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A SUPPLEMENTARY MATERIAL

A.1 MODELS IN THE EXPERIMENTS

We adopt the model WideResNet-40 (Zagoruyko & Komodakis, 2016) for CIFAR10, CIFAR100,
and STL10, and AlexNet extended with BN layers (Li et al., 2021) for DomainNet. The classifier
denoted in the paper has the same architecture as the last linear layer of the training model. The
generator Gw is a MLP based model, which takes a noise ✏ and a one-hot label vector as input. The
MLP sequentially consists of a linear layer with hidden dimension 512, a batch normalization layer
with RELU as its activation function, and a representation linear layer with 512 as input dimension
and 128 as output dimension to generate virtual OoD samples z.

A.2 EXTENDED ABLATION STUDY

Effects of � for random soft label strategy. Given an one-hot encoding label vector y of class c,
we assign 1� � to the c-th entry, and a random value within (0, �) to the rest of the positions, where
� 2 (0, 0.5). We investigate the effect of � for the random soft label strategy on STL10. According
to the results in Table 8, a mild value of � shows the best results, for which we fix � = 0.2 in
Section 5. When � vanishes, the soft label degrades to the vanilla one-hot label which lacks essential
OoD hardness. When we further increase �, all information from the specific external classes will
be eliminated due to the zero condition value and the sample will be generated from other regions
randomly, which may increase the overlap with the ID data.

� Test acc " AUROC " AUPR "
0 0.8410 0.7671 0.9425

0.1 0.8258 0.7768 0.9475
0.2 0.8294 0.7872 0.9501
0.3 0.8396 0.7751 0.9450

Table 8: Effects of � for random soft label strategy. " indicates larger value is better. Bold numbers
are superior results.

Effects of the number of samples generated by the generator. Table 9 shows the effect of the
number of samples generated by the generator per iteration on CIFAR-10. As the number of generated
samples increases, we obtain 2.45% AUROC increase and 0.53% AUPR increase, respectively. With
more generated samples, not only can we obtain more sufficient samples to choose from, but we can
also achieve more precise Gaussian distribution estimations. Thus, we fix the number of samples to
be 1000 in Section 5.

Number of samples Test acc " AUROC " AUPR "
100 0.9424 0.8846 0.9732
500 0.9302 0.8979 0.9761

1000 0.9432 0.9091 0.9785

Table 9: Effects of the number of samples generated by the generator. " indicates larger value is
better. Bold numbers are superior results.

p.d.f. filter can increase sample diversity. Table 10 shows the variance of the ID p.d.f of selected
samples for three different clients on CIFAR10. According to the results, for all clients, the variance
of w/ p.d.f. filter is much larger than that of w/o p.d.f. filter , thus, the diversity for the selected
samples after p.d.f. filter is much larger than w/o p.d.f. filter .

Client w/o p.d.f. filter w/ p.d.f. filter
0 3.8117e+09 4.8624e+09
1 2.2709e+09 9.0618e+09
2 6.0931e+09 1.0391e+10

Table 10: The variance of the ID p.d.f of selected samples for three different clients.
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Effects of different FL algorithms Our proposed FOSTER is a general framework that can be
directly applied to similar FL algorithms as FedAvg, such as Fedprox (Li et al., 2020b). We report
the results for FOSTER and other baselines in Table 11 on STL10, and our FOSTER outperforms
competitive baselines for both FedAvg and its variants Fedprox.

FL algorithm Method Acc " AUROC " AUPR "

FedAvg

Energy 0.8236 0.7529 0.9228
MSP 0.8236 0.7410 0.9309
ODIN 0.8236 0.7418 0.9306
VOS 0.8264 0.7370 0.9126

FOSTER 0.8410 0.7671 0.9425

Fedprox

Energy 0.8292 0.7840 0.9296
MSP 0.8292 0.7740 0.9369
ODIN 0.8292 0.7749 0.9366
VOS 0.8262 0.7306 0.9057

FOSTER 0.8379 0.7990 0.9503

Table 11: Our FOSTER outperforms competitive baselines for both FedAvg and its variants Fedprox.

A.3 CONMMUNICATION COST FOR FOSTER

Communication cost includes per-round communication costs and the number of communication
rounds.
Per-round communication costs: Due to the reason that sharing data would violate data confi-

Figure 4: Validation accuracy for FedAvg and FOSTER. Generated OoD samples for FOSTER will
not increase conmmunication rounds of FedAvg.

dentiality in FL, we choose to broadcast the central generator to allow each local client to generate
their own virtual OoD samples. Thus, the communication cost is related to the model size of the
generator. However, we note that a generator model usually has much smaller parameters than that of
the main model that is learned, whereas the main model has to be transferred frequently between the
server and clients in most FL paradigms. For example, the model size of the generator in this paper is
only 5% of the FL global classification model. Thus, the communication cost largely depends on the
model size of the global classification model and the cost of the generator is marginal. In other words,
broadcasting generator only marginally increases the communication cost for each round compared
with the standard FL setting.

The number of communication rounds: To investigate whether the generator will affect the
communication rounds of FedAvg, we report the validation accuracy for STL10 in Fig. 4 in the
appendix. We found that FOSTER will not increase the communication rounds compared with
FedAvg, that is because we train the central generator without updating the global classifier by
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optimizing Eq. (2). Thus, the global convergence is mainly determined by the main loss of the server
instead of the loss of the generator.

