Corollary 3 (Variance Reduction for Eigenvectors of MX ). Let v 2 Rdc \ {0} be an eigenvector of666

MX = (IX)✓c,✓c with a corresponding eigenvalue �X > 0. If the Y -dataset provides information667

in this direction v (i.e., v>MY v > 0, where MY = (IY )✓c,✓c), then the variance in direction v is668

strictly reduced by incorporating the Y -dataset:669

v>Var(✓̂X,Y )✓c,✓c v < v>Var(✓̂X)✓c,✓c v.

Specifically, v>Var(✓̂X)✓c,✓cv = ��1
X kvk2.670

Proof. Let MX = (IX)✓c,✓c and MY = (IY )✓c,✓c . Since v is an eigenvector of MX with a positive671

eigenvalue �X > 0, it follows that v 2 Range(MX). Let S = Range(MX). The variance using672

only the X-dataset in direction v is given by673

v>Var(✓̂X)✓c,✓cv = v>M†
Xv.

Because v is an eigenvector of MX with �X > 0, M†
Xv = ��1

X v. Thus,674

v>Var(✓̂X)✓c,✓cv = v>(��1
X v) = ��1

X kvk2.
This scenario falls under Case 2 of Theorem 2, specifically its conclusion regarding v 2 S. According675

to that theorem, strict variance reduction v>Var(✓̂X,Y )✓c,✓cv < v>Var(✓̂X)✓c,✓cv occurs if the676

condition Cv = ((PSMY PS)(MX |S)�1v 6= 0) holds. Here, PS is the orthogonal projector onto S,677

and MX |S is the restriction of MX to S, so (MX |S)�1v = ��1
X v.678

The condition Cv thus becomes (PSMY PS)(�
�1
X v) 6= 0. Since �X > 0, this is equivalent to679

PSMY PSv 6= 0. We are given that v>MY v > 0. As v 2 S, PSv = v. Therefore, v>MY v =680

v>PSMY PSv > 0. Let AS = PSMY PS restricted to S. AS is a positive semidefinite operator on681

S. The condition v>ASv > 0 for v 2 S, v 6= 0 implies that ASv 6= 0 (because if ASv = 0, then682

v>ASv = 0, which contradicts v>ASv > 0). Thus, PSMY PSv 6= 0, which means the condition Cv683

is satisfied.684

Since v 2 S and the condition Cv for strict inequality is met, by Theorem 2, it follows that685

v>Var(✓̂X,Y )✓c,✓c v < v>Var(✓̂X)✓c,✓c v.686

Theorem 3. Define for any m, I(m)
X =

Pm
i=1 A

>
c,iAc,i and I(m)

Y =
Pm

j=1 B
>
c,jBc,j . If687

range
�
I(m)
Y

�
6✓ range

�
I(m)
X

�
, then there exists a nonzero v 2 Rdc such that v>I(m)

Y v > v>I(m)
X v.688

Proof. Let RX := range
�
I(m)
X

�
, RY := range

�
I(m)
Y

�
. By the assumption RY 6✓ RX , choose a689

vector w 2 RY \ RX . Since Rdc is a finite dimensional inner product space and RX is its finite690

dimensional subspace, we can decompose w = w|| + v with w|| 2 RX and v 2 R?
X . Because691

w /2 RX , the orthogonal component v is non-zero.692

(i) Term from I(m)
X . From the Fundamental Theorem of Linear Algebra, for any symmetric matrix S,693

kerS = range(S)?; hence R?
X = ker I(m)

X . Thus694

v>I(m)
X v = 0.

(ii) Term from I(m)
Y . Because w 2 RY = range(I(m)

Y ), there exists u with w = I(m)
Y u. Suppose, for695

contradiction, that I(m)
Y v = 0. Then v 2 ker I(m)

Y = R?
Y , so v ? w. But w · v = (wk + v) · v =696

wk·v+kvk2 = kvk2 > 0 because v ? wk while v 6= 0. This contradicts v ? w; therefore I(m)
Y v 6= 0697

and, by positive semidefiniteness,698

v>I(m)
Y v > 0.

Combining the above inequalities yields v>I(m)
Y v > v>I(m)

X v, with v 6= 0, which is the desired699

inequality.700
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D UML Algorithm Pseudocode701

In this section we present the full pseudocode for UML as shown in Algorithm 1.702

Algorithm 1 Pytorch Pseudocode

# f_img: image encoder (frozen or trainable)
# is_trainable: True if f_img is trainable else False
# f_text: frozen text encoder
# g: alignment network
# h: classification head

while not converged: # training loop
x_img = fetch_next(image_loader) # image minibatch
x_text = fetch_next(text_loader) # text minibatch (random/unaligned)

z_img = f_img(x_img) # image embeddings
z_text = f_text(x_text) # text embeddings

logits_img = h(z_img) * alpha_image # predict image labels
logits_text = h(z_text) * alpha_text # predict text labels

loss_img = CE(logits_img, labels_img) # image classification loss
loss_text = CE(logits_text, labels_text) # text classification loss
loss = loss_img + lambda * loss_text # total loss

loss.backward() # back-propagate
update(h, f_img) if is_trainable else update(h) # SGD update

# Define Cross-Entropy loss
def CE(logits, labels):

return -sum(labels * log_softmax(logits, dim=1)) / len(labels)

E Additional Experiments703

E.1 Improving Image Classification using Unpaired Texts (Unaligned encoders)704

In this section we report image-classification results on ten benchmarks (see Appendix B.3), covering705

three settings:706

1. Full-dataset fine-tuning: train both the vision backbone and classification head (Ap-707

pendix E.1.1).708

2. Full-dataset linear probe: train only the classification head (Appendix E.1.2).709

3. Few-shot linear probe: train only the classification head under few-shot conditions (Ap-710

pendix E.1.3).711

In each setting, we compare UML with baselines across all datasets and multiple DINO-initialized712

vision backbones.713

E.1.1 Supervised Finetuning (across architectures)714

In this section, we fine-tune both the vision backbone and the linear classifier on ten downstream715

tasks, comparing UML against strong image-only baselines. We evaluate four DINO-initialized716

backbones:717

• ViT-B/16 in Table 5718

• ViT-B/8 in Table 6719

• DINOv2 ViT-S/14 in Table 7720
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• DINOv2 ViT-B/14 in Table 8721

Results for DINOv2 ViT-L/14 are omitted due to computational constraints. Across all backbones,722

UML consistently improves over the image-only baseline by leveraging unpaired text embeddings. For723

some backbones such as DINOv2 VIT-B/16, our head-initialization variant (Ours (init)) outperforms724

training using unpaired multimodal data from scratch (Ours), while in others it does not.725

Table 5: Full finetuning on classification with ViT-B/16 DINO and OpenLLaMA-3B. We compare
our proposed approach with the image-only baseline when fine-tuning on the target dataset. All
vision encoders are initialized from DINO weights, and our approach leverages unpaired text data
using OpenLLaMA-3B embeddings.
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Unimodal 78.41 63.99 62.12 74.17 81.43 82.38 92.00 98.24 96.31 81.01
Ours 82.56 67.04 67.38 76.42 84.06 81.79 93.20 98.98 97.04 83.16
Ours (init) 81.95 67.12 68.29 73.84 84.31 81.12 92.60 98.73 96.84 82.76

Table 6: Full finetuning on classification with ViT-B/8 DINO and OpenLLaMA-3B. We compare
our proposed approach with the image-only baseline when fine-tuning on the target dataset. All
vision encoders are initialized from DINO weights, and our approach leverages unpaired text data
using OpenLLaMA-3B embeddings.
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Unimodal 85.67 68.04 72.60 76.65 83.94 85.32 93.06 99.22 96.82 84.59
Ours 87.95 70.28 75.31 77.19 85.59 84.83 93.05 99.43 97.12 85.64
Ours (init) 87.44 70.03 76.09 76.24 86.49 84.71 93.81 99.27 97.16 85.69

Table 7: Full finetuning on classification with ViT-S/14 DINOv2 and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when fine-tuning on the target dataset.
All vision encoders are initialized from DINOv2 weights, and our approach leverages unpaired text
data using OpenLLaMA-3B embeddings.
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Unimodal 79.45 66.20 66.99 72.16 83.18 80.65 90.67 99.18 95.45 81.54
Ours 84.87 66.72 71.54 74.14 84.77 81.16 91.87 99.55 97.03 83.52
Ours (init) 86.39 66.03 73.44 74.27 84.69 81.97 91.72 99.82 97.60 83.99
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Table 8: Full finetuning on classification with ViT-B/14 DINOv2 and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when fine-tuning on the target dataset.
All vision encoders are initialized from DINOv2 weights, and our approach leverages unpaired text
data using OpenLLaMA-3B embeddings.
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Unimodal 89.62 71.45 77.29 73.88 88.00 82.94 94.55 99.88 97.69 86.14
Ours 90.93 70.97 80.02 75.83 87.52 86.25 94.74 99.88 97.57 87.08
Ours (init) 90.73 70.92 80.23 75.87 87.60 83.43 94.47 99.80 97.93 86.77

E.1.2 Linear Probing (across architectures)726

In this section, we train only the linear classifier, on top of the frozen vision and language backbone,727

on ten downstream tasks, comparing UML against strong image-only baselines. We evaluate five728

DINO-initialized backbones:729

• ViT-B/16 in Table 9730

• ViT-B/8 in Table 10731

• DINOv2 ViT-S/14 in Table 11732

• DINOv2 ViT-B/14 in Table 12733

• DINOv2 ViT-L/14 in Table 13734

Across all backbones, UML consistently improves over the image-only baseline by leveraging735

unpaired text embeddings. For all backbones, our head-initialization variant (Ours (init)) outperforms736

training using unpaired multimodal data from scratch (Ours).737

Table 9: Full linear probing on classification with ViT-B/16 DINO and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when training a linear probe on the
target dataset. All vision encoders are initialized from DINO weights, and our approach leverages
unpaired text data using OpenLLaMA-3B embeddings.
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Unimodal 67.10 64.63 56.02 72.42 81.27 74.96 93.07 98.32 95.01 78.08
Ours 68.71 65.14 57.42 72.95 82.06 75.30 93.18 98.46 96.19 78.82
Ours (init) 68.60 65.59 57.98 73.11 82.40 75.73 93.62 98.42 96.35 79.09
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Table 10: Full linear probing on classification with ViT-B/8 DINO and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when training a linear probe on the
target dataset. All vision encoders are initialized from DINO weights, and our approach leverages
unpaired text data using OpenLLaMA-3B embeddings.
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Unimodal 72.01 67.19 62.02 76.18 82.95 78.57 91.99 98.78 96.23 80.66
Ours 72.93 68.17 63.49 77.13 83.16 79.87 92.59 98.50 96.47 81.37
Ours (init) 72.81 68.36 64.09 76.48 83.72 80.01 92.50 98.74 96.43 81.46

Table 11: Full linear probing on classification with ViT-S/14 DINOv2 and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when training a linear probe on the
target dataset. All vision encoders are initialized from DINOv2 weights, and our approach leverages
unpaired text data using OpenLLaMA-3B embeddings.
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Unimodal 77.48 70.72 66.28 78.25 82.64 84.39 94.29 99.62 97.00 83.40
Ours 78.45 71.53 67.33 78.70 83.51 84.67 94.70 99.82 97.11 83.98
Ours (init) 78.58 72.24 67.50 79.51 83.57 84.74 94.78 99.89 97.15 84.22

Table 12: Full linear probing on classification with ViT-B/14 DINOv2 and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when training a linear probe on the
target dataset. All vision encoders are initialized from DINOv2 weights, and our approach leverages
unpaired text data using OpenLLaMA-3B embeddings.