A.4 ADDITIONAL BASELINES

We add one local training without FL method One-class SVM1, and also two post hoc scoring
methods KNN2 (Sun et al., 2022) and ViM (Wang et al., 2022) to compare with the state-of-art in
Table 12. One-class SVM can only achieve very low AUROC and AUPR, which is not comparable
to other state-of-art methods. With limited local training set with partial classes for heterogeneous
FL, KNN shows much lower AUROC and AUPR, and ViM also shows very low AUPR despite its
comparable AUROC.

ID dataset Method Acc " AUROC " AUPR "

CIFAR-10

Energy 0.9431 0.7810 0.9262
MSP 0.9431 0.8829 0.9691
ODIN 0.9431 0.8842 0.9689
KNN 0.9431 0.7349 0.6015
ViM 0.9431 0.7938 0.6862
VOS 0.9426 0.7970 0.9342

One-class SVM 0.9431 0.7742 0.6481
FOSTER 0.9432 0.9091 0.9785

CIFAR-100

Energy 0.8129 0.8056 0.9575
MSP 0.8129 0.8606 0.9782
ODIN 0.8129 0.8657 0.9789
KNN 0.8129 0.3094 0.0605
ViM 0.8129 0.7588 0.5493
VOS 0.8063 0.8372 0.9666

One-class SVM 0.8129 0.7688 0.5662
FOSTER 0.8218 0.8945 0.9838

STL10

Energy 0.8236 0.7529 0.9228
MSP 0.8236 0.7410 0.9309
ODIN 0.8236 0.7418 0.9306
KNN 0.8236 0.2586 0.0943
ViM 0.8236 0.7882 0.5676
VOS 0.8264 0.7370 0.9126

One-class SVM 0.8236 0.7394 0.5417
FOSTER 0.8410 0.7671 0.9425

Table 12: Our FOSTER outperforms competitive baselines. " indicates larger value is better. Bold
numbers are best performers.

A.5 CENTRAL EXPERIMENTS

To better verify our intuition that external classes can serve as effective OoD samples during training
for OoD detection, we also conduct central experiments without FL training on CIFAR-10. We
compare training with External-class data with VOS and energy score.

Effects of the number of ID classes. We fix the ID training data size to be 15000, and vary ID classes
number to be 7, 5 and 3. According to the results shown in Table 13, with limited ID samples from
each class, External-class data outperforms other baselines for OoD detection without hurting ID
Acc. Although VOS shows better performance than Energy, it shows worse performance compared
with the results reported in Du et al. (2022) where the entire training set is utilized, since VOS cannot
get an accurate estimation of ID class-conditional Gaussian with limited samples for each class.
When the number of ID classes drops from 7 to 3, for energy, AUROC and AUPR drop by 4.52%
and 3.86% respectively, for VOS, AUROC and AUPR drop by 1.76% and 3.10% respectively, while
External-class data improve AUROC and AUPR by 7.73% and 0.42% respectively. The decrease of
ID classes number will make baselines produce worse OoD detection results, but it is not the case

1Since One-class SVM cannot produce ID accuracy, we use the accuracy from FedAvg for One-class SVM
in the table.

2Following the original paper setting, we use k = 50 for CIFAR-10 and STL10, and k = 200 for CIFAR-100.
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for External-class data. On the contrary, the decrease of ID classes will give External-class data
a chance to get access to more diverse external class data, which can serve as real OoD samples
for training. These results give an explicit explanation for why existing post-hoc and synthesized
based OoD detection methods do not perform well under the FL setting, and verify our intuition that
external classes can serve as effective OoD samples during training for OoD detection.

ID Classes Method Acc " AUROC " AUPR "

7
Energy 0.8455 0.7997 0.9642
VOS 0.8530 0.8073 0.9668

External-class data 0.8605 0.8469 0.9751

5
Energy 0.9157 0.8348 0.9539
VOS 0.9147 0.8384 0.9536

External-class data 0.9150 0.8923 0.9750

3
Energy 0.9647 0.7545 0.9256
VOS 0.9627 0.7897 0.9358

External-class data 0.9617 0.9242 0.9793

Table 13: Without hurting Acc, External-class data outperforms other baselines for OoD detection,
especially when ID classes number is small. " indicates larger value is better. Bold numbers are
superior results.

Effects of the number of external classes. Based on the observation from Table 13, we also
investigate how the number of external classes will affect the OoD performance of External-class
data. We fix training data size to be 15000, ID classes to be 3, and vary the number of external
classes from 7 to 2. The OoD performance for External-class data with different number of external
classes is shown in Table 14. According to the results, diversity plays a key role for External-class
data performance. The more external classes, the better OoD performance External-class data can
achieve. Thus, for the proposed FOSTER we utilize all the external classes knowledge for training.

External Classes Acc " AUROC " AUPR "
7 0.9617 0.9242 0.9793
5 0.9593 0.9062 0.9773
2 0.9377 0.8554 0.9610

Table 14: The more external classes, the better OoD performance exclass can achieve. " indicates
larger value is better. Bold numbers are superior results.

A.6 ADDITIONAL BENCHMARK

ID dataset Method Acc " AUROC " AUPR "

ImageNet-12

Energy 0.8552 0.7267 0.9174
MSP 0.8552 0.7447 0.9286
ODIN 0.8552 0.7399 0.9277
VOS 0.8605 0.7207 0.9171

FOSTER 0.8663 0.7526 0.9312

Table 15: Our FOSTER outperforms competitive baselines. " indicates larger value is better. Bold
numbers are best performers.
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