Dataset

Method St
an

fo
rd

C
ar

s

SU
N

39
7

FG
V

C
A

irc
ra

ft

D
TD

U
C

F1
01

Fo
od

10
1

O
xf

or
d

Pe
ts

O
xf

or
d

Fl
ow

er
s

C
al

te
ch

10
1

A
ve

ra
ge

Unimodal 85.46 75.42 72.34 79.73 87.26 88.70 95.56 99.76 97.81 86.89
Ours 85.40 75.22 75.22 80.73 87.21 89.02 95.83 99.88 97.85 87.37
Ours (init) 85.74 75.70 74.17 81.32 87.26 88.78 95.78 99.88 97.93 87.40
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Table 13: Full linear probing on classification with ViT-L/14 DINOv2 and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when training a linear probe on the
target dataset. All vision encoders are initialized from DINOv2 weights, and our approach leverages
unpaired text data using OpenLLaMA-3B embeddings.
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Unimodal 88.16 77.26 74.32 81.56 89.82 90.95 96.27 99.84 97.97 88.46
Ours 88.45 77.20 76.93 82.39 90.19 91.09 96.51 99.92 98.01 88.97
Ours (init) 87.99 77.75 77.20 82.51 90.17 91.29 96.32 99.92 97.93 89.01
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E.1.3 Few-shot Linear Probing (across architectures)738

In this section, we train only the linear classifier, on top of the frozen vision and language backbone,739

for few-shot classification on ten downstream tasks, comparing UML against strong image-only740

baselines. We evaluate five DINO-initialized backbones: ViT-B/16 in Table 15, ViT-B/8 in Table 14,741

DINOv2 ViT-S/14 in Table 16, DINOv2 ViT-B/14 in Table 18, DINOv2 ViT-L/14 in Table 18. Across742

all backbones, UML consistently improves over the image-only baseline by leveraging unpaired text743

embeddings. For all backbones, our head-initialization variant (Ours (init)) outperforms training744

using unpaired multimodal data from scratch (Ours).745

Table 14: Linear evaluation of frozen features on 11 fine-grained benchmarks for few-shot
learning. We compare our proposed approach with the image-only baseline by training a linear
classifier on top of frozen VIT-B/8 DINO features. Our method leverages unpaired text data using
OpenLLaMA-3B

Dataset

Train Shot Method St
an

fo
rd

C
ar

s

Su
n3

97

Fg
vc

A
irc

ra
ft

D
td

U
cf

10
1

Fo
od

10
1

Im
ag

en
et

O
xf

or
d

Pe
ts

O
xf

or
d

Fl
ow

er
s

C
al

te
ch

10
1

A
ve

ra
ge

1 Unimodal 7.40 26.37 12.16 28.62 39.75 19.23 42.81 54.97 58.22 74.13 36.37
Ours 7.71 28.01 13.56 33.22 42.08 21.13 43.27 55.85 58.61 77.51 38.10
Ours (init) 9.24 34.23 14.49 36.27 47.55 24.81 46.75 60.09 61.59 80.23 41.52

2 Unimodal 14.43 37.96 20.28 39.80 53.03 30.62 54.75 68.12 77.59 81.91 47.85
Ours 15.71 40.74 21.04 43.74 55.86 33.52 54.49 69.86 77.18 84.52 49.67
Ours (init) 16.94 45.16 22.17 45.43 59.02 35.89 56.78 71.57 77.94 86.06 51.70

4 Unimodal 25.67 49.23 29.39 52.52 64.27 43.82 61.64 75.85 87.41 90.36 58.02
Ours 27.30 51.23 31.43 54.31 66.72 45.58 61.51 77.51 87.96 91.36 59.49
Ours (init) 28.54 53.68 31.31 56.13 67.47 47.40 62.84 79.10 88.29 91.98 60.67

8 Unimodal 41.04 56.86 40.03 61.15 72.39 54.47 66.10 82.30 93.95 92.28 66.06
Ours 43.76 58.14 42.56 63.12 73.13 56.30 66.36 84.27 94.25 92.71 67.46
Ours (init) 44.16 59.80 42.30 64.46 74.30 57.07 67.18 84.85 94.00 93.24 68.14

16 Unimodal 57.72 61.74 52.63 67.69 76.18 62.63 68.87 87.31 96.41 94.27 72.54
Ours 60.11 63.21 54.53 69.33 78.13 63.74 69.44 87.73 96.89 94.54 73.76
Ours (init) 60.36 64.26 54.81 70.27 78.76 64.13 70.05 88.23 96.63 94.73 74.22

Table 15: Linear evaluation of frozen features on 11 fine-grained benchmarks for few-shot
learning. We compare our proposed approach with the image-only baseline by training a linear
classifier on top of frozen VIT-B/16 DINO features. Our method leverages unpaired text data using
OpenLLaMA-3B
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1 Unimodal 6.28 22.43 9.72 29.22 37.85 15.40 38.67 60.12 54.62 73.25 34.76
Ours 7.89 26.08 10.41 32.45 40.27 18.14 39.28 60.88 58.32 75.66 36.94
Ours (init) 8.96 31.34 12.12 34.22 44.32 21.46 42.68 66.39 60.37 79.74 40.16

2 Unimodal 12.64 35.64 14.98 38.93 51.14 26.05 50.34 70.84 75.61 83.16 45.93
Ours 14.38 38.62 17.00 40.37 54.28 29.24 50.83 72.88 77.14 85.95 48.07
Ours (init) 15.99 42.31 17.65 42.89 56.46 32.15 52.90 74.82 77.32 87.34 49.98

4 Unimodal 22.60 45.95 24.27 50.30 63.00 38.51 57.99 80.14 85.60 89.67 55.80
Ours 24.83 48.62 25.76 52.64 64.39 40.74 57.96 80.92 87.20 91.17 57.42
Ours (init) 25.83 51.01 26.35 55.06 65.86 42.69 59.32 82.23 87.83 91.99 58.82

8 Unimodal 37.68 52.94 33.67 59.18 70.62 49.48 62.97 85.26 92.83 93.17 63.78
Ours 39.31 55.31 35.56 60.48 71.88 50.46 63.08 86.25 93.23 93.47 64.90
Ours (init) 40.50 57.03 35.64 62.27 73.18 51.50 64.09 86.93 93.59 93.71 65.84

16 Unimodal 52.48 58.27 45.34 64.81 75.72 56.24 66.36 88.57 95.90 94.27 69.80
Ours 55.84 60.57 47.70 66.21 76.81 58.26 66.47 89.60 96.55 95.12 71.31
Ours (init) 55.82 61.73 48.14 67.02 77.39 58.76 67.08 90.53 96.62 94.98 71.81
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Table 16: Linear evaluation of frozen features on 11 fine-grained benchmarks for few-shot
learning. We compare our proposed approach with the image-only baseline by training a linear
classifier on top of frozen VIT-S/14 DINOv2 features. Our method leverages unpaired text data using
OpenLLaMA-3B
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1
Unimodal 13.18 34.15 14.09 36.60 46.74 35.18 36.48 63.51 89.62 76.66 44.62
Ours 14.95 37.25 14.88 38.93 49.18 37.91 38.35 68.92 91.42 84.04 47.58
Ours (init) 16.49 41.79 15.63 42.04 52.33 42.27 42.69 73.59 93.64 84.52 50.50

2
Unimodal 24.68 47.88 23.09 47.75 56.81 48.54 50.41 75.32 96.02 86.90 55.73
Ours 26.93 49.65 24.29 50.99 61.67 51.77 51.31 79.44 96.90 89.80 58.28
Ours (init) 28.65 53.15 24.78 53.25 63.86 54.44 54.21 81.41 97.63 90.55 60.19

4
Unimodal 38.76 57.51 32.10 59.69 67.75 60.79 58.73 83.89 98.59 93.48 65.12
Ours 41.69 58.87 33.38 61.58 69.60 62.69 59.69 86.27 98.84 94.56 66.71
Ours (init) 43.17 60.89 33.86 62.43 71.13 63.88 61.38 87.36 99.17 94.96 67.82

8
Unimodal 54.56 63.00 45.05 64.78 74.19 68.06 64.53 88.68 99.27 94.35 71.65
Ours 56.27 64.57 45.98 66.31 75.19 69.22 65.14 89.78 99.27 95.42 72.71
Ours (init) 57.91 65.82 47.40 67.81 75.99 69.71 66.40 90.29 99.54 95.84 73.67

16
Unimodal 67.96 67.35 55.89 71.36 77.92 73.24 68.14 90.73 99.63 96.43 76.22
Ours 69.42 68.50 58.54 72.24 78.69 73.80 68.70 91.87 99.72 96.63 77.80
Ours (init) 70.32 69.19 58.74 73.17 79.58 74.51 69.44 92.47 99.82 96.80 78.81

Table 17: Linear evaluation of frozen features on 10 fine-grained benchmarks for few-shot
learning with DINOv2 ViT-B/14. We compare our proposed approach with the image-only baseline
by training a linear classifier on top of frozen VIT-B/14 DINOv2 features. Our method leverages
unpaired text data using OpenLLaMA-3B
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1 Unimodal 22.42 43.03 15.79 38.85 58.57 48.71 52.26 76.47 97.12 83.64 53.69
Ours 23.10 45.12 16.22 42.69 61.05 51.30 52.45 78.14 98.08 87.68 55.58
Ours (init) 25.47 48.56 16.83 45.31 63.53 54.16 55.56 81.08 97.94 88.13 57.66

2 Unimodal 35.17 55.41 25.54 51.16 69.49 62.13 62.35 84.31 99.58 89.55 63.47
Ours 37.38 56.98 25.88 54.65 70.61 63.89 63.21 85.50 99.70 92.02 64.98
Ours (init) 38.78 59.81 26.00 55.61 71.38 66.54 65.06 86.49 99.62 92.79 66.21

4 Unimodal 51.40 63.68 34.25 61.25 76.32 71.60 68.86 89.05 99.76 94.51 71.07
Ours 54.26 64.65 35.52 62.63 76.87 72.33 69.14 90.00 99.70 95.51 72.06
Ours (init) 55.01 66.55 35.14 63.97 77.57 73.25 70.30 90.31 99.57 95.65 72.73

8 Unimodal 66.01 68.88 48.17 66.67 79.92 76.26 72.48 90.97 99.80 95.54 76.47
Ours 68.53 69.75 50.88 68.46 81.44 77.34 73.12 92.39 99.70 96.20 77.78
Ours (init) 67.91 70.66 51.26 69.56 81.85 77.95 73.75 92.50 99.68 96.51 78.16

16 Unimodal 77.31 72.17 62.38 73.76 83.80 80.74 75.15 93.34 99.81 97.40 81.59
Ours 78.92 72.80 64.51 75.16 84.62 81.00 75.46 92.92 99.59 97.38 82.24
Ours (init) 78.52 73.18 65.81 75.65 84.77 81.18 75.82 93.28 99.78 97.57 82.56
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Table 18: Linear evaluation of frozen features on 10 fine-grained benchmarks for few-shot
learning with DINOv2 ViT-L/14. We compare our proposed approach with the image-only baseline
by training a linear classifier on top of frozen VIT-L/14 DINOv2 features. Our method leverages
unpaired text data using OpenLLaMA-3B
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1 Unimodal 24.89 48.36 17.69 38.77 66.46 59.27 57.50 79.83 98.13 82.96 57.39
Ours 25.88 49.63 18.08 42.93 69.18 60.12 58.37 83.51 98.42 86.23 59.24
Ours (init) 27.90 52.86 18.95 43.18 70.98 63.17 60.80 83.86 98.59 88.17 60.85

2 Unimodal 39.95 58.95 26.87 50.18 75.79 70.74 67.14 84.71 99.74 89.82 66.39
Ours 41.22 60.82 27.15 53.01 76.61 72.07 67.90 86.07 99.72 91.95 67.65
Ours (init) 42.93 63.36 28.14 54.96 77.72 73.87 69.20 87.13 99.81 91.71 68.88

4 Unimodal 56.49 66.37 38.59 59.08 80.84 77.39 72.41 89.90 99.73 94.44 73.52
Ours 58.19 67.36 39.57 61.78 81.36 78.19 72.82 90.99 99.76 95.27 74.53
Ours (init) 58.60 68.84 39.19 62.77 81.50 78.99 73.63 90.74 99.88 96.02 75.02

8 Unimodal 70.00 70.71 51.57 66.47 83.84 81.69 76.02 93.53 99.89 95.55 78.93
Ours 71.63 71.59 55.13 67.91 84.47 82.12 76.43 93.62 99.88 96.36 79.91
Ours (init) 72.02 72.51 55.49 69.03 84.57 82.52 76.78 93.80 99.89 96.73 80.33

16 Unimodal 80.84 73.83 64.13 73.96 87.43 84.58 77.78 94.69 99.91 97.36 83.45
Ours 81.85 74.39 69.45 74.70 87.35 84.58 78.35 94.59 99.89 97.61 84.28
Ours (init) 82.76 74.80 69.42 74.88 87.65 84.96 78.58 94.42 99.81 97.62 84.49

E.2 Improving Image Classification using Unpaired Texts (Aligned encoders)746

E.2.1 Supervised Finetuning747

In this section, we fine-tune both the vision backbone and the linear classifier on nine downstream748

tasks, comparing UML against strong image-only baselines. We evaluate two different backbones:749

ResNet-50 and VIT-B/16.750

As shown in Table 19, across all backbones, UML consistently improves over the image-only751

baseline by leveraging unpaired text embeddings. Further, our head-initialization variant (Ours (init))752

outperforms training using unpaired multimodal data from scratch (Ours).753

Table 19: Supervised finetuning on 9 fine-grained classification benchmarks with CLIP. We
compare our proposed approach with the image-only baseline when fine-tuning on the target dataset.
All vision encoders are initialized from CLIP ResNet50 weights, and our approach leverages unpaired
text data using the corresponding CLIP text encoder.
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Unimodal 36.12 25.93 37.70 51.06 52.49 69.24 63.17 88.42 83.61 56.42
Ours 37.00 24.05 41.34 55.67 60.48 69.77 74.49 92.57 84.79 60.02
Ours (init) 72.75 62.33 66.58 56.50 67.54 76.95 86.97 94.80 87.95 74.71

28



Table 20: Full linear probing on classification with CLIP ResNet-50 Image Encoder and Text
encoder. We compare our proposed approach with the image-only baseline when training a linear
probe on the target dataset. All vision encoders are initialized from ResNet-50 weights, and our
approach leverages unpaired text data using the corresponding CLIP text embeddings.
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Unimodal 76.36 70.97 41.88 72.81 81.23 81.60 88.39 97.89 92.78 78.21
Ours 77.23 71.18 42.66 71.81 81.81 81.51 87.84 97.65 93.01 78.30
Ours (init) 79.14 73.83 42.81 73.76 82.13 82.44 90.90 97.69 94.19 79.65

E.2.2 Linear Probing754

In this section, we train only the linear classifier, on top of the frozen vision and language backbone755

from CLIP, on ten downstream tasks, comparing UML against strong image-only baselines. We756

evaluate two different backbones: ResNet-50 and VIT-B/16.757

As shown in Table 20, across both backbones, UML consistently improves over the image-only758

baseline by leveraging unpaired text embeddings. Further, our head-initialization variant (Ours (init))759

outperforms training using unpaired multimodal data from scratch (Ours).760

E.2.3 Few-shot linear Probing (across architectures)761

In this section, we train only the linear classifier, on top of the frozen vision and language backbone762

from CLIP, for few-shot classification on ten downstream tasks, comparing UML against strong763

image-only baselines. We evaluate two different backbones: ResNet-50 and VIT-B/16.764

As shown in Table 21 and Table 22, across both backbones, UML consistently improves over the765

image-only baseline by leveraging unpaired text embeddings. Further, our head-initialization variant766

(Ours (init)) outperforms training using unpaired multimodal data from scratch (Ours).767

E.3 Improving Visual Robustness Using Unpaired Texts768

In this section, we evaluate the robustness of models trained with UML to test-time distribution shifts.769

We train a k-shot linear probe (where k 2 {1, 2, 4, 8}) with DINOv2 on ImageNet and evaluate770

across four distribution-shifted target datasets: ImageNet-V2, ImageNet-Sketch, ImageNet-A, and771

ImageNet-R. Our method consistently improves robustness over the unimodal baseline (Figure 7,772

Figure 8, Figure 9 and Figure 10) across different training shots, indicating that language priors help773

capture more transferable features.774

Distribution Shift Results

Shot-1

Shot-2

Figure 7: Robustness under test-time distribution shifts. Our approach (trained on 1-shot) is much
more robust than its unimodal counterpart across four distribution-shuffled target test sets.
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Table 21: Linear evaluation of frozen features on 10 fine-grained benchmarks for few-shot
learning. We compare our proposed approach with the image-only baseline by training a linear
classifier on top of frozen CLIP ResNet50 features. Our method leverages unpaired text data using
the corresponding CLIP text encoder
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1 Unimodal 23.24 29.14 12.38 30.24 37.55 27.26 34.61 21.36 59.07 66.52 34.14
Ours 36.32 45.40 16.84 40.92 53.19 49.76 53.03 36.48 68.56 76.80 47.73
Ours (init) 57.88 64.59 22.23 50.85 65.99 76.73 86.59 60.92 81.08 83.79 65.06

2 Unimodal 38.37 43.83 18.63 40.33 53.25 44.60 47.75 32.62 75.03 78.90 47.33
Ours 46.64 53.53 20.81 48.35 62.01 56.67 60.64 42.21 77.97 84.58 55.34
Ours (init) 61.86 65.90 24.19 55.30 70.39 77.07 87.40 61.40 86.20 85.94 67.57

4 Unimodal 51.34 54.38 23.08 52.07 64.06 57.29 61.32 41.72 86.16 85.41 57.68
Ours 55.21 59.48 24.77 56.78 67.65 62.68 67.31 47.04 86.46 87.23 61.46
Ours (init) 65.80 68.11 27.49 60.13 73.62 77.79 86.54 62.37 91.60 87.57 70.10

8 Unimodal 61.74 61.47 30.22 60.15 70.16 64.63 68.94 49.48 92.20 89.14 64.81
Ours 62.75 63.70 30.69 61.84 70.74 67.73 73.62 52.14 92.31 89.89 66.54
Ours (init) 69.78 69.61 31.62 64.13 77.24 78.58 89.07 63.34 94.21 91.58 72.92

16 Unimodal 70.94 65.53 35.91 64.30 75.13 70.67 78.49 55.07 95.21 91.26 70.25
Ours 71.58 67.08 36.23 65.62 76.09 71.63 79.52 56.92 95.44 91.94 71.20
Ours (init) 74.56 71.33 37.13 68.09 78.66 79.06 89.71 64.31 96.17 93.31 75.23

Table 22: Linear evaluation of frozen features on 10 fine-grained benchmarks for few-shot
learning. We compare our proposed approach with the image-only baseline by training a linear
classifier on top of frozen CLIP VIT-B/16 features. Our method leverages unpaired text data using
the corresponding CLIP text encoder
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1 Unimodal 31.53 33.51 17.76 31.72 43.64 39.40 37.43 27.65 67.95 71.68 40.23
Ours 48.28 53.44 22.06 47.04 63.40 63.92 60.95 47.35 77.82 83.14 56.74
Ours (init) 67.76 70.13 32.26 55.16 75.02 84.25 90.91 69.50 87.58 88.87 72.14

2 Unimodal 48.45 48.70 23.38 42.04 60.08 58.30 53.56 41.68 82.01 83.20 54.14
Ours 57.89 59.95 27.19 52.27 69.60 71.18 66.78 54.24 87.43 90.20 63.67
Ours (init) 70.75 71.52 33.99 60.17 78.37 85.39 90.67 70.19 92.18 90.09 74.33

4 Unimodal 61.64 60.66 31.01 54.37 70.49 71.91 69.35 52.15 90.99 91.08 65.36
Ours 66.24 65.56 32.98 59.95 74.16 76.19 75.92 58.50 91.32 93.23 69.40
Ours (init) 74.58 73.54 37.38 64.30 81.10 86.05 91.64 70.89 94.80 93.70 76.80

8 Unimodal 71.76 66.67 38.47 61.96 77.11 78.16 78.25 59.90 95.20 92.98 72.05
Ours 72.77 69.50 39.09 64.89 79.01 80.07 80.85 62.63 94.98 94.36 73.82
Ours (init) 78.43 75.07 41.77 68.50 83.41 86.87 92.55 71.97 96.94 95.27 79.08

16 Unimodal 78.76 71.49 44.74 68.79 80.43 82.08 85.16 63.87 96.97 94.54 76.68
Ours 79.40 72.19 45.06 69.41 81.97 82.12 85.92 64.93 96.49 95.28 77.28
Ours (init) 82.38 76.51 47.14 72.13 84.66 86.60 92.68 72.79 97.70 96.08 80.87
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Distribution Shift Results

Shot-1

Shot-2

Figure 8: Robustness under test-time distribution shifts. Our approach (trained on 2-shots) is
much more robust than its unimodal counterpart across four distribution-shuffled target test sets.

Distribution Shift Results

Shot-4

Shot-8

Figure 9: Robustness under test-time distribution shifts. Our approach (trained on 4-shots) is
much more robust than its unimodal counterpart across four distribution-shuffled target test sets.

Distribution Shift Results

Shot-4

Shot-8

Figure 10: Robustness under test-time distribution shifts. Our approach (trained on 8-shots) is
much more robust than its unimodal counterpart across four distribution-shuffled target test sets.

E.4 Marginal Rate-of-Substitution Between Modalities775

How many words is an image worth? In this section, we extend our results to evaluate image-text776

conversion ratios using test accuracy isolines on the remaining eight datasets. We measure these777

global equivalence ratios by fitting a plane to the accuracy values given the number of image and778

text shots. Figures 11 to 18 demonstrate the conversion ratios for DINOv2 VIT-S/14 as the vision779

backbone and OpenLLaMa-3B as the text backbone (unaligned encoders). Analogously, Figures 19780

to 26 show the same ratios for CLIP ResNet-50 as the vision and text encoders (aligned encoders).781

As expected, with the fully aligned CLIP backbone, each image equates to far fewer text prompts782

than under the unaligned DINO setting, showing the higher efficiency of aligned embeddings.783

E.4.1 Unaligned Encoders784
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Figure 11: SUN397. 1 img ⇡ 1568 words Figure 12: Caltech101. 1 img ⇡ 1248 words

Figure 13: Stanford Cars. 1 img ⇡ 1799 words Figure 14: DTD. 1 img ⇡ 2309 words

Figure 15: FGVC Aircraft. 1 img ⇡ 3220 words Figure 16: Oxford Flowers. 1 img ⇡ 1895 words

Figure 17: Food101. 1 img ⇡ 2608 words Figure 18: UCF101. 1 img ⇡ 2617 words
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E.4.2 Aligned Encoders (CLIP)785

Figure 19: SUN397. 1 img ⇡ 221 words Figure 20: Caltech101. 1 img ⇡ 256 words

Figure 21: Stanford Cars. 1 img ⇡ 649 words Figure 22: DTD. 1 img ⇡ 228 words

Figure 23: FGVC Aircraft. 1 img ⇡ 691 words Figure 24: Oxford Flowers. 1 img ⇡ 851 words
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Figure 25: Food101. 1 img ⇡ 202 words Figure 26: UCF101. 1 img ⇡ 393 words

Figure 27: Oxford Pets. 1 img ⇡ 228 words

E.5 Impact of Scaling Vision Backbone786

In this section, we study how our method’s performance scales with the size and architecture of the787

vision backbone. In addition to ViT-S/14 DINOv2, we extend our analysis to a range of ViT-based788

architectures, including ViT-B/14 and ViT-L/14 DINOv2 and ViT-B/16 and ViT-B/8 DINO models.789

To ensure a fair comparison, we follow the same training protocol as in previous experiments. Our790

method consistently outperforms the unimodal baselines in every setting. In few-shot linear probing791

across ViT-B/8, ViT-B/16, DINOv2-ViTs and ViT-L/14 backbones (Tables 14 to 18), we see clear792

gains. The same holds for full-dataset end-to-end fine-tuning of both encoder and head (Tables 5, 6793

and 8 and ??), and even when only the linear classifier is trained on the full splits (Tables 9 to 13).794

E.6 Impact of Varying Text Encoders795

In this section, we study how our method’s performance varies with different language models used796

for generating text embeddings. Through this experiment, we aim to understand how differences in797

embedding quality and model capacity affect the integration of textual information in our multimodal798

setup. Specifically, we cover LLMs with diverse architectures and scales, including BERT-Large,799

RoBERTa-Large and GPT-2 Large. As shown in Figure 28, adding unpaired text embeddings shows800

a significant boost in 1-shot accuracy and still decent gains at 16 shots on SUN397 dataset. Overall,801

OpenLLaMA-3B outperforms all other language models.802
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Figure 28: Few-shot classification accuracy on SUN397 using UML with unpaired, frozen embeddings
from various pretrained language models.

E.7 Learning with Coarse-Grained vs. Fine-Grained Textual Cues803

Understanding the type of information extracted from textual cues is crucial to assessing the effective-804

ness of our multimodal approach. A key question is whether the model merely utilizes class names or805

goes beyond to capture richer, more descriptive features. To investigate this, we compare the perfor-806

mance of our method using two types of text templates: a vanilla template that consists solely of the807

class name (e.g., "a photo of a [class]") and descriptive templates generated from GPT-3, as detailed808

in Section ??. As shown in ?? and Figure 30, both multimodal approaches consistently outperform809

the unimodal baseline, with descriptions from GPT-3 offering a more substantial performance gain.810

This shows that leveraging richer, contextually diverse text cues can significantly enhance model811

performance, even in low-shot learning scenarios.812

Figure 29: Few-shot SUN397 accuracy with UML
using two levels of textual granularity: (a) vanilla
class descriptions and (b) GPT-3–generated fine-
grained descriptions.

Figure 30: Few-shot SUN397 accuracy with
UML (init) using two levels of textual granular-
ity: (a) vanilla class descriptions and (b) GPT-
3–generated fine-grained descriptions.

E.8 Impact on Performance with Increasing Unpaired Text Prompts813

Here, we investigate how classification accuracy evolves as we augment each image with an increasing814

number of unpaired text prompts . Figure 31 shows these accuracy curves as we vary the number of815
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unpaired text prompts per image shot across five image-shot budgets. In every regime, our multimodal816

initialization (“Ours (init)”) outperforms training the head from scratch, with most of the gain coming817

from the first few prompts and gains tapering off thereafter. Note that we do not enforce diversity or818

novelty in the unpaired text prompts—simply adding more sentences does not guarantee additional819

information.820

Figure 31: Classification accuracy as a function of the number of text prompts per image shot for the
SUN397 Dataset.

E.9 Additional Experiments for Audio-Visual Setting821

In this section, we extend our unpaired multimodal framework to the tri-modal ImageNet–ESC822

benchmark, examining how unpaired audio and text signals can enhance image classification under823

both aligned (Appendix E.9.2) and unaligned encoders(Appendix E.9.1). We then reverse the824

setting, showing that unpaired visual and textual context likewise improves audio classification825

(Appendix E.9.3).826

E.9.1 Improving Image Classification with Unpaired Audio and Text (Unaligned encoders)827

Image Benchmarks (Appendix)

(a) ImageNet-ESC-19 (b) ImageNet-ESC-27

Image (DINO)

Figure 32: UML improves image classification using unpaired audio and text samples on both
ImageNet-ESC-19 and ImageNet-ESC-27 benchmarks when trained on top of DINOv2 VIT-S/14
and OpenLLaMa-3B.

E.9.2 Improving Image Classification with Unpaired Audio and Text (Aligned encoders)828
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Image Benchmarks (Appendix)

(a) ImageNet-ESC-19 (b) ImageNet-ESC-27

Image (RN50 CLIP)

Figure 33: UML improves image classification using unpaired audio and text samples on both
ImageNet-ESC-19 and ImageNet-ESC-27 benchmarks when trained on top of CLIP ResNet-50
image and text encoders

E.9.3 Improving Audio Classification with Unpaired Image and Text (Aligned encoders)829

Audio Benchmarks (Appendix)

(a) ImageNet-ESC-19 (b) ImageNet-ESC-27

Audio (RN50 CLIP)

Figure 34: UML improves audio classification using unpaired image and text samples on both
ImageNet-ESC-19 and ImageNet-ESC-27 benchmarks when trained on top of CLIP ResNet-50
image and text encoders

E.10 Gaussian Experiments830

Here, we shift our attention to a more nuanced and intriguing question: can incorporating unpaired831

multimodal data actually improve the reconstruction quality of a single modality? At first glance, this832

seems unlikely—why would adding data from a different modality make X reconstruction better than833

training with X? Moreover, we push this question further: can incorporating data from a different834

modality, while keeping the total dataset size fixed, still improve the reconstruction of X compared to835

using the same number of samples X dataset alone? This setup isolates the importance of multimodal836

information from mere data scaling, and surprisingly, our experiments show that this improvement is837

indeed possible.838

To investigate this, we design a synthetic experiment inspired by our theoretical framework in ??. We839

generate data from two partially overlapping modalities, X and Y , derived from a shared latent space840

✓c, while also containing unique components (✓x and ✓y). The observations follow the same linear841

structure as in our theory:842

Xi = Ac,i✓c +Ax,i✓x + ✏X,i

Yj = Bc,j✓c +By,j✓y + ✏Y,j

The overlap ratio, denoted as p, controls how much of the shared latent dimensions are jointly843

captured by both X and Y . We set p = 0.2, meaning that only 20% of the shared latent dimensions844

are observed by both modalities, while the remaining 40% are exclusively captured by X and Y845

respectively. This structured overlap ensures that neither modality alone can fully reconstruct the846

shared latent space, forcing the model to integrate complementary information from both.847

Our architecture consists of a shared autoencoder with separate input projections for X and Y . Each848

modality is first encoded through a modality-specific linear projection layer, followed by a shared849

latent encoder composed of two layers with ReLU nonlinearity. The encoded representation is850

then passed through a decoder, also consisting of two linear layers, to reconstruct the input. We851

use separate heads for the final reconstruction, while keeping the latent space shared to promote852

cross-modal alignment.853
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As shown in Figure 35, the surprising outcome is that training on both modalities, even when they are854

unpaired, consistently improves the reconstruction of X compared to training solely on X . More855

strikingly, this improvement holds even when the total number of training samples is fixed, with856

half the data coming from X and half from Y ; showing that the model is not just benefiting from857

increased data quantity but from the diversity and complementary information provided by the second858

modality.

Figure 35: Training on N/2 samples from X and N/2 unpaired samples from Y improves test
reconstruction on X , more than training on N samples from X .

859

F Analysis of the Learned Classifier860

F.1 Change in Decision Boundaries with Unpaired Data from Another Modality861

Our decision boundary visualizations are constructed by projecting the high-dimensional embedding862

space of a given classifier to a 2D plane. Axis 1 is computed as the normalized difference between863

the classifier weights of the two selected classes, representing the primary decision direction. Axis864

2 is chosen to be orthogonal to Axis 1, constructed from the difference between the class mean865

embeddings after removing the component parallel to Axis 1. This orthogonalization ensures that the866

two axes capture complementary aspects: Axis 1 reflects the primary model decision boundary, while867

Axis 2 captures the variation orthogonal to that decision. The final 2D projection matrix combines868

these two vectors as columns, and embedding vectors are then mapped to this plane using a simple869

dot product. Figure 36 and Figure 37 show the change in decision boundary when adding unpaired870

textual information for 2-shot classification on top of frozen CLIP ResNet-50 features for DTD and871

Oxford Flowers datasets.872

F.2 What do models learn from unpaired data?873

To understand what the model is truly learning and how its weights evolve, we develop and analyze874

three key metrics: functional margin, silhouette score, and class-prototype vectors. These metrics875

inform on how well the model distinguishes between classes and how text information influences the876

structure of feature-space877

Functional margin. This quantifies how confidently a model separates a given sample from the878

decision boundary. For a sample i belonging to class y, we calculate the margin relative to the879

next highest competing class. Specifically, we identify the second-highest logit among the incorrect880

classes, denoted as class j⇤, and compute the functional margin as881

�i =
wT

y xi � wT
j⇤xi

kwy � wj⇤k2
(3)

where wT
y xi represents the logit for the true class, while wT

j⇤xi represents the highest logit among the882

competing classes. Larger margins indicate more confident and robust classification, while smaller883
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(a) Unimodal (b) Ours

Train Image Test Image Knitted Cobwebbed Decision Boundary

Additional Plots: DTD

Cobwebbed texture looks 
like a spiderweb.

The knitted texture 
looks like a series of 
interconnected loops.

Figure 36: Impact of unpaired text on decision boundaries (CLIP ResNet50). (Left) Visual
features alone learn ambiguous class boundaries between knitted and cobwebbed. (Right) Adding
unpaired text sharpens the boundary, leveraging semantic cues to better distinguish similar categories

(a) Unimodal (b) Ours

Train Image Test Image Ball Moss Passion Flower Decision Boundary

The flower 
passion flower 
looks like a 
purple and 
white flower.

Ball moss is a 
small greenish-
brown plant

Additional Plots: Flowers

Figure 37: Impact of unpaired text on decision boundaries (CLIP ResNet50). (Left) Visual
features alone learn ambiguous class boundaries between ball moss and passion flower. (Right)
Adding unpaired text sharpens the boundary, leveraging semantic cues to better distinguish similar
categories

margins imply that the sample lies closer to a misclassification boundary. As shown in Figure 38, both884

Ours and Ours (init) exhibit substantially larger classification margins than the unimodal baseline,885

demonstrating that augmenting primary-modality training with unpaired multimodal data improves886

confidence in predictions over the primary modality.887

Figure 38: Functional margin of the linear head trained on SUN397 dataset for few-shot classification
significantly increases when training with both UML and UML with linear head initialization.

Silhouette Score and DB-Index. The Silhouette Score indicates how well-separated the clusters888

are, while the DB-Index measures intra-class compactness versus inter-class separation. Higher889

silhouette and lower DB-Index values mean better-defined clusters, indicating that text helps tighten890

intra-class spread and widen inter-class gaps. As shown in Figure 39 and Figure 40, both Ours891
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and Ours (init) exhibit reduced intra-class distances and increased inter-class separations, further892

confirming improved class separability.893

Figure 39: Silhouette Score of the linear head trained on SUN397 dataset for few-shot classification
significantly increases when training with both UML and UML with linear head initialization.

Figure 40: DB-Index of the linear head trained on SUN397 dataset for few-shot classification
significantly improves when training with both UML and UML with linear head initialization.

Class-Prototype Vectors. These vectors are the rows of the final linear layer’s weight matrix,894

representing the class centroids in the shared embedding space. We compute a heatmap of inner895

products between class prototypes and average text embeddings of the corresponding class to assess896

how well text features align with class centers. This helps reveal how the model organizes multimodal897

information. Figure 41 shows a pronounced diagonal structure, indicating that each class’s text898

embedding aligns closely with the learned weights of the model.899

Figure 41: Inner products between each linear-head weight vector and its class’s mean text embedding,
demonstrating that text features align well with class prototypes.
